Influence of Dose on Particle Size and Optical Properties of Colloidal Platinum Nanoparticles
Abstract
:1. Introduction
2. Results and Discussion
2.1. Mechanism of Pt Nanoparticles Formation
2.2. Optical Properties
3. Experimental Section
4. Theoretical Section
5. Conclusions
Acknowledgments
References
- Long, N.V.; Thi, C.H.; Nogami, M.; Ohtaki, M. Novel issues of morphology, size, and structure of Pt nanoparticles in chemical engineering: surface attachment, aggregation or agglomeration, assembly, and structural changes. New J. Chem 2012, 36, 1320–1334. [Google Scholar]
- Sharma, S.; Pollet, B.G. Support materials for PEMFC and DMFC electrocatalysts—A review. J. Power Sources 2012, 208, 96–119. [Google Scholar]
- Peng, Z.; Yang, H. Designer platinum: Control of shape, composition in alloy, nanostructure and electrocatalytic property. Nanotoday 2009, 4, 143–164. [Google Scholar]
- Yang, Y.; Ying, J.Y. A general phase-transfer protocol for metal ions and its application in nanocrystals synthesis. Nat. Mater 2009, 8, 683–689. [Google Scholar]
- Antolini, E. Platinum-based ternary catalysts for low temperature fuel cells Part II. Electrochemical properties. Appl. Catal. B 2007, 74, 337–350. [Google Scholar]
- Krishnamurthy, B.; Deepalochani, S. Performance of platinum black and supported platinum catalysts in a direct methanol fuel cell. Int. J. Electrochem. Sci 2009, 4, 386–395. [Google Scholar]
- Long, N.V.; Hien, T.D.; Asaka, T.; Ohtaki, M.; Nogami, M. Synthesis and characterization of Pt-Pd alloy and core-shell bimetallic nanopoarticles for direct methanol fuel cells (DMFCs): Enhanced electrocatalytic properties of well-shape core-shell morphologies and nanostructures. Int. J. Hydrog. Energy 2011, 36, 8478–8491. [Google Scholar]
- Chen, A.; Holt-Hindle, P. Platinum-based nanostructured materials: Synthesis, properties, and applications. Chem. Rev 2010, 110, 3767–3804. [Google Scholar]
- Hoshika, S.; Nagano, F.; Tanaka, T.; Ikeda, T.; Wada, T.; Asakura, K.; Koshiro, K.; Selimovic, D.; Miyamoto, Y.; Sidhu, S.K.; et al. Effect of application time of colloidal platinum nanoparticles on the microtensile bond strength to dentin. Dent. Mater. J 2010, 29, 682–689. [Google Scholar]
- Kang, W.P.; Kim, C.K. Novel platinum-tin oxide-silicon nitride-silicon dioxide-silicon gas sensing component for oxygen and carbon monoxide gases at low temperature. Appl. Phys. Lett 1993, 63, 421–423. [Google Scholar]
- Xie, J.; Wang, S.; Aryasomayajula, L.; Varadan, V.K. Platinum decorated carbon nanotubes for highly sensitive amperometric glucose sensing. Nanotechnology 2007, 18, 065503. [Google Scholar]
- Boulikas, T.; Pantos, A.; Bellis, E.; Christofis, P. Designing platinum compounds in cancer: Structures and mechanisms. Cancer Ther 2007, 5, 537–583. [Google Scholar]
- Hvolbaek, B.; Janssens, T.V.W.; Clausen, B.S.; Falsig, H.; Christensen, C.H.; Norskov, J.K. Catalysts activity of Au nanoparticles. Nanotoday 2007, 2, 14–18. [Google Scholar]
- Li, F.; Li, F.; Song, J.; Song, J.; Han, D.; Niu, L. Green synthesis of highly stable platinum nanoparticles stabilized by amino-terminated ionic liquid and its electrocatalysts for dioxygen reduction and methanol oxidation. Electrochem. Commun 2009, 11, 351–354. [Google Scholar]
- Chen, C.W.; Akashi, M. Synthesis, characterization, and catalytic properties of colloidal platinum nanoparticles protected by poly (N-isopropylacrylamide). Langmuir 1997, 13, 6465–6472. [Google Scholar]
