Drug Conjugates Such as Antibody Drug Conjugates (ADCs), Immunotoxins and Immunoliposomes Challenge Daily Clinical Practice
Abstract
:1. Background
1.1. Reasons to Connect Drugs to Carriers via Linkers
2. Strategies, Carriers, Drugs and Their Linkers
2.1. ADCs
2.2. Immunotoxins
2.3. Immunoliposomes
2.4. Promising Targets (Antigens)
3. The Most Promising Conjugates in Clinical Practice
3.1. Immunoliposomes, New Substances Entering Clinical Stage
3.2. Brentuximab Vedotin, from Phase II into Clinical Practice
3.3. RFB4-PE38 (BL22), the Most Advanced New Immunotoxin
3.4. Phase III Trials That will Allow ADCs to Enter Routine Clinical Practice
4. Conclusions and Future Prospects
Acknowledgments
References
- NCT00085709: S0106 cytarabine and daunorubicin with or without gemtuzumab ozogamicin followed by high-dose cytarabine followed by either gemtuzumab ozogamicin or no additional therapy in treating patients with previously untreated de novo acute Myeloid Leukemia; Southwest Oncology Group: Ann Arbor, MI, USA, Unpublished work; 2010.
- Brentuximab vedotin. Drugs R. D 2011, 11, 85–95.
- Mathew, J.; Perez, E.A. Trastuzumab emtansine in human epidermal growth factor receptor 2-positive breast cancer: a review. Curr. Opin. Oncol 2011, 23, 594–600. [Google Scholar]
- Choudhary, S.; Mathew, M.; Verma, R.S. Therapeutic potential of anticancer immunotoxins. Drug Discov. Today 2011, 16, 495–503. [Google Scholar]
- Kreitman, R.J.; Wilson, W.H.; Bergeron, K.; Raggio, M.; Stetler-Stevenson, M.; FitzGerlad, D.J.; Pastan, I. Efficacy of the anti-CD22 recombinant immunotoxin BL22 in chemotherapy-resistant hairy-cell leukemia. N. Engl. J. Med 2001, 345, 241–247. [Google Scholar]
- Matsumura, Y.; Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986, 46, 6387–6392. [Google Scholar]
- Jain, R.K. Transport of molecules across tumor vasculature. Cancer Metastasis Rev 1987, 6, 559–593. [Google Scholar]
- Jain, R.K. Transport of molecules, particles, and cells in solid tumors. Annu. Rev. Biomed. Eng 1999, 1, 241–263. [Google Scholar]
- Gerber, H.P.; Senter, P.D.; Senter, P.D.; Grewal, I.S. Antibody drug-conjugates targeting the tumor vasculature: Current and future developments. mAbs 2009, 1, 247–253. [Google Scholar]
- Mukherjee, S.; Ghosh, R.N.; Maxfield, F.R. Endocytosis. Physiol. Rev 1997, 77, 759–803. [Google Scholar]
- Scott, A.M.; Wolchok, J.D.; Old, L.J. Antibody therapy of cancer. Nat. Rev. Cancer 2012, 12, 278–287. [Google Scholar]
- Curiel, T.J. Immunotherapy: A useful strategy to help combat multidrug resistance. Drug Resist. Updat 2012, 15, 106–113. [Google Scholar]
- Arnon, R. Site-directed tumor chemotherapy. Compr. Ther 1978, 4, 68–73. [Google Scholar]
- Mamot, C.; Drummond, D.C.; Hong, K.; Kirpotin, D.B.; Park, J.W. Liposome-based approaches to overcome anticancer drug resistance. Drug Resist. Updat 2003, 6, 271–279. [Google Scholar]
- Maruyama, K. PEG-liposome in DDS and clinical studies. Nihon Rinsho 1998, 56, 632–637. [Google Scholar]
- Huwyler, J.; Cerletti, A.; Fricker, G.; Eberle, A.N.; Drewe, J. By-passing of P-glycoprotein using immunoliposomes. J. Drug Target 2002, 10, 73–79. [Google Scholar]
- Berezov, T.T.; Iaglova, N.V.; Dmitrieva, T.B.; Zhirkov Lu, A.; Chekhonin, V.P. Liposome-oriented transport of therapeutic drugs. Vestn. Ross. Akad. Med. Nauk. 2004, 42–47. [Google Scholar]
- Maclean, A.; Symonds, G.; Ward, A. Immunoliposomes as targeted delivery vehicles for cancer therapeutics (Review). Int. J. Oncol 1997, 11, 325–332. [Google Scholar]
- Golay, J.; Introna, M. Mechanism of action of therapeutic monoclonal antibodies: Promises and pitfalls of in vitro and in vivo assays. Arch. Biochem. Biophys 2012, 526, 146–153. [Google Scholar]
- Alley, S.C.; Okeley, N.M.; Senter, P.D. Antibody-drug conjugates: Targeted drug delivery for cancer. Curr. Opin. Chem. Biol 2010, 14, 529–537. [Google Scholar]
- Chari, R.V.; Jackel, K.A.; Bourret, L.A.; Derr, S.M.; Tadayoni, B.M.; Mattocks, K.M.; Shah, S.A.; Liu, C.; Blattler, W.A.; Goldmacher, V.S. Enhancement of the selectivity and antitumor efficacy of a CC-1065 analogue through immunoconjugate formation. Cancer Res 1995, 55, 4079–4084. [Google Scholar]
- Schmidt, M.M.; Wittrup, K.D. A modeling analysis of the effects of molecular size and binding affinity on tumor targeting. Mol. Cancer Ther 2009, 8, 2861–2871. [Google Scholar]
- Attarwala, H. Role of antibodies in cancer targeting. J. Nat. Sci. Biol. Med 2010, 1, 53–56. [Google Scholar]
- Hamblett, K.J.; Senter, P.D.; Chace, D.F.; Sun, M.M.; Lenox, J.; Cerveny, C.G.; Kissler, K.M.; Bernhardt, S.X.; Kopcha, A.K.; Zabinski, R.F.; et al. Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin. Cancer Res 2004, 10, 7063–7070. [Google Scholar]
- Shen, B.Q.; Xu, K.; Liu, L.; Raab, H.; Bhakta, S.; Kenrick, M.; Parsons-Reponte, K.L.; Tien, J.; Yu, S.F.; Mai, E.; et al. Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates. Nat. Biotechnol 2012, 30, 184–189. [Google Scholar]
- Junutula, J.R.; Raab, H.; Clark, S.; Bhakta, S.; Leipold, D.D.; Weir, S.; Chen, Y.; Simpson, M.; Tsai, S.P.; Dennis, M.S.; et al. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat. Biotechnol 2008, 26, 925–932. [Google Scholar]
- Axup, J.Y.; Bajjuri, K.M.; Ritland, M.; Hutchins, B.M.; Kim, C.H.; Kazane, S.A.; Halder, R.; Forstyth, J.S.; Santidrian, A.F.; Stafin, K.; et al. Synthesis of site-specific antibody-drug conjugates using unnatural amino acids. Proc. Natl. Acad. Sci. USA 2012, 109, 16101–16106. [Google Scholar]
- Jeffrey, S.C.; Torgov, M.Y.; Andreyka, J.B.; Boddington, L.; Cerveny, C.G.; Denny, W.A.; Gordon, K.A.; Gustin, G.; Haugen, J.; Kline, T.; et al. Design, synthesis, and in vitro evaluation of dipeptide-based antibody minor groove binder conjugates. J. Med. Chem 2005, 48, 1344–1358. [Google Scholar]
