Chemical Composition and in Vitro Antifungal Activity Screening of the Allium ursinum L. (Liliaceae)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Identification of Allicin from Allium ursinum Extract
2.2. Gas Chromatography Separates the Components of Allium ursinum Extract
2.3. GC/MS of Volatile Compounds from S-methyl Cysteine Sulfoxide from A. ursinum Extract
2.4. Efficacy of Antifungal of Allium ursinum Extracts
3. Experimental Section
3.1. Vegetal Material
3.2. Obtaining and Evaluating Allium ursinum Extract
3.3. GC/MS Analysis of the Volatile Compounds
3.4. Obtaining and Evaluating the S-methyl Cysteine Sulfoxide
3.5. Obtaining and Evaluating the S-methyl Cysteine Sulfoxide Volatile
3.6. Determination of Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal/Fungicidal Concentration (MBC/MFC)
3.7. Determination of MICs and Morphogenetic Transformation
3.8. Minimum Fungicidal Concentration
3.9. Antifungal Agents/Chemicals
3.10. Statistical Analysis
4. Conclusions
References
- Lazarević, J.S.; Đorđević, A.S.; Zlatković, B.K.; Radulović, N.S.; Palić, R.M. Chemical composition and antioxidant and antimicrobial activities of essential oil of Allium sphaerocephalon L. subsp. sphaerocephalon (Liliaceae) inflorescences. J. Sci. Food Agric 2011, 91, 322–329. [Google Scholar]
- Mahmoudabadi, A.Z.; Nasery, M.K.G. Antifungal activity of shallot, Allium ascalonicum Linn. (Liliaceae), in vitro. J. Med. Plants Res 2009, 3, 450–453. [Google Scholar]
- Ogita, A.; Fujita, K.I.; Taniguchi, M.; Tanaka, T. Dependence of synergistic fungicidal activity of Cu2+ and allicin, an allyl sulfur compound from ramsons, on selective accumulation of the ion in the plasma membrane fraction via allicin-mediated phospholipid peroxidation. Planta Med 2006, 72, 875–880. [Google Scholar]
- Lamar, K.M.; Muller, C.T.; Plummer, S.; Lloyd, D. Cell death mechanisms inthehuman opportunistic pathogen Candida albicans. J. Eukaryot. Microbiol 2003, 50, 685–686. [Google Scholar]
- Abubakar, E.-M. Efficacy of crude extracts of ramsons (Allium sativum Linn.) against nosocomial Escherichia coli, Staphylococcus aureus, Streptococcus pneumoniae and Pseudomonas aeruginosa. J. Med. Plants Res 2009, 3, 179–185. [Google Scholar]
- Ivanova, A.; Mikhova, B.; Najdenski, H.; Tsvetkova, I.; Kostova, I. Chemical composition and antimicrobial activity of wild ramsons Allium ursinum of Bulgarian origin. Nat. Prod. Commun 2009, 4, 1059–1062. [Google Scholar]
- Ledezma, E.; Apitz, C.R. Ajoene, el principal compuesto activo derivado del ajo (Allium sativum), un nuevo agente antifungico. Rev. Iberoam. Micol 2006, 23, 75–80. [Google Scholar]
- Sobolewska, D.; Janeczko, Z.; Kisiel, W.; Podolak, I.; Galanty, A.; Trojanowska, D. Steroidal glycoside from the underground parts of Allium ursinum L., and their cytostatic and antimicrobial activity. Acta Pol. Pharm.—Drug Res 2006, 63, 219–223. [Google Scholar]
- Kim, J.W.; Huh, J.E.; Kyung, S.H.; Kyung, K.H. Antimicrobial activity of alk(en)yl sulfides found in essential oils of ramsons and onion. Food Sci. Biotechnol 2004, 13, 235–239. [Google Scholar]
- Schmitt, B.; Schulz, H.; Storsberg, J.; Keusgen, M. Chemical characterization of Allium ursinum L. depending on harvesting time. J. Agric. Food Chem 2005, 53, 7288–7294. [Google Scholar]
- Wu, H.; Dushenkov, S.; Ho, C.T.; Sang, S. Novel acetylated flavonoid glycosides from the leaves of Allium ursinum. Food Chem 2009, 115, 592–595. [Google Scholar]
- Golubkina, N.A.; Malankina, H.L.; Kosheleva, O.V.; Solovyeva, A.Y. Content of biologically active substances—Selenium, flavonoids, ascorbic acid and chlorophyllin of Allium ursinum L. and Allium victorialis L. Vopr. Pitan 2010, 79, 78–81. [Google Scholar]