- Long, N.V.; Chien, N.D.; Hayakawa, T.; Hirata, H.; Lakshminarayana, G.; Nogami, M. The synthesis and characterization of platinum nanoparticles: A method of controlling the size and morphology. Nanotechnology 2010, 21, 035605. [Google Scholar]
- Mizukoshi, Y.; Takagi, E.; Okuno, H.; Oshima, R.; Maeda, Y.; Nagata, Y. Preparation of platinum nanoparticles by sonochemical reduction of the Pt(IV) ions: Role of surfactants. Ultrason. Sonochem 2011, 8, 1–6. [Google Scholar]
- Chen, D.H.; Yeh, J.J.; Huang, T.C. Synthesis of platinum ultrafine particles in AOT reverse micelles. J. Colloid Interface Sci 1999, 215, 159–166. [Google Scholar]
- Zhou, M.; Chen, S.; Ren, H.; Wua, L.; Zhao, S. Electrochemical formation of platinum nanoparticles by a novel rotating cathode method. Physica E 2007, 27, 341–350. [Google Scholar]
- Castro, E.G.; Salvatierra, R.V.; Schreiner, W.H.; Oliveira, M.M.; Zarbin, A.J.G. Dodecanethiol-stabilized platinum nanoparticles obtained by a two-phase method: Synthesis, characterization, mechanism of formation, and electrocatalytic properties. Chem. Mater 2010, 22, 360–370. [Google Scholar]
- Ingelsten, H.H.; Bagwe, R.; Palmqvist, A.; Skoglundh, M.; Svanberg, C.; Holmberg, K.; Shah, D.O. Kinetics of the formation of nano-sized platinum particles in water-in-oil microemulsions. J. Colloid Interface Sci 2001, 241, 104–111. [Google Scholar]
- Coccia, F.; Tonucci, L.; Bosco, D.; Bressan, M.; d’Alessandro, N. One-pot synthesis of lignin-stabilised platinum and palladium nanoparticles and their catalytic behaviour in oxidation and reduction reactions. Green Chem 2012, 14, 1073–1078. [Google Scholar]
- Harada, M.; Okamoto, K.; Terazima, M. Diffusion of platinum ions and platinum nanoparticles during photoreduction processes using the transient grating method. Langmuir 2006, 22, 9142–9149. [Google Scholar]
- Wang, H.; Sun, X.; Ye, Y.; Qiu, S. Radiation induced synthesis of Pt nanoparticles supported on carbon nanotubes. J. Power Sources 2006, 161, 839–842. [Google Scholar]
- Lai, T.; Park, H.G.; Choi, S.H. γ-Irradiation-induced preparation of Ag and Au nanoparticles and their characterizations. Mater. Chem. Phys 2007, 105, 325–330. [Google Scholar]
- Naghavi, K.; Saion, E.; Rezaee, K.; Yunus, W.M.M. Influence of dose on particle size of colloidal silver nanoparticles synthesized by gamma radiation. Radiat. Phys. Chem 2010, 79, 1203–1208. [Google Scholar]
- Doudna, C.M.; Bertino, M.F.; Blum, F.D.; Tokuhiro, A.T.; Lahiri-Dey, D.; Chattopadhyay, S.; Terry, J. Radiolytic synthesis of bimetallic Ag-Pt nanoparticles with a high aspect ratio. J. Phys. Chem. B 2003, 107, 2966–2970. [Google Scholar]
- Abedini, A.; Larki, F.; Saion, E.; Zakaria, A.; Hussein, M.Z. Influence of dose and ion concentration on formation of binary Al–Ni alloy nanoclusters. Radiat. Phys. Chem 2012, 81, 1653–1658. [Google Scholar]
- Fratoddi, I.; Venditti, I.; Battocchio, C.; Polzonetti, G.; Cametti, C.; Russo, M.V. Core shell hybrids based on noble metal nanoparticles and conjugated polymers: Synthesis and characterization. Nanoscale Res. Lett 2011, 6, 98. [Google Scholar]
- Mie, G. Contribution to the optics of turbid media, particularly of colloidal metal solutions. J. Ann. Phys 1908, 25, 377–445. [Google Scholar]
- Stephan, L.; El-Sayed, M.A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 1999, 103, 8410–8420. [Google Scholar]
- Khlebtsov, N.G.; Dykman, L.A. Optical properties and biomedical applications of plasmonic nanoparticles. J. Quant. Spectrosc. Radiat. Trans 2010, 111, 1–35. [Google Scholar]
- Vorontsov, A.V.; Savinov, E.N.; Zhensheng, J. Influence of the form of photodeposited platinum on titania upon its photocatalytic activity in CO and acetone oxidation. J. Photochem. Photobiol. A 1999, 125, 113–117. [Google Scholar]
- Long, N.V.; Ohtaki, M.; Uchida, M.; Jalem, R.; Hirata, H.; Chien, N.D.; Nogami, M. Synthesis and characterization of polyhedral Pt nanoparticles: Their catalytic property, surface attachment, self-aggregation and assembly. J. Colloid Interface Sci 2011, 359, 339–350. [Google Scholar]
- Bragau, A.; Miu, M.; Simion, M.; Anescu, A.I.; Danila, M.; Radoi, A.; Dinescu, A. Platinum nanoparticles for nanocomposite membranes preparation. Rom. J. Inf. Sci. Technol 2010, 13, 350–357. [Google Scholar]
- Ye, H.; Scott, R.W.J.; Crooks, R.M. Synthesis, characterization, and surface immobilization of platinum and palladium nanoparticles encapsulated within amine-terminated poly (amidoamine) dendrimers. Langmuir 2004, 20, 2915–2920. [Google Scholar]
- Jianga, S.J.; Liua, Z.; Tangb, H.L.; Pan, M. Synthesis and characterization of PDDA-stabilized Pt nanoparticles for direct methanol fuel cells. Electrochim. Acta 2006, 51, 5721–5730. [Google Scholar]
- Rivadullar, J.F.; Vergara, M.C.; Blanco, M.C.; L’opez-Quintela, M.A.; Rivas, J. Optical properties of platinum particles synthesized in microemulsions. J. Phys. Chem. B 1997, 101, 8997–9004. [Google Scholar]
- Henglein, A.; Ershov, B.G.; Malow, M.J. Absorption spectrum and some chemical reactions of colloidal platinum in aqueous solution. Phys. Chem 1995, 99, 14129–14136. [Google Scholar]
- Duff, D.G.; Edwards, P.P.; Johnson, B.F.G. Formation of a polymer-protected platinum sol: A new understanding of the parameters controlling morphology. J. Phys. Chem 1995, 99, 15934–15944. [Google Scholar]
- Chen, C.W.; Takezako, T.; Yamamoto, K.; Serizawa, T.; Akashi, M. Poly(N-vinylisobutyramide)- stabilized platinum nanoparticles: Synthesis and temperature-responsive behaviour in aqueous solution. Colloids Surf. A 2000, 169, 107–116. [Google Scholar]
- Hikosaka, K.; Kim, J.; Kajita, M.; Kanayama, A.; Miyamoto, Y. Platinum nanoparticles have an activity similar to mitochondrial NADH: Ubiquinone oxidoreductase. Colloids Surf. B 2008, 66, 195–200. [Google Scholar]
- Liu, Z.; Tian, Z.O.; Jiang, S.P. Synthesis and characterization of Nafion-stabilized Pt nanoparticles for polymer electrolyte fuel cells. Electrochim. Acta 2005, 52, 1213–1220. [Google Scholar]
- Liu, Z.; Jiang, S.P. Synthesis of PDDA–Pt nanoparticles for the self-assembly of electrode/Nafion membrane interface of polymer electrolyte fuel cells. J. Power Sources 2006, 159, 55–58. [Google Scholar]
- Coutanceau, C.; Baranton, S.; Napporn, T.W. Platinum Fuel Cell Nanoparticle Syntheses: Effect on Morphology, Structure and Electrocatalytic Behavior, the Delivery of Nanoparticles; Hashim, A.A., Ed.; InTech: Rijeka, Croatia, 2012. [Google Scholar]
- Long, N.V.; Ohtaki, M.; Nogami, M.; Hien, T.D. Effects of heat treatment and poly(vinylpyrrolidone) (PVP) polymer on electrocatalytic activity of polyhedral Pt nanoparticles towards their methanol oxidation. Colloid. Polym. Sci 2011, 289, 1373–1386. [Google Scholar]
- Soltani, N.; Saion, E.; Hussein, M.Z.; Bahrami, A.; Naghavi, K.; Yunus, R. Microwave irradiation effects on hydrothermal and polyol synthesis of ZnS nanoparticles. Int. J. Mol. Sci 2012, 13, 265–274. [Google Scholar]
- Cameron, R.E.; Bocarsly, A.B. Multielectron-photoinduced reduction of chloroplatinum complexes: Visible light deposition of platinum metal. Inorg. Chem 1986, 25, 2910–1913. [Google Scholar]
- Kaane, E.O. Band structure of indium antimonide. J. Phys. Chem. Solids 1957, 1, 249–261. [Google Scholar]
- Jiang, H.; Barnger, H.U.; Yang, W. Density function theory simulation of large quantum dots. Phys. Rev 2003, B68, 165337–165346. [Google Scholar]
- Howard, P.; Andreev, A.; Williams, D.A. Density functional theory calculations of electronic structure in silicon double quantum dots. Phys. Stat. Sol. C 2008, 5, 3156–3158. [Google Scholar]
- Gharibshahi, E.; Saion, E. Calculation of optical absorption of CdS and CdSe quantum dots. Mater. Res. Innov 2011, 5, 67–70. [Google Scholar]
- Soltani, N.; Gharibshahi, E.; Saion, E. Band gap of cubic and hexagonal CdS nanoparticles—Experimental and theoretical studies. Chalcogenide Lett. 2012, 9, 321–328. [Google Scholar]
- Gharibshahi, E.; Saion, E. Quantum mechanical calculation of optical absorption of silver and gold nanoparticles by density functional theory. Phys. Int 2010, 1, 57–64. [Google Scholar]
- Saion, E.; Gharibshahi, E. On the theory of metal nanoparticles based on quantum mechanical calculation. J. Fund. Sci 2011, 7, 6–11. [Google Scholar]
- Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev 1964, 136, 864–871. [Google Scholar]
- Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev 1965, 140, 1133–1138. [Google Scholar]
- Thomas, L.H. The calculation of atomic fields. Math. Proc. Cambridge Philos. Soc 1927, 23, 542–548. [Google Scholar]
- Fermi, E. Unmetodostatistico per la determinazione di alcunepriorietadell’atome. Rend. Accad. Naz. Lincei 1927, 6, 602–607. [Google Scholar]
- Dirac, P.A.M. Note on exchange phenomena in the Thomas atom. Math. Proc. Cambridge Philos. Soc 1930, 26, 376–385. [Google Scholar]
- Von Weizsacker, C.F. ZurTheorie der Kernmassen. Zeitschrift fur Phys 1935, 96, 431–458. [Google Scholar]
- Yang, W. Gradient correction in Thomas-Fermi theory. Phys. Rev. A 1986, 34, 4575–4585. [Google Scholar]
Dose (kGy) | Particle size (nm) | First peak λmax (nm) | Absorption energy (eV) | Second peak λmax (nm) | Absorption energy (eV) |
---|---|---|---|---|---|
80 | 5.3 | 216.6 (217.1 *) | 5.72 | 264.6 (265.1 *) | 4.69 |
90 | 4.2 | 216.0 (215.9 *) | 5.74 | 264.0 (263.9 *) | 4.70 |
100 | 3.8 | 214.8 (214.8 *) | 5.77 | 262.3 (263.0 *) | 4.73 |
110 | 3.5 | 213.8 (213.9 *) | 5.80 | 261.3 (262.1 *) | 4.74 |
120 | 3.4 | 212.7 (212.3 *) | 5.83 | 260.9 (261.7 *) | 4.75 |
© 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Gharibshahi, E.; Saion, E. Influence of Dose on Particle Size and Optical Properties of Colloidal Platinum Nanoparticles. Int. J. Mol. Sci. 2012, 13, 14723-14741. https://doi.org/10.3390/ijms131114723
Gharibshahi E, Saion E. Influence of Dose on Particle Size and Optical Properties of Colloidal Platinum Nanoparticles. International Journal of Molecular Sciences. 2012; 13(11):14723-14741. https://doi.org/10.3390/ijms131114723
Chicago/Turabian StyleGharibshahi, Elham, and Elias Saion. 2012. "Influence of Dose on Particle Size and Optical Properties of Colloidal Platinum Nanoparticles" International Journal of Molecular Sciences 13, no. 11: 14723-14741. https://doi.org/10.3390/ijms131114723
APA StyleGharibshahi, E., & Saion, E. (2012). Influence of Dose on Particle Size and Optical Properties of Colloidal Platinum Nanoparticles. International Journal of Molecular Sciences, 13(11), 14723-14741. https://doi.org/10.3390/ijms131114723