Mitochondrial Protection and Anti-aging Activity of Astragalus Polysaccharides and Their Potential Mechanism
Abstract
:1. Introduction
2. Results and Discussion
2.1. Lipid Peroxidation Prevented in Liver and Brain Mitochondria in Vitro
2.2. Inhibition of Liver Mitochondrial Permeability Transition
2.3. Scavenging Activity of APS on Superoxide Anion, Hydroxyl Radicals and Hydrogen Peroxide
2.4. Improvement in the Activities of CAT, SOD, GPx and Anti-hydroxyl Radical
3. Materials and Methods
3.1. Plant Materials and Animals
3.2. Chemicals
3.3. Preparation of the Astragalus Polysaccharides
3.4. Isolation of Mitochondria
3.5. Measurement of Thiobarbituric Acid Reactive Substances
3.6. Evaluation of Mitochondrial Permeability Transition
3.7. Assay of Superoxide Anion Scavenging Activity
3.8. Hydrogen Peroxide Scavenging Activity Assay
3.9. Hydroxyl Radicals Scavenging Activity Assay
3.10. Determination on the Activities of CAT, SOD, GPx and Anti-hydroxyl Radical
3.11. Statistical Analysis
4. Conclusions
Acknowledgments
References
- Vina, J.; Sastre, J.; Pallardo, F.; Borras, C. Mitochondrial theory of aging: Importance to explain why females live longer than males. Antioxid. Redox Signal 2003, 5, 549–556. [Google Scholar]
- Harman, D. Free radical theory of aging: An update: Increasing the functional life span. Ann. N. Y. Acad. Sci 2006, 1067, 10–21. [Google Scholar]
- Manczak, M.; Jung, Y.; Park, B.S.; Partovi, D.; Reddy, P.H. Time-course of mitochondrial gene expressions in mice brains: Implications for mitochondrial dysfunction, oxidative damage, cytochrome c release in aging. J. Neurochem 2005, 92, 494–504. [Google Scholar]
- Navarro, A.; Boveris, A. The mitochondrial energy transduction system and the aging process. Am. J. Physiol. Cell Physiol 2007, 292, 670–686. [Google Scholar]
- Kwong, J.Q.; Flint Beal, M.; Manfred, G. The role of mitochondria in inherited neurodegenerative diseases. J. Neurochem 2006, 97, 1659–1675. [Google Scholar]
- Gustafsson, A.B.; Gottlieb, R.A. Heart mitochondria: Gates of life and death. Cardiovasc. Res 2008, 77, 334–343. [Google Scholar]
- Turrens, J.F. Mitochondrial formation of reactive oxygen species. J. Physiol 2003, 52, 335–344. [Google Scholar]
- Reddy, P.H. Amyloid precursor protein-mediated free radicals and oxidative damage: Implications for the development and progression of Alzheimer’s disease. J. Neurochem 2006, 96, 1–13. [Google Scholar]
- Droge, W. Free radicals in the physiological control of cell function. Physiol. Rev 2002, 82, 47–95. [Google Scholar]
- Zheng, X.Y. Pharmacopoeia of the People’s Republic of China, 8th ed.; Chemical Industry Press: Beijing, China, 2005; Volume 1, pp. 212–213. [Google Scholar]
- Wang, P.; Zhang, Z.; Ma, X.; Huang, Y.; Liu, X.; Tu, P.; Tong, T. HDTIC-1 and HDTIC-2, two compounds extracted from Astragali Radix, delay replicative senescence of human diploid fibroblasts. Mech. Ageing Dev 2003, 124, 1025–1034. [Google Scholar]
- Cheng, X.D.; Hou, C.H.; Zhang, X.J.; Xie, H.Y.; Zhou, W.Y.; Yang, L.; Zhang, S.B.; Qian, R.L. Effects of Huangqi (Hex) on inducing cell differentiation and cell death in K562 and HEL cells. Acta Biochim. Biophys. Sin 2004, 36, 211–217. [Google Scholar]
- Luo, Z.; Zhong, L.; Han, X.; Wang, H.; Zhong, J.; Xuan, Z. Astragalus membranaceus prevents daunorubicin-induced apoptosis of cultured neonatal cardiomyocytes: Role of free radical effect of Astragalus membranaceus on daunorubicin cardiotoxicity. Phytother. Res 2009, 23, 761–767. [Google Scholar]
- Hong, C.Y.; Lo, Y.C.; Tan, F.C.; Wei, Y.H.; Chen, C.F. Astragalus membranaceus and Polygonum multijlorum protect rat heart mitochondria against lipid peroxidation. Am. J. Chin. Med 1994, 22, 63–70. [Google Scholar]
- Zhang, L.J.; Liu, H.K.; Hsiao, P.C.; Kuo, L.M.; Lee, I.J.; Wu, T.S.; Chiou, W.F.; Kuo, Y.H. New isoflavonoid glycosides and related constituents from astragali radix (Astragalus membranaceus ) and their inhibitory activity on nitric oxide production. J. Agric. Food Chem 2011, 59, 1131–1137. [Google Scholar]