- Fritsch, R.M.; Keusgen, M. Occurrence and taxonomic significance of cysteine sulphoxides in the genus Allium L. (Alliaceae). Phytochemistry 2006, 67, 1127–1135. [Google Scholar]
- Nencini, C.; Menchiari, A.; Franchi, G.G.; Micheli, L. In vitro antioxidant activity of aged extracts of some Italian Allium species. Plant Foods Hum. Nutr 2011, 66, 11–16. [Google Scholar]
- Štajner, D.; Popović, B.M.; Čanadanović-Brunet, J.; Štajner, M. Antioxidant and scavenger activities of Allium ursinum. Fitoterapia 2008, 79, 303–305. [Google Scholar]
- Hiyasat, B.; Sabha, D.; Grotzinger, K.; Kempfert, J.; Rauwald, J.W.; Mohr, F.W.; Dhein, S. Antiplatelet activity of Allium ursinum and Allium sativum. Pharmacology 2009, 83, 197–204. [Google Scholar]
- Ioannou, E.; Poiata, A.; Hancianu, M.; Tzakou, O. Chemical composition and in vitro antimicrobial activity of the essential oils of flower heads and leaves of Santolina rosmarinifolia L. from Romania. Nat. Prod. Res 2007, 21, 18–23. [Google Scholar]
- Horničková, J.; Kubec, R.; Velisek, J.; Cejpek, K.; Ovesna, J.; Stavělíkova, H. Changes of S-alk(en)ylcysteine sulfoxide levels during the growth of different garlic morphotypes. Czech J. Food Sci 2011, 29, 373–381. [Google Scholar]
- Wetli, H.A.; Brenneisen, R.; Tschudi, I.; Langos, M.; Bigler, P.; Sprang, T.; Schurch, S.; Muhlbauer, R.C. A gamma-glutamyl peptide isolated from onion (Allium cepa L.) by bioassay— guided fractionation inhibits resorption activity of osteoclasts. J. Agric. Food Chem 2005, 53, 3408–3414. [Google Scholar]
- Huang, Y.Q.; Ruan, G.D.; Liu, J.Q. Use of isotope differential derivatization for simultaneous determination of thiols and oxidized thiols by liquid chromatography tandem mass spectrometry. Anal. Biochem 2011, 2, 159–166. [Google Scholar]
- Shibahara, A.; Yamamoto, K.; Kinoshita, A.; Anderson, B.L. An improved method for preparing dimethyl disulfide adducts for GC/MS analysis. J. Am. Oil Chem. Soc 2008, 85, 93–94. [Google Scholar]
- Kubec, R.; Dadakova, E. Chromatographic methods for determination of S-substituted cysteine derivatives—A comparative study. J. Chromatogr. A 2009, 1216, 6957–6963. [Google Scholar]
- Pfaller, M.A.; Diekema, D.J. Epidemiology of invasive candidiasis: A persistent public health problem. Clin. Microbiol. Rev 2007, 20, 133–163. [Google Scholar]
- Rose, P.; Whiteman, M.; Moore, P.K.; Zhu, Y.Z. Bioactive S-alk(en)yl cysteine sulfoxide metabolites in the genus Allium: The chemistry of potential therapeutic agents. Nat. Prod. Rep 2005, 22, 351–368. [Google Scholar]
- Shams-Ghahfarokhia, M.; Shokoohamiria, M.R.; Amirrajaba, N.; Moghadasia, B.; Ghajarib, A.; Zeinic, F.; Sadeghid, G.; Razzaghi-Abyanehd, M. In vitro antifungal activities of Allium cepa, Allium sativum and ketoconazole against some pathogenic yeasts and dermatophytes. Fitoterapia 2006, 77, 321–323. [Google Scholar]
- Liu, X.P.; Fan, S.R.; Bai, F.Y.; Li, J.; Liao, Q.P. Antifungal susceptibility and genotypes of Candida albicans strains from patients with vulvovaginal candidiasis. Mycoses 2009, 52, 24–28. [Google Scholar]
- Khlif, M.; Bogreau, H.; Michel-Nguyen, A.; Ayadi, A.; Ranque, S. Trailing or paradoxical growth of Candida albicans when exposed to caspofungin is not associated with microsatellite genotypes. Antimicrob. Agents Chemother 2010, 54, 1365–1368. [Google Scholar]
- World Health Organisation (WHO), Manual for the Laboratory Identification and Antimicrobial Susceptibility Testing of Bacterial Pathogens of Public Health Importance in the Developing World; WHO: Geneva, Switzerland, 2003.