- Miller, M.L.; Roller, E.E.; Wu, X.; Leece, B.A.; Goldmacher, V.S.; Chari, R.V.; Ojima, I. Synthesis of potent taxoids for tumor-specific delivery using monoclonal antibodies. Bioorg. Med. Chem. Lett. 2004, 14, 4079–4082. [Google Scholar]
- Senter, P.D. Activation of prodrugs by antibody-enzyme conjugates: A new approach to cancer therapy. FASEB J 1990, 4, 188–193. [Google Scholar]
- Alley, S.C.; Benjamin, D.R.; Jeffrey, S.C.; Okeley, N.M.; Meyer, D.L.; Sanderson, R.J.; Senter, P.D. Contribution of linker stability to the activities of anticancer immunoconjugates. Bioconjug. Chem 2008, 19, 759–765. [Google Scholar]
- Ducry, L.; Stump, B. Antibody-drug conjugates: Linking cytotoxic payloads to monoclonal antibodies. Bioconjug. Chem 2010, 21, 5–13. [Google Scholar]
- Doronina, S.O.; Mendelsohn, B.A.; Bovee, T.D.; Cerveny, C.G.; Alley, S.C.; Meyer, D.L.; Oflazoglu, E.; Toki, B.E.; Sanderson, R.J.; Zabinsky, R.F.; et al. Enhanced activity of monomethylauristatin F through monoclonal antibody delivery: Effects of linker technology on efficacy and toxicity. Bioconjug. Chem 2006, 17, 114–124. [Google Scholar]
- Chari, R.V. Targeted cancer therapy: Conferring specificity to cytotoxic drugs. Acc. Chem. Res 2008, 41, 98–107. [Google Scholar]
- Chari, R.V.; Martell, B.A.; Gross, J.L.; Cook, S.B.; Shah, S.A.; Blattler, W.A.; McKenzie, S.J.; Goldmacher, V.S. Immunoconjugates containing novel maytansinoids: Promising anticancer drugs. Cancer Res 1992, 52, 127–131. [Google Scholar]
- Simmons, T.L.; Andrianasolo, E.; McPhail, K.; Flatt, P.; Gerwick, W.H. Marine natural products as anticancer drugs. Mol. Cancer Ther 2005, 4, 333–342. [Google Scholar]
- Widdison, W.C.; Wilhelm, S.D.; Cavanagh, E.E.; Whiteman, K.R.; Leece, B.A.; Kovtun, Y.; Goldmacher, V.S.; Xie, H.; Steeves, R.M.; Lutz, R.J.; et al. Semisynthetic maytansine analogues for the targeted treatment of cancer. J. Med. Chem 2006, 49, 4392–4408. [Google Scholar]
- Thorson, J.S.; Sievers, E.L.; Ahlert, J.; Shepard, E.; Whitwam, R.E.; Onwueme, K.C.; Ruppen, M. Understanding and exploiting nature’s chemical arsenal: The past, present and future of calicheamicin research. Curr. Pharm. Des 2000, 6, 1841–1879. [Google Scholar]
- Hamann, P.R.; Hinman, L.M.; Hollander, I.; Beyer, C.F.; Lindh, D.; Holcomb, R.; Hallett, W.; Tsou, H.R.; Upeslacis, J.; Shochat, D.; et al. Gemtuzumab ozogamicin, a potent and selective anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconjug. Chem 2002, 13, 47–58. [Google Scholar]
- Ricart, A.D. Antibody-drug conjugates of calicheamicin derivative: Gemtuzumab ozogamicin and inotuzumab ozogamicin. Clin. Cancer Res 2011, 17, 6417–6427. [Google Scholar]
- Govindan, S.V.; Goldenberg, D.M. New antibody conjugates in cancer therapy. ScientificWorldJournal 2010, 10, 2070–2089. [Google Scholar]
- Mathijssen, R.H.; van Alphen, R.J.; Verweij, J.; Loos, W.J.; Nooter, K.; Stoter, G.; Sparreboom, A. Clinical pharmacokinetics and metabolism of irinotecan (CPT-11). Clin. Cancer Res 2001, 7, 2182–2194. [Google Scholar]
- Rivory, L.P. Metabolism of CPT-11. Impact on activity. Ann. N. Y. Acad. Sci 2000, 922, 205–215. [Google Scholar]
- Kreitman, R.J. Immunotoxins for targeted cancer therapy. AAPS J 2006, 8, E532–E551. [Google Scholar]
- Pastan, I.; Hassan, R.; Fitzgerald, D.J.; Kreitman, R.J. Immunotoxin therapy of cancer. Nat. Rev. Cancer 2006, 6, 559–565. [Google Scholar]
- Tsukazaki, K.; Hayman, E.G.; Ruoslahti, E. Effects of ricin A chain conjugates of monoclonal antibodies to human alpha-fetoprotein and placental alkaline phosphatase on antigen-producing tumor cells in culture. Cancer Res 1985, 45, 1834–1838. [Google Scholar]
- Smallshaw, J.E.; Ghetie, V.; Rizo, J.; Fulmer, J.R.; Trahan, L.L.; Ghetie, M.A.; Vitetta, M.S. Genetic engineering of an immunotoxin to eliminate pulmonary vascular leak in mice. Nat. Biotechnol 2003, 21, 387–391. [Google Scholar]
- FitzGerald, D.J.; Kreitman, R.; Wilson, W.; Squires, D.; Pastan, I. Recombinant immunotoxins for treating cancer. Int. J. Med. Microbiol 2004, 293, 577–582. [Google Scholar]
- Mathew, M.; Verma, R.S. Humanized immunotoxins: A new generation of immunotoxins for targeted cancer therapy. Cancer Sci 2009, 100, 1359–1365. [Google Scholar]
- Park, J.W.; Hong, K.; Kirpotin, D.B.; Papahadjopoulos, D.; Benz, C.C. Immunoliposomes for cancer treatment. Adv. Pharmacol 1997, 40, 399–435. [Google Scholar]
- Torchilin, V.P. Recent approaches to intracellular delivery of drugs and DNA and organelle targeting. Annu. Rev. Biomed. Eng 2006, 8, 343–375. [Google Scholar]
- Sofou, S.; Sgouros, G. Antibody-targeted liposomes in cancer therapy and imaging. Expert. Opin. Drug Deliv 2008, 5, 189–204. [Google Scholar]
- Cheng, W.W.; Allen, T.M. The use of single chain Fv as targeting agents for immunoliposomes: An update on immunoliposomal drugs for cancer treatment. Expert Opin. Drug Deliv 2010, 7, 461–478. [Google Scholar]
- Milla, P.; Dosio, F.; Cattel, L. PEGylation of proteins and liposomes: A powerful and flexible strategy to improve the drug delivery. Curr. Drug Metab 2012, 13, 105–119. [Google Scholar]
- Ng, K.; Zhao, L.; Liu, Y.; Mahapatro, M. The effects of polyethyleneglycol (PEG)-derived lipid on the activity of target-sensitive immunoliposome. Int. J. Pharm 2000, 193, 157–166. [Google Scholar]
- Huang, S.K.; Lee, K.D.; Hong, K.; Friend, D.S.; Papahadjopoulos, D. Microscopic localization of sterically stabilized liposomes in colon carcinoma-bearing mice. Cancer Res 1992, 52, 5135–5143. [Google Scholar]
- Working, P.K.; Dayan, A.D. Pharmacological-toxicological expert report. CAELYX. (Stealth liposomal doxorubicin HCl). Hum. Exp. Toxicol 1996, 15, 751–785. [Google Scholar]
- Siegal, T.; Horowitz, A.; Gabizon, A. Doxorubicin encapsulated in sterically stabilized liposomes for the treatment of a brain tumor model: biodistribution and therapeutic efficacy. J. Neurosurg 1995, 83, 1029–1037. [Google Scholar]