- Li, S.; Zhang, Y. Characterization and renal protective effect of a polysaccharide from Astragalus membranaceus. Carbohydr. Polym 2009, 78, 343–348. [Google Scholar]
- Shao, B.M.; Xu, W.; Dai, H.; Tu, P.; Li, Z.; Gao, X.M. A study on the immune receptors for polysaccharides from the roots of Astragalus membranaceus, a Chinese medicinal herb. Biochem. Biophys. Res. Commun 2004, 320, 1103–1111. [Google Scholar]
- Yin, X.; Chen, L.; Liu, Y.; Yang, J.; Ma, C.; Yao, Z.; Yang, L.; Wei, L.; Li, M. Enhancement of the innate immune response of bladder epithelial cells by Astragalus polysaccharides through upregulation of TLR4 expression. Biochem. Biophys. Res. Commun 2010, 397, 232–238. [Google Scholar]
- Mao, X.Q.; Yu, F.; Wang, N.; Wu, Y.; Zou, F.; Wu, K.; Liu, M.; Ouyang, J.P. Hypoglycemic effect of polysaccharide enriched extract of Astragalus membranaceus in diet induced insulin resistant C57BL/6J mice and its potential mechanism. Phytomedicine 2009, 16, 416–425. [Google Scholar]
- Chen, R.; Shao, H.; Lin, S.; Zhang, J.J.; Xu, K.Q. Treatment with Astragalus membranaceus produces antioxidative effects and attenuates intestinal mucosa injury induced by intestinal ischemia-reperfusion in rats. Am. J. Chin. Med. 2011, 39, 879–887. [Google Scholar]
- Ko, J.K.S.; Chik, C.W.S. The protective action of radix Astragalus membranaceus against hapten-induced colitis through modulation of cytokines. Cytokine 2009, 47, 85–90. [Google Scholar]
- Cho, W.C.; Leung, K.N. In vitro and in vivo anti-tumor effects of Astragalus membranaceus. Cancer Lett 2007, 252, 43–54. [Google Scholar]
- Paradies, G.; Ruggiero, F.M.; Petrosillo, G.; Quagliariello, E. Age-dependent decline in the cytochrome c oxidase activity in rat heart mitochondria: Role of cardiolipin. FEBS Lett 1997, 406, 136–138. [Google Scholar]
- Armstrong, J.S. The role of the mitochondrial permeability transition in cell death. Mitochondrion 2006, 6, 225–234. [Google Scholar]
- Spiteller, G. Lipid peroxidation in aging and age dependent diseases. Exp. Gerontol 2001, 36, 1425–1457. [Google Scholar]
- Valls, V.; Peiro, C.; Munizc, P.; Saez, G.T. Age-related changes in antioxidant status and oxidative damage to lipids and DNA in mitochondria of rat liver. Process Biochem 2005, 40, 903–908. [Google Scholar]
- Faist, V.; Koenig, J; Hoeger, H.; Elmadfa, I. Mitochondrial oxygen consumption, lipid peroxidation and antioxidant enzyme systems in skeletal muscle of senile dystrophic mice. Pflugers Arch. 1998, 437, 168–171. [Google Scholar]
- Halestrap, A.P; Clarke, S.J; Javadov, S.A. Mitochondrial permeability transition pore opening during myocardial reperfusion—A target for cardioprotection. Cardiovasc. Res. 2004, 61, 372–385. [Google Scholar]
- Kroemer, G.; Dallaporta, B.; Resche-Rigon, M. The mitochondrial death/life regulator in apoptosis and necrosis. Annu. Rev. Physiol 1998, 60, 619–642. [Google Scholar]
- Petronilli, V.; Cola, C.; Massari, S.; Colonna, R.; Bernardi, P. Physiological effectors modify voltage sensing by the cyclosporin A-sensitive permeability transition pore of mitochondria. J. Biol. Chem 1993, 268, 21939–21945. [Google Scholar]
- Zhao, G.R.; Xiang, Z.J.; Ye, T.X.; Yuan, Y.J.; Guo, Z.X. Antioxidant activities of Salvia miltiorrhiza and Panax notoginseng. Food Chem 2006, 99, 767–774. [Google Scholar]
- Leeuwenburgh, C.; Heinecke, J.W. Oxidative stress and antioxidants in exercise. Curr. Med. Chem 2001, 8, 829–838. [Google Scholar]
- Brookes, P.S. Mitochondrial H(+) leak and ROS generation: An odd couple. Free Radic. Biol. Med 2005, 38, 12–13. [Google Scholar]
- Cuddihy, S.L.; Ali, S.S.; Musiek, E.S.; Lucero, J.; Kopp, S.J.; Morrow, J.D.; Dugan, L.L. Prolonged α-tocopherol deficiency decreases oxidative stress and unmasks α-tocopherol-dependent regulation of mitochondrial function in the brain. J. Biol. Chem. 2008, 2839, 6915–6924. [Google Scholar]
- Kamal-Eldin, A.; Appelqvist, L. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 1996, 31, 671–701. [Google Scholar]