- Tepe, B.; Sokmen, B.; Akpulata, A.H.; Sokmena, A. In vitro antioxidant activities of the methanol extracts of five Allium species from Turkey. Food Chem 2005, 92, 89–92. [Google Scholar]
- Netea, M.G.; Brown, G.D.; Kullberg, B.J.; Gow, N.A. An integrated model of the recognition of Candida albicans by the innate immune system. Nat. Rev. Microbiol 2008, 6, 67–78. [Google Scholar]
Isolates type | Inhibition parameter | |||||
---|---|---|---|---|---|---|
MIC (mg/mL) | MFC (mg/mL) | MFC/MIC | MIC (mg/mL) | MFC (mg/mL) | MFC/MIC | |
A. ursinum extract | Volatile compounds of A. ursinum extract | |||||
CA1 | 0.5 | 1.0 | 2.0 | 2.0 | 2.0 | 1.0 |
CA2 | 1.0 | 1.0 | 1.0 | 1.0 | 2.0 | 2.0 |
CA3 | 0.5 | 0.5 | 1.0 | 2.0 | 2.0 | 1.0 |
CF1 | 1.0 | 1.0 | 1.0 | 2.0 | 2.0 | 1.0 |
CF2 | 0.5 | 0.5 | 1.0 | 4.0 | 4.0 | 1.0 |
CF3 | 2.0 | 2.0 | 1.0 | 4.0 | 4.0 | 1.0 |
CG1 | 1.0 | 2.0 | 2.0 | 4.0 | 4.0 | 1.0 |
CG2 | 2.0 | 2.0 | 1.0 | 4.0 | 4.0 | 1.0 |
CG3 | 1.0 | 2.0 | 2.0 | 1.0 | 1.0 | 1.0 |
CK1 | 0.5 | 1.0 | 2.0 | 4.0 | 4.0 | 1.0 |
CK2 | 2.0 | 2.0 | 1.0 | 4.0 | 4.0 | 1.0 |
CK3 | 0.5 | 1.0 | 2.0 | 4.0 | 4.0 | 1.0 |
© 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Bagiu, R.V.; Vlaicu, B.; Butnariu, M. Chemical Composition and in Vitro Antifungal Activity Screening of the Allium ursinum L. (Liliaceae). Int. J. Mol. Sci. 2012, 13, 1426-1436. https://doi.org/10.3390/ijms13021426
Bagiu RV, Vlaicu B, Butnariu M. Chemical Composition and in Vitro Antifungal Activity Screening of the Allium ursinum L. (Liliaceae). International Journal of Molecular Sciences. 2012; 13(2):1426-1436. https://doi.org/10.3390/ijms13021426
Chicago/Turabian StyleBagiu, Radu Vasile, Brigitha Vlaicu, and Monica Butnariu. 2012. "Chemical Composition and in Vitro Antifungal Activity Screening of the Allium ursinum L. (Liliaceae)" International Journal of Molecular Sciences 13, no. 2: 1426-1436. https://doi.org/10.3390/ijms13021426
APA StyleBagiu, R. V., Vlaicu, B., & Butnariu, M. (2012). Chemical Composition and in Vitro Antifungal Activity Screening of the Allium ursinum L. (Liliaceae). International Journal of Molecular Sciences, 13(2), 1426-1436. https://doi.org/10.3390/ijms13021426