- Mamot, C.; Drummond, D.C.; Greiser, U.; Hong, K.; Kirpotin, D.B.; Marks, J.D.; Park, J.W. Epidermal growth factor receptor (EGFR)-targeted immunoliposomes mediate specific and efficient drug delivery to EGFR- and EGFRvIII-overexpressing tumor cells. Cancer Res. 2003, 63, 3154–3161. [Google Scholar]
- Northfelt, D.W.; Dezube, B.J.; Thommes, J.R.; Levine, R.; von Roenn, J.H.; Dosik, G.M.; Rios, A.; Krown, S.E.; DuMond, C.; Mamelok, R.D. Efficacy of pegylated-liposomal doxorubicin in the treatment of AIDS-related Kaposi’s sarcoma after failure of standard chemotherapy. J. Clin. Oncol 1997, 15, 653–659. [Google Scholar]
- Park, J.W. Liposome-based drug delivery in breast cancer treatment. Breast Cancer Res 2002, 4, 95–99. [Google Scholar]
- Mohrbacher, A.F.; Gregory, S.A.; Gabriel, D.A.; Rusk, J.M.; Giles, F.J. Liposomal daunorubicin (DaunoXome) plus dexamethasone for patients with multiple myeloma. A phase II International Oncology Study Group study. Cancer 2002, 94, 2645–2652. [Google Scholar]
- Aviles, A.; Neri, N.; Castaneda, C.; Talavera, A.; Huerta-Guzman, J.; Gonzalez, M. Pegylated liposomal doxorubicin in combination chemotherapy in the treatment of previously untreated aggressive diffuse large-B-cell lymphoma. Med. Oncol 2002, 19, 55–58. [Google Scholar]
- Sarris, A.H.; Hagemeister, F.; Romaguera, J.; Rodriguez, M.A.; McLaughlin, P.; Tsimberidou, A.M.; Medeiros, L.J.; Samuels, B.; Pate, O.; Oholendt, M.; et al. Liposomal vincristine in relapsed non-Hodgkin’s lymphomas: Early results of an ongoing phase II trial. Ann. Oncol 2000, 11, 69–72. [Google Scholar]
- Yang, T.; Cui, F.D.; Choi, M.K.; Choi, J.W.; Chung, S.J.; Shim, C.K.; Kim, D.D. Enhanced solubility and stability of PEGylated liposomal paclitaxel: In vitro and in vivo evaluation. Int. J. Pharm 2007, 338, 317–326. [Google Scholar]
- Kullberg, M.; Mann, K.; Anchordoquy, T.J. Targeting Her-2+ breast cancer cells with bleomycin immunoliposomes linked to LLO. Mol. Pharm. 2012. [Google Scholar] [CrossRef]
- Emerson, D.L. Liposomal delivery of camptothecins. Pharm. Sci. Technol. Today 2000, 3, 205–209. [Google Scholar]
- Shapira, J.; Budman, D.; Bradley, T.; Gralla, R. Evolving lipid-based delivery systems in the management of neoplastic disease. Oncol. Rev 2009, 3, 113–124. [Google Scholar]
- Adair, J.R.; Howard, P.W.; Hartley, J.A.; Williams, D.G.; Chester, K.A. Antibody-drug conjugates—a perfect synergy. Expert Opin. Biol. Ther. 2012. [Google Scholar]
- Hosokawa, S.; Tagawa, T.; Niki, H.; Hirakawa, Y.; Nohga, K.; Nagaike, K. Efficacy of immunoliposomes on cancer models in a cell-surface-antigen-density-dependent manner. Br. J. Cancer 2003, 89, 1545–1551. [Google Scholar]
- Barrajón-Catalán, E.; Menéndez-Gutiérrez, M.P.; Falcó, A.; Saceda, M.; Catania, A.; Micol, V. Immunoliposomes: A Multipurpose Strategy in Breast Cancer Targeted Therapy. In Breast Cancer—Current and Alternative Therapeutic Modalities; Gunduz, E., Gunduz, M., Eds.; InTech: Rijeka, Croatia, 2011. [Google Scholar]
- Polson, A.G.; Calemine-Fenaux, J.; Chan, P.; Chang, W.; Christensen, E.; Clark, S.; de Sauvage, F.J.; Eaton, D.; Elkins, K.; Elliott, J.M.; et al. Antibody-drug conjugates for the treatment of non-Hodgkin’s lymphoma: Target and linker-drug selection. Cancer Res 2009, 69, 2358–2364. [Google Scholar]
- Erickson, H.K.; Lewis Phillips, G.D.; Leipold, D.D.; Provenzano, C.A.; Mai, E.; Johnson, H.A.; Gunter, B.; Audette, C.A.; Gupta, M.; Pinkas, J.; et al. The effect of different linkers on target cell catabolism and pharmacokinetics/pharmacodynamics of trastuzumab maytansinoid conjugates. Mol. Cancer Ther 2012, 11, 1133–1142. [Google Scholar]
- Maruyama, K.; Kennel, S.J.; Huang, L. Lipid composition is important for highly efficient target binding and retention of immunoliposomes. Proc. Natl. Acad. Sci. USA 1990, 87, 5744–5748. [Google Scholar]
- Legrand, O. An open label dose escalation study of AVE9633 administered as a single agent by intravenous (IV) infusion weekly for 2 weeks in 4-week cycle to patients with relapsed or refractory CD33-positive acute myeloid leukemia (AML). Blood 2007, 110, 1850. [Google Scholar]
- Younes, A.; Kim, S.; Romaguera, J.; Copeland, A.; Farial, S.D.; Kwak, L.W.; Fayad, L.; Hagemeister, F.; Fanale, M.; Neelapu, S.; et al. Phase I multidose-escalation study of the anti-CD19 maytansinoid immunoconjugate SAR3419 administered by intravenous infusion every 3 weeks to patients with relapsed/refractory B-Cell lymphoma. J. Clin. Oncol 2012, 30, 2776–2782. [Google Scholar]
- Chen, Q.; Millar, H.J.; McCabe, F.L.; Manning, C.D.; Steeves, R.; Lai, K.; Kellogg, B.; Lutz, R.J.; Trikha, M.; Nakada, M.T.; et al. Alphav integrin-targeted immunoconjugates regress established human tumors in xenograft models. Clin. Cancer Res 2007, 13, 3689–3695. [Google Scholar]
- Gong, Y.P.; Yarrow, P.M.; Carmalt, H.L.; Kwun, S.Y.; Kennedy, C.W.; Lin, B.P.; Xing, P.X.; Gillett, D.J. Overexpression of Cripto and its prognostic significance in breast cancer: A study with long-term survival. Eur. J. Surg. Oncol 2007, 33, 438–443. [Google Scholar]
- Law, C.L.; Gordon, K.A.; Toki, B.E.; Yamane, A.K.; Hering, M.A.; Cerveny, C.G.; Petroziello, J.M.; Ryan, M.C.; Smith, L.; Simon, R.; et al. Lymphocyte activation antigen CD70 expressed by renal cell carcinoma is a potential therapeutic target for anti-CD70 antibody-drug conjugates. Cancer Res 2006, 66, 2328–2337. [Google Scholar]
- Annunziata, C.M.; Kohn, E.C.; Lorusso, P.; Houston, N.D.; Coleman, R.L.; Buzoianu, M.; Robbie, G.; Lechleider, R. Phase 1, open-label study of MEDI-547 in patients with relapsed or refractory solid tumors. Invest. New Drugs 2012, 30, 1–8. [Google Scholar]
- Schnell, R.; Staak, O.; Borchmann, P.; Schartz, C.; Matthey, B.; Hansen, H.; Schindler, J.; Ghetie, V.; Vitetta, E.S.; Diehl, V.; et al. A Phase I study with an anti-CD30 ricin A-chain immunotoxin (Ki-4.dgA) in patients with refractory CD30+ Hodgkin’s and non-Hodgkin’s lymphoma. Clin. Cancer Res 2002, 8, 1779–1786. [Google Scholar]
- Raza, A.; Jurcic, J.G.; Roboz, G.J.; Maris, M.; Stephenson, J.J.; Wood, B.L.; Feldmann, E.J.; Galili, N.; Grove, L.E.; Drachmann, J.G.; et al. Complete remissions observed in acute myeloid leukemia following prolonged exposure to lintuzumab: A phase 1 trial. Leuk. Lymphoma 2009, 50, 1336–1344. [Google Scholar]
- Younes, A.; Bartlett, N.L.; Leonard, J.P.; Kennedy, D.A.; Lynch, C.M.; Sievers, E.L.; Forero-Torres, A. Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N. Engl. J. Med 2010, 363, 1812–1821. [Google Scholar]
- Fanale, M.A.; Forero-Torres, A.; Rosenblatt, J.D.; Advani, R.H.; Franklin, A.R.; Kennedy, D.A.; Han, T.H.; Sievers, E.L.; Bartlett, N.L. A phase I weekly dosing study of brentuximab vedotin in patients with relapsed/refractory CD30-positive hematologic malignancies. Clin. Cancer Res 2012, 18, 248–255. [Google Scholar]
- Ma, D.; Hopf, C.E.; Malewicz, A.D.; Donovan, G.P.; Senter, P.D.; Goeckeler, W.F.; Maddon, P.J.; Olson, W.C. Potent antitumor activity of an auristatin-conjugated, fully human monoclonal antibody to prostate-specific membrane antigen. Clin. Cancer Res 2006, 12, 2591–2596. [Google Scholar]
- Al-Ahmadie, H.A.; Alden, D.; Qin, L.X.; Olgac, S.; Fine, S.W.; Gopalan, A.; Russo, P.; Motzer, R.J.; Reuter, V.E.; Tickoo, S.K. Carbonic anhydrase IX expression in clear cell renal cell carcinoma: An immunohistochemical study comparing 2 antibodies. Am. J. Surg. Pathol 2008, 32, 377–382. [Google Scholar]
- Chanan-Khan, A. Phase 1 Study of IMGN901, used as monotherapy, in patients with heavily pre-treated CD56-positive multiple myeloma. A preliminary safety and efficacy analysis. Blood 2009. ASH Annual Meeting Abstracts, Abstract: 2283. [Google Scholar]
- Fossella, F. Investigation of IMGN901 in CD56+ solid tumors: Results from a phase I/II trial (study 001) and a phase I trial (study 002). Presented at the 13th World Conference on Lung Cancer, San Francisco, USA, 31 July–4 August 2009.
- Chanan-Khan, A. Phase 1 Study of BT062 given as repeated single dose once every 3 weeks in patients with relapsed or relapsed/refractory multiple myeloma. Blood 2009. ASH Annual Meeting Abstracts, Abstract: 1862. [Google Scholar]
- Ikeda, H.; Hideshima, T.; Fulciniti, M.; Lutz, R.J.; Yasui, H.; Okawa, Y.; Kiziltepe, T.; Vallet, S.; Pozzi, S.; Santo, L.; et al. The monoclonal antibody nBT062 conjugated to cytotoxic Maytansinoids has selective cytotoxicity against CD138-positive multiple myeloma cells in vitro and in vivo. Clin. Cancer Res 2009, 15, 4028–4037. [Google Scholar]
- Von Minckwitz, G.; Harder, S.; Hovelmann, S.; Jager, E.; Al-Batran, S.E.; Loibl, S.; Atmaca, A.; Cimpoiasu, C.; Neumann, A.; Abera, A.; et al. Phase I clinical study of the recombinant antibody toxin scFv(FRP5)-ETA specific for the ErbB2/HER2 receptor in patients with advanced solid malignomas. Breast Cancer Res 2005, 7, R617–R626. [Google Scholar]
- Petrul, H.M.; Schatz, C.A.; Kopitz, C.C.; Adnane, L.; McCabe, T.J.; Trail, P.; Ha, S.; Chang, Y.S.; Voznesensky, A.; Ranges, G.; et al. Therapeutic mechanism and efficacy of the antibody-drug conjugate BAY 79–4620 targeting human carbonic anhydrase 9. Mol. Cancer Ther 2012, 11, 340–349. [Google Scholar]
- Gudas, J.M. ASG-5ME: A novel antibody-drug conjugate (ADC) therapy for prostate, pancreatic, and gastric cancers. Presented at the ASCO 2010, Chicago, USA, 2010. Abstract No.: 230.
- Gudas, J. Use of AGS-16M8F as a novel antibody drug conjugate (ADC) for treating renal cancers. J. Clin. Oncol. 2010, 28 suppl. abstr e15014. [Google Scholar]
- Ansell, S. Targeting CD70 in non-Hodgkin lymphoma and renal cell carcinoma: a phase 1 study of the antibody-drug conjugate SGN-75. Presented at the 35th ESMO Congress, Chicago, USA, 2010.
- Advani, A.; Coiffier, B.; Czuczman, M.S.; Dreyling, M.; Foran, J.; Gine, E.; Gisselbrecht, C.; Ketterer, N.; Nasta, S.; Rohatiner, A.; et al. Safety, pharmacokinetics, and preliminary clinical activity of inotuzumab ozogamicin, a novel immunoconjugate for the treatment of B-cell non-Hodgkin’s lymphoma: results of a phase I study. J. Clin. Oncol 2010, 28, 2085–2093. [Google Scholar]
- Rodon, J.; Garrison, M.; Hammond, L.E.; de Bono, J.; Smith, L; Forero, L.; Hao, D.; Takimoto, C.; Lambert, J.M.; Pandite, L.; et al. Cantuzumab mertansine in a three-times a week schedule: A phase I and pharmacokinetic study. Cancer Chemother. Pharmacol. 2008, 62, 911–919. [Google Scholar]
- Frolich, D.; Blabetafeld, D.; Reiter, K.; Giesecke, C.; Daridon, C.; Mei, H.E.; Burmester, G.R.; Goldenberg, D.M.; Salama, A.; Dorner, T. The anti-CD74 humanized monoclonal antibody, milatuzumab, which targets the invariant chain of MHC II complexes, alters B-cell proliferation, migration, and adhesion molecule expression. Arthritis Res. Ther 2012, 14, R54. [Google Scholar]
- Hassan, R.; Bullock, S.; Premkumar, A.; Kreitman, R.J.; Kindler, H.; Willingham, M.C.; Pastan, I. Phase I study of SS1P, a recombinant anti-mesothelin immunotoxin given as a bolus i.v. infusion to patients with mesothelin-expressing mesothelioma, ovarian, and pancreatic cancers. Clin. Cancer Res. 2007, 13, 5144–5149. [Google Scholar]
- Kreitman, R.J.; Hassan, R.; Fitzgerald, D.J.; Pastan, I. Phase I trial of continuous infusion anti-mesothelin recombinant immunotoxin SS1P. Clin. Cancer Res 2009, 15, 5274–5279. [Google Scholar]
- Hassan, R.; Cohen, S.J.; Phillips, M.; Pastan, I.; Sharon, E.; Kelly, R.J.; Schweizer, C.; Weil, S.; Laheru, D. Phase I clinical trial of the chimeric anti-mesothelin monoclonal antibody MORAb-009 in patients with mesothelin-expressing cancers. Clin. Cancer Res. 2010, 16, 6132–6138. [Google Scholar]
- Le, D. Results of phase I studies testing twolive-attenuated Listeria vaccines, ANZ-100 and CrS-207, for the treatment of cancer. Presented at the AACR Conference, Tumor Immunology: Basic and Clinical Advances, Miami Beach, FL, USA, Nov 30–Dec 3, 2010. Abstract No. B12.
- Phase I Study to Determine the Maximum Tolerable Dose of BAY94-9343 in Patients With Advanced Solid Tumors. ClinicalTrials.gov Identifier: NCT01439152. Available online: http://www.clinicaltrials.gov/ct2/show/NCT01439152?term=NCT01439152&rank=1 accessed on 28 November 2012.
- Mamot, C.; Ritschard, R.; Wicki, A.; Stehle, G.; Dieterle, T.; Bubendorf, L.; Hilker, C.; Dester, S.; Herrmann, R.; Rochlitz, C. Tolerability, safety, pharmacokinetics, and efficacy of doxorubicin-loaded anti-EGFR immunoliposomes in advanced solid tumours: A phase 1 dose-escalation study. Lancet Oncol. 2012. [Google Scholar] [CrossRef]
- Matsumura, Y.; Gotoh, M.; Muro, K.; Yamada, Y.; Shirao, K.; Shimada, Y.; Okuwa, M.; Matsumoto, S.; Miyata, Y.; Ohkura, H. Phase I and pharmacokinetic study of MCC-465, a doxorubicin (DXR) encapsulated in PEG immunoliposome, in patients with metastatic stomach cancer. Ann. Oncol 2004, 15, 517–525. [Google Scholar]
- Kreitman, R.J.; Tallman, M.S.; Robak, T.; Coutre, S.; Wilson, W.H.; Stetler-Stevenson, M.; Fitzgerald, D.J.; Lechleider, R.; Pastan, I. Phase I trial of anti-CD22 recombinant immunotoxin moxetumomab pasudotox (CAT-8015 or HA22) in patients with hairy cell leukemia. J. Clin. Oncol. 2012, 30, 1822–1828. [Google Scholar]
- Kowalski, M.; Entwistle, J.; Cizeau, J.; Niforos, D.; Loewen, S.; Chapman, W.; MacDonald, G.C. A Phase I study of an intravesically administered immunotoxin targeting EpCAM for the treatment of nonmuscle-invasive bladder cancer in BCGrefractory and BCG-intolerant patients. Drug Des. Devel. Ther 2010, 4, 313–320. [Google Scholar]
- Garland, L.; Gitlitz, B.; Ebbinghaus, S.; Pan, H.; da Haan, H.; Puri, R.K.; von Hoff, D.; Figlin, R. Phase I trial of intravenous IL-4 pseudomonas exotoxin protein (NBI-3001) in patients with advanced solid tumors that express the IL-4 receptor. J. Immunother. 2005, 28, 376–381. [Google Scholar]
- Kunwar, S. Convection enhanced delivery of IL13-PE38QQR for treatment of recurrent malignant glioma: Presentation of interim findings from ongoing phase 1 studies. Acta Neurochir. Suppl 2003, 88, 105–111. [Google Scholar]
- Posey, J.A.; Khazaeli, M.B.; Bookman, M.A.; Nowrouzi, A.; Grizzle, W.E.; Thornton, J.; Carey, D.E.; Lorenz, J.M.; Sing, A.P.; Siegall, C.B.; et al. A phase I trial of the single-chain immunotoxin SGN-10 (BR96 sFv-PE40) in patients with advanced solid tumors. Clin. Cancer Res. 2002, 8, 3092–3099. [Google Scholar]
- MacDonald, G.C.; Rasamoelisolo, M.; Entwistle, J.; Cuthbert, W.; Kowalski, M.; Spearman, M.A.; Glover, N. A phase I clinical study of intratumorally administered VB4-845, an anti-epithelial cell adhesion molecule recombinant fusion protein, in patients with squamous cell carcinoma of the head and neck. Med. Oncol 2009, 26, 257–264. [Google Scholar]
- Krop, I.E.; Beeram, M.; Modi, S.; Jones, S.F.; Holden, S.N.; Yu, W.; Girish, S.; Tibbitts, T.; Yi, J.H.; Sliwkowski, M.X. Phase I study of trastuzumab-DM1, an HER2 antibody-drug conjugate, given every 3 weeks to patients with HER2-positive metastatic breast cancer. J. Clin. Oncol. 2010, 28, 2698–2704. [Google Scholar]
- LeMaistre, C.F.; Saleh, M.N.; Kuzel, T.M.; Foss, F.; Platanias, L.C.; Schwartz, G.; Ratain, M.; Rook, A.; Freytes, C.O.; Craig, F.; et al. Phase I trial of a ligand fusion-protein (DAB389IL-2) in lymphomas expressing the receptor for interleukin-2. Blood 1998, 91, 399–405. [Google Scholar]
- Bartlett, N. Retreatment with brentuximab vedotin in CD30-positive hematologic malignancies: A phase II study. J. Clin. Oncol. 2012, 30 suppl. abstract 8027. [Google Scholar]
- Pro, B.; Advani, R.; Brice, P.; Bartlett, N.L.; Rosenblatt, J.D.; Illidge, T.; Matous, J.; Ramchandren, R.; Fanale, M.; Connors, J.M.; et al. Brentuximab Vedotin (SGN-35) in patients with relapsed or refractory systemic anaplastic large-cell Lymphoma: Results of a phase II Study. J. Clin. Oncol 2012, 30, 2190–2196. [Google Scholar]
- Perez, E. Efficacy and safety of Trastuzumab-DM1 vs. Trastuzumab plus Docetaxel in HER-2-positive metastatic breast cancer patients with no prior chemotherapy for metastatic disease: Preliminary results of a randomizes, multicenter, open-label phase 2 study (TDM4). 2010. Abstract LBA 3. [Google Scholar]
- Pollack, V.A.; Alvarez, E.; Tse, K.F.; Torgov, M.Y.; Xie, S.; Shenoy, S.G.; MacDougall, J.R.; Arrol, S.; Zhong, H.; Gerwien, R.W.; et al. Treatment parameters modulating regression of human melanoma xenografts of an antibody-drug conjugate (CR011-vcMMAE) targeting GPNMB. Cancer Chemother. Pharmacol 2007, 60, 423–435. [Google Scholar]
- Sznol, M. Phase I pharmacokinetic study of CR011-vcMMAE, an antibody toxin conjugate drug, in patients with unresectable stage III/IV melanoma. Presented at the AACR-NCI-EORTC Conference on Molecular Targets and Cancer Therapeutics, San Francisco, CA, USA, 2007. Abstract B47.
- Burris, H. A phase I/II study of CRO11-vcMMAE (CDX-011), an antibody–drug conjugate, in patients with locally advances or metastatic breast cancer. Presented at the 32nd Annual San Antonio Breast Cancer Symposium, San Antonio, TX, USA, 2009. Abstract 6096.
- Hwu, P. A phase I/II study of CR011-vcMMAE, an antibody-drug conjugate (ADC) targeting glycoprotein NMB (GPNMB) in patients (pts) with advanced melanoma. J. Clin. Oncol. 2009, 27(15S). abstract 9032. [Google Scholar]
- Mita, M. A phase I study of a CanAg-targeted immunoconjugate, huC242-DM4, in patients with Can Ag-expressing solid tumors. J. Clin. Oncol. 2007, 25(18S). Abstract 3062. [Google Scholar]
- Fidias, P.; Grossbard, M.; Lynch, T.J., Jr. A phase II study of the immunotoxin N901-blocked ricin in small-cell lung cancer. Clin. Lung Cancer 2002, 3, 219–222. [Google Scholar]
- Kantarjian, H.; Thomas, D.; Jorgensen, J.; Jabbour, E.; Kebriaei, P.; Ritting, M.; York, S.; Ravandi, F.; Kwari, M.; Faderl, S.; et al. Inotuzumab ozogamicin, an anti-CD22-calecheamicin conjugate, for refractory and relapsed acute lymphocytic leukaemia: A phase 2 study. Lancet Oncol 2012, 13, 403–411. [Google Scholar]
- Chen, R. Results of a pivotal Phase 2 study of brentuximab vedotin (SGN-35) in patients with relapsed or refractory Hodgkin lymphoma. Blood 2010, 116(21). Abstract 283. [Google Scholar]
- Shustov, A. Complete remissions with brentuximab vedotin (SGN-35) in patients with relapsed or refractory systemic anaplastic large cell lymphoma. Blood 2010, 116(21). Abstract 961. [Google Scholar]
- ImmunoGen, Inc. Press release: ImmunoGen reports fourth quarter and fiscal year 2004 financial results; revenue from partners increased substantially over 2003 levels. Available online: http://investor.immunogen.com/releasedetail.cfm?ReleaseID=649263 accessed on 23 November 2012.
- Younes, A.; Gopal, A.K.; Smith, S.E.; Ansell, S.M.; Rosenblatt, J.D.; Savage, K.J.; Ramchandren, R.; Bartlett, N.L.; Cheson, B.D.; de Vos, S.; et al. Results of a pivotal phase II study of Brentuximab Vedotin for patients with relapsed or refractory Hodgkin’s Lymphoma. J. Clin. Oncol 2012, 30, 2183–2189. [Google Scholar]
- Burris, H.A., 3rd; Rugo, H.S.; Vukelja, S.J.; Vogel, C.L.; Borson, R.A.; Limantani, S.; Tan-Chiu, E.; Krop, I.E.; Michaelson, R.A.; Girish, S.; et al. Phase II study of the antibody drug conjugate trastuzumab-DM1 for the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer after prior HER2-directed therapy. J. Clin. Oncol 2011, 29, 398–405. [Google Scholar]
- Kreitman, R.J.; Stetler-Stevenson, M.; Margulies, I.; Noel, P.; Fitzgerlad, D.J.; Wilson, W.H.; Pastan, I. Phase II trial of recombinant immunotoxin RFB4(dsFv)-PE38 (BL22) in patients with hairy cell leukemia. J. Clin. Oncol 2009, 27, 2983–2990. [Google Scholar]
- Amadori, S.; Suciu, S.; Stasi, R.; Willemze, R.; Mandelli, F.; Selleslag, D.; Denzlinger, C.; Muus, P.; Stauder, R.; Berneman, Z.; et al. Gemtuzumab ozogamicin (Mylotarg) as single-agent treatment for frail patients 61 years of age and older with acute myeloid leukemia: final results of AML-15B, a phase 2 study of the European Organisation for Research and Treatment of Cancer and Gruppo Italiano Malattie Ematologiche dell’Adulto Leukemia Groups. Leukemia 2005, 19, 1768–1773. [Google Scholar]
- Tolcher, A.W.; Sugarman, S.; Gelmon, K.A.; Cohen, R.; Saleh, M.; Isaacs, C.; Healey, D.; Onetto, N.; Slichemyer, W. Randomized phase II study of BR96-doxorubicin conjugate in patients with metastatic breast cancer. J. Clin. Oncol 1999, 17, 478–484. [Google Scholar]
- Multani, P.S.; O’Day, S.; Nadler, L.M.; Grossbard, M.L. Phase II clinical trial of bolus infusion anti-B4 blocked ricin immunoconjugate in patients with relapsed B-cell non-Hodgkin’s lymphoma. Clin. Cancer Res 1998, 4, 2599–2604. [Google Scholar]
- Grossbard, M.L.; Fidias, P.; Kinsella, J.; O’Toole, J.; Lambert, J.M.; Blattler, W.A.; Esseltine, D.; Braman, G.; Nadler, L.M.; Anderson, K.C. Anti-B4-blocked ricin: A phase II trial of 7 day continuous infusion in patients with multiple myeloma. Br. J. Haematol 1998, 102, 509–515. [Google Scholar]
- Krop, I. A phase 2 study of the HER2 antibody- drug conjugate trastuzumab- DM1 (T- DM1) in patients (pts) with HER2-positive metastatic breast cancer (MBC) previously treated with trastuzumab, lapatinib, and chemotherapy. Presented at the ESMO 2010, Milan, Italy, 2010. Abstract 5082.
- Telang, S.; Rasku, M.A.; Clem, A.L.; Carter, K.; Klarer, A.C.; Badger, W.R.; Milam, R.A.; Rai, S.N.; Pan, J.; Gragg, H.; et al. Phase II trial of the regulatory T cell-depleting agent, denileukin diftitox, in patients with unresectable stage IV melanoma. BMC Cancer 2011, 11, 515. [Google Scholar]
- Gerena-Lewis, M.; Crawford, J.; Bonomi, P.; Maddox, A.M.; Hainsworth, J.; McCune, D.E.; Shukla, R.; Zeigler, H.; Hurtubise, P.; Chowdhury, T.R.; et al. A Phase II trial of Denileukin Diftitox in patients with previously treated advanced non-small cell lung cancer. Am. J. Clin. Oncol 2009, 32, 269–273. [Google Scholar]
- Kuzel, T.M.; Li, S.; Eklund, J.; Foss, F.; Gascoyne, R.; Abramson, N.; Schwerkoske, J.F.; Weller, E.; Horning, S.J. Phase II study of denileukin diftitox for previously treated indolent non-Hodgkin lymphoma: Final results of E1497. Leuk. Lymphoma 2007, 48, 2397–2402. [Google Scholar]
- Dang, N.H.; Pro, B.; Hagemeister, F.B.; Samaniego, F.; Jones, D.; Samuels, B.I.; Rodriguez, M.A.; Goy, A.; Romaguera, J.E.; McLaughlin, P.; et al. Phase II trial of denileukin diftitox for relapsed/refractory T-cell non-Hodgkin lymphoma. Br. J. Haematol 2007, 136, 439–447. [Google Scholar]
- Frankel, A.E.; Surendranathan, A.; Black, J.H.; White, A.; Ganjoo, K.; Cripe, L.D. Phase II clinical studies of denileukin diftitox diphtheria toxin fusion protein in patients with previously treated chronic lymphocytic leukemia. Cancer 2006, 106, 2158–2164. [Google Scholar]
- Dang, N.H.; Hagemeister, F.B.; Pro, B.; McLaughlin, P.; Romaguera, J.E.; Jones, D.; Samuels, B.; Smaniego, F.; Younes, F.; Wang, M.; et al. Phase II study of denileukin diftitox for relapsed/refractory B-Cell non-Hodgkin’s lymphoma. J. Clin. Oncol 2004, 22, 4095–4102. [Google Scholar]
- Frankel, A.E.; Fleming, D.R.; Hall, P.D.; Powell, B.L.; Black, J.H.; Leftwich, C.; Gartenhaus, R. A phase II study of DT fusion protein denileukin diftitox in patients with fludarabine-refractory chronic lymphocytic leukemia. Clin. Cancer Res 2003, 9, 3555–3561. [Google Scholar]
- Blackwell, K. Primary results from EMILIA, a phase III study of trastuzumab emtansine (T-DM1) versus capecitabine (X) and lapatinib (L) in HER2-positive locally advanced or metastatic breast cancer (MBC) previously treated with trastuzumab (T) and a taxane. J. Clin. Oncol. 2012, 30 suppl. abstr LBA1. [Google Scholar]
- LoRusso, P.M.; Weiss, D.; Guardino, E.; Girish, S.; Sliwkowski, M.X. Trastuzumab emtansine: A unique antibody-drug conjugate in development for human epidermal growth factor receptor 2-positive cancer. Clin. Cancer Res 2011, 17, 6437–6447. [Google Scholar]
- Verma, S.; Miles, D.; Gianni, L.; Krop, I.E.; Welslau, M.; Baselga, M.; Pegram, M.; Oh, D.Y.; Dieras, V.; Guardino, E.; et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N. Engl. J. Med 2012, 367, 1783–1791. [Google Scholar]
- Ellis, P. MARIANNE: A phase III, randomized study of trastuzumab-DM1 (T-DM1) with or without pertuzumab (P) compared with trastuzumab (H) plus taxane for first-line treatment of HER2-positive, progressive, or recurrent locally advanced or metastatic breast cancer (MBC). J. Clin. Oncol. 2011, 29 suppl. Abstract TPS102. [Google Scholar]
- The AETHERA Trial: A randomized, double-blind, placebo-controlled phase 3 Study of SGN-35 and Best Supportive Care (BSC) versus placebo and BSC in the treatment of patients at high risk of residual Hodgkin lymphoma following autologous stem cell transplant. ClinicalTrials.gov identifier: NCT01100502. Available online: http://www.clinicaltrials.gov/ct2/show/NCT01100502?term=NCT01100502&rank=1 accessed on 28 November 2012.
- Lowenberg, B.; Beck, J.; Graux, C.; van Putten, W.; Schouten, H.C.; Verdonck, L.F.; Ferrant, A.; Sonneveld, P.; Jongen-Lavrencic, M.; von Lilienfeld-Toar, M.; et al. Gemtuzumab ozogamicin as postremission treatment in AML at 60 years of age or more: results of a multicenter phase 3 study. Blood 2010, 115, 2586–2591. [Google Scholar]
- Castaigne, S.; Pautas, C.; Terre, C.; Raffoux, E.; Bordessoule, D.; Bastie, J.N.; Legrand, O.; Thomas, X.; Turlure, P.; Reman, O.; et al. Effect of gemtuzumab ozogamicin on survival of adult patients with de novo acute myeloid leukaemia (ALFA-0701): A randomised, open-label, phase 3 study. Lancet 2012, 379, 1508–1516. [Google Scholar]
- INO-VATE ALL STUDY 1022: A phase 3 study of Inotuzumab Ozogamicin versus investigator’s choice of chemotherapy in patients with relapsed or refractory acute Lymphoblastic Leukemia. Clinicaltrials.gov. Identifier: NCT01564784. Available online: http://www.clinicaltrials.gov/ct2/show/NCT01564784?term=inotuzumab&rank=7 accessed on 28 November 2012.
- Furman, R.R.; Grossbard, M.L.; Johnson, J.L.; Pecora, A.L.; Cassileth, P.A.; Jung, S.H.; Peterson, B.A.; Nadler, L.M.; Freedmann, A.; Bayer, R.L.; et al. A phase III study of anti-B4-blocked ricin as adjuvant therapy post-autologous bone marrow transplant: CALGB 9254. Leuk. Lymphoma 2011, 52, 587–596. [Google Scholar]
- Prince, H.M.; Duvic, M.; Martin, A.; Sterry, W.; Assaf, C.; Sun, Y.; Straus, D.; Acosta, M.; Negro-Vilar, A. Phase III placebo-controlled trial of denileukin diftitox for patients with cutaneous T-cell lymphoma. J. Clin. Oncol 2010, 28, 1870–1877. [Google Scholar]
- Bartlett, N.L.; Niedzwiecki, D.; Johnson, J.L.; Friedberg, J.W.; Johnson, K.B.; van Besien, K.; Zelenetz, A.D.; Cheson, B.D.; Canellos, G.P. Gemcitabine, vinorelbine, and pegylated liposomal doxorubicin (GVD), a salvage regimen in relapsed Hodgkin’s lymphoma: CALGB 59804. Ann. Oncol 2007, 18, 1071–1079. [Google Scholar]
- Duvic, M.; Cather, J.; Maize, J.; Frankel, A.E. DAB389IL2 diphtheria fusion toxin produces clinical responses in tumor stage cutaneous T cell lymphoma. Am. J. Hematol 1998, 58, 87–90. [Google Scholar]
- Lansigan, F.; Stearns, D.M.; Foss, F. Role of denileukin diftitox in the treatment of persistent or recurrent cutaneous T-cell lymphoma. Cancer Manag. Res 2010, 2, 53–59. [Google Scholar]
- Schmidt, S.R. Fusion-proteins as biopharmaceuticals--applications and challenges. Curr. Opin. Drug Discov. Devel 2009, 12, 284–295. [Google Scholar]
Compound | Target | Population | Ref. |
---|---|---|---|
AVE9633-amide-MCC-DM4 | CD33 | Myeloid leukemia | [75] |
SAR3419-amide-MCC-DM4 | CD19 | NHL | [76] |
IMGN388-amide-MCC-DM4 | Integrin | Solid tumors | [77] |
BIIB015-amide-MCC-DM4 | Cripto | Solid tumors | [78] |
MDX-1203- MC-VC-MGBA (duocarmycin) | CD70 | Renal cell carcinoma | [79] |
1 C1- MC-MMAF (MEDI-547) | EphA2 | Solid tumors | [80] |
Ki-4.dgA | CD30 | Refractory CD30+ HL and NHL | [81] |
Lintuzumab-MC-VC-MMAE | CD30 | Hematologic malignancies, HL | [82] |
Brentuximab vedotin | CD30 | HL, ALCL, ATCL | [83] |
Brentuximab vedotin | CD30 | HL, ALCL, PTCL | [84] |
PSMA ADC | PSMA | Prostate cancer | [85] |
MN immunoconjugate | MN | Cancer | [86] |
IMGN901 | CD56 | Multiple myeloma, solid tumors | [87,88] |
BT-062 | CD138 | Multiple myeloma | [89,90] |
scFv(FRP5)-ETA | ErbB2/HER-2 | Advanced Solid tumor | [91] |
BAY 79-4620 MN/CA IX | MN Carbonic anhydrase IX | Solid tumor | [92] |
AGS-5ME | AGS-5 | Prostate, pancreatic, gastric | [93] |
AGS-16M8F | AGS-16 | RCC | [94] |
SGN-75 | CD70 | NHL and RCC | [95] |
Inotuzumab ozogamicin | CD22 | NHL | [96] |
IMGN242 (huC242-DM4) | CanAg | Solid tumors | [97] |
hLL1-DOX (milatuzumab) | CD74 | Multiple myeloma | [98] |
SS1P (immunotoxin) | Mesothelin | Mesothelin-positive mesotheliomas, and ovarian and pancreatic cancers | [99] |
SS1P (immunotoxin) | Mesothelin | Mesothelin-positive mesotheliomas, and ovarian and pancreatic cancers | [100] |
MORAb-009 | Mesothelin | Mesothelioma, pancreatic cancer and mesothelin positive lung and ovarian cancer | [101] |
CRS-207 | Mesothelin | Patients with mesothelin-expressing cancers | [102] |
BAY 94-9343 | Mesothelin | Patients with advanced solid tumors | [103] |
Anti-EGFR ILs-Dox | EGFR | Advanced solid tumors | [104] |
MCC-465 | epitope recognized by GAH | Metastatic or recurrent stomach cancer | [105] |
Moxetumomab pasudotox (CAT-8015 or HA22) | CD22 | HCL | [106] |
VB4-845 | EpCAM | Nonmuscle-invasive bladder cancer in BCG-refractory and BCG-intolerant patients | [107] |
NBI-3001 | IL-4 receptor | RCC and NSCLC whose tumors showed at least 10% IL-4 receptor expression | [108] |
IL13PE38QQR | IL13 receptor | Recurrent malignant gliomas | [109] |
SGN-10 (BR96 sFv-PE40) | Lewis(Y) | Solid tumors | [110] |
VB4-845 | EpCAM | Squamous cell carcinoma of the head and neck | [111] |
Trastuzumab-DM1 | HER-2 | Breast cancer | [112] |
Denileukin diftitox | IL-2-rec. | Lymphomas expressing IL-2-receptor | [113] |
Compound | Target | Population | Ref. |
---|---|---|---|
Brentuximab vedotin (SGN-35) | CD30 | CD30 positive hematologic malignanancies, retreatment | [114] |
Brentuximab vedotin (SGN-35) | CD30 | Relapsed or refractory systemic ALCL | [115] |
Trastuzumab-DM1 | HER2 | Breast cancer | [116] |
CR011-MC-VC-MMAE | GPNMB | Melanoma | [117–120] |
HuC242-amide-MCC-DM4 | CanAg | Gastric cancer | [121] |
HuN901-amide-MCC-DM1 | CD56 | Multiple myeloma & SCLC | [122] |
Inotuzumab ozogamicin | CD22 | ALL | [123] |
Brentuximab vedotin (SGN-35) | CD30 | HL post ASCT | [124] |
Brentuximab vedotin (SGN-35) | CD30 | Relapsed or refractory ALCL | [125] |
MLN-2704 | PSMA | Prostate cancer | [126] |
Brentuximab vedotin (SGN-35) | CD30 | Relapsed or refractory HL | [127] |
Trastuzumab-DM1 | HER-2 | Breast cancer | [128] |
RFB4(dsFv)-PE38 (BL22) | CD22 | HCL | [129] |
Gemtuzumab ozogamicin (Mylotarg) | CD33 | Patients 61 years of age and older with AML | [130] |
BMS-182248-1 | Lewis-Y | Metastatic breast cancer | [131] |
Anti-B4-bR | CD19 | Relapsed B-cell NHL | [132] |
Anti-B4-bR | CD19 | Multiple myeloma | [133] |
Trastuzumab-DM1 | HER-2 | Breast cancer | [134] |
Denileukin diftitox | IL-2-rec. | Melanoma, stage IV, unresectable | [135] |
Denileukin diftitox | IL-2-rec. | Previously treated advanced NSCLC | [136] |
Denileukin diftitox | IL-2-rec. | Previously treated indolent NHL | [137] |
Denileukin diftitox | IL-2-rec. | Relapsed/refractory T-cell NHL | [138] |
Denileukin diftitox | IL-2-rec. | Previously treated CLL | [139] |
Denileukin diftitox | IL-2-rec. | Previously treated B-cell NHL | [140] |
Denileukin diftitox | IL-2-rec. | Fludarabine-refractory CLL | [141] |
Study | Compound | Target | Design | Population | Ref. |
---|---|---|---|---|---|
EMILIA Completed | Trastuzumab emtansine (T-DM1) | HER-2 | Vs. capecitabine and lapatinib in HER-2-positive advanced or MBC | Breast cancer | [142–144] |
MARIANNE (ongoing, but not recruiting participants) | Trastuzumab emtansine (T-DM1) | HER-2 | With or without pertuzumab vs. trastuzumab plus taxane in advanced or MBC | Breast cancer | [143,145] |
AETHERA (currently recruiting participants) | Brentuximab vedotin (SGN-35) | CD30 | Vs. placebo in patients with HL progressive after ASCT | HL | [146] |
Published | Gemtuzumab ozogamicin | CD33 | Observation or gemtuzumab ozo. as postremission treatment | AML at 60 years of age or more | [147] |
ALFA-0701 (ongoing, but not recruiting participants) | Gemtuzumab ozogamicin | CD33 | Standard treatment with or without gemtuzumab ozo. in de novo AML | AML | [148] |
INO-VATE ALL STUDY 1022 (planned) | Inotuzumab ozogamicin | CD22 | Inotuzumab ozogamicin vs. investigator’s choice in patients with relapsed or refractory ALL | ALL | [149] |
Published | anti-B4-bR | CD19 | Observation or adjuvant treatment with anti-B4-blocked ricin after BMT | DLBCL in CR after ASCT | [150] |
Published | Denileukin diftitox | CD25 subunit of IL-2 receptor | Efficacy and safety of two doses denileukin diftitox in patients who have received three prior therapies | CTLC | [151] |
© 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Janthur, W.-D.; Cantoni, N.; Mamot, C. Drug Conjugates Such as Antibody Drug Conjugates (ADCs), Immunotoxins and Immunoliposomes Challenge Daily Clinical Practice. Int. J. Mol. Sci. 2012, 13, 16020-16045. https://doi.org/10.3390/ijms131216020
Janthur W-D, Cantoni N, Mamot C. Drug Conjugates Such as Antibody Drug Conjugates (ADCs), Immunotoxins and Immunoliposomes Challenge Daily Clinical Practice. International Journal of Molecular Sciences. 2012; 13(12):16020-16045. https://doi.org/10.3390/ijms131216020
Chicago/Turabian StyleJanthur, Wolf-Dieter, Nathan Cantoni, and Christoph Mamot. 2012. "Drug Conjugates Such as Antibody Drug Conjugates (ADCs), Immunotoxins and Immunoliposomes Challenge Daily Clinical Practice" International Journal of Molecular Sciences 13, no. 12: 16020-16045. https://doi.org/10.3390/ijms131216020
APA StyleJanthur, W. -D., Cantoni, N., & Mamot, C. (2012). Drug Conjugates Such as Antibody Drug Conjugates (ADCs), Immunotoxins and Immunoliposomes Challenge Daily Clinical Practice. International Journal of Molecular Sciences, 13(12), 16020-16045. https://doi.org/10.3390/ijms131216020