- Yusuf, M.A.; Sarin, N.B. Antioxidant value addition in human diets: Genetic transformation of Brassica juncea with gamma-TMT gene for increased alpha-tocopherol content. Transgenic Res 2007, 16, 109–113. [Google Scholar]
- Aardt, M.V.; Duncan, S.E.; Marcy, J.E.; Long, T.E.; O’Keefe, S.F.; Nielsen-Sims, S.R. Effect of antioxidant (α-tocopherol and ascorbic acid) fortification on light-induced flavor of milk. J. Dairy Sci 2005, 88, 872–880. [Google Scholar]
- Musalmah, M.; Nizrana, M.Y.; Fairuz, A.H.; Noor Aini, A.H; Azian, A.L.; Gapor, M.T.; Wan Ngah, W.Z. Comparative effects of palm vitamin E and alpha-tocopherol on healing and wound tissue antioxidant enzyme levels in diabetic rats. Lipids 2005, 40, 575–580. [Google Scholar]
- Chitra, S.; Shyamala Devi, C.S. Effect of alpha-tocopherol on pro-oxidant and antioxidant enzyme status in radiation-treated oral squamous cell carcinoma. Indian J. Med. Sci 2008, 62, 141–148. [Google Scholar]
- Andreyev, A.Y.; Kushnareva, Y.E.; Starkov, A.A. Mitochondrial metabolism of reactive oxygen species. Biochemistry 2005, 70, 200–214. [Google Scholar]
- Datta, H.S.; Mitra, S.K.; Paramesh, R.; Patwardhan, B. Theories and management of aging: Modern and Ayurveda perspectives. Evid. Based Complement. Altern. Med 2011, 2011, 528527:1–528527:6. [Google Scholar]
- Datta, H.S.; Mitra, S.K.; Patwardhan, B. Wound healing activity of topical application forms based on Ayurveda. Evid. Based Complement. Altern. Med 2011, 2011, 134378:1–134378:10. [Google Scholar]
- Ohnishi, S.T.; Ohnishi, T.; Nishino, K. Ki-Energy (life-energy) protects isolated rat liver mitochondria from oxidative injury. Evid. Based Complement. Altern. Med 2006, 3, 475–482. [Google Scholar]
- Beckman, K.B.; Ames, B.N. The free radical theory of aging matures. Physiol. Rev 1998, 78, 547–581. [Google Scholar]
- Hruszkewycz, A.M. Lipid peroxidation and mtDNA degeneration. A hypothesis. Mutat. Res 1992, 275, 243–248. [Google Scholar]
- Yu, B.P. Cellular defenses against damage from reactive oxygen species. Physiol. Rev 1994, 74, 139–162. [Google Scholar]
- Chance, B.; Sies, H.; Boveris, A. Hydroperoxide metabolism in mammalian organs. Physiol. Rev 1979, 59, 527–605. [Google Scholar]
- Cadenas, E.; Davies, K.J. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic. Biol. Med 2000, 29, 222–230. [Google Scholar]
- Schriner, S.E.; Linford, N.J.; Martin, G.M.; Treuting, P.; Ogburn, C.E.; Emond, M.; Coskun, P.E.; Ladiges, W.; Wolf, N.; van Remmen, H.; et al. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 2005, 308, 909–911. [Google Scholar]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem 1956, 28, 350–356. [Google Scholar]
- Fink, B.D.; Reszka, K.J.; Herlein, J.A.; Mathahs, M.M.; Sivitz, W.I. Respiratory uncoupling by UCP1 and UCP2 and superoxide generation in endothelial cell mitochondria. Am. J. Physiol. Endocrinol. Metab 2005, 288, 71–79. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem 1976, 72, 248–254. [Google Scholar]
- Chen, G.T.; Zhao, L.; Zhao, L.Y.; Cong, T.; Bao, S.F. In vitro study on antioxidant activities of peanut protein hydrolysate. J. Sci. Food Agric 2007, 87, 357–362. [Google Scholar]
- Walter, L.; Nogueira, V.; Leverve, X.; Heitz, M.P.; Bernardi, P.; Fontaine, E. Three classes of ubiquinone analogs regulate the mitochondrial permeability transition pore through a common site. J. Biol. Chem 2000, 275, 29521–29527. [Google Scholar]
- He, L.; Poblenz, A.T.; Medrano, C.J.; Fox, D.A. Lead and calcium produce rod photoreceptor cell apoptosis by opening the mitochondrial permeability transition pore. J. Biol. Chem 2000, 275, 12175–12184. [Google Scholar]
- Mandal, S.; Hazra, B.; Sarkar, R.; Biswas, S.; Mandal, N. Assessment of the antioxidant and reactive oxygen species scavenging activity of methanolic extract of Caesalpinia crista leaf. Evid. Based Complement. Alternat. Med 2011, 2011, 173768:1–173768:11. [Google Scholar]
- Lin, Z.; Zhu, D.; Yan, Y.; Yu, B.; Wang, Q.; Shen, P.; Ruan, K. An antioxidant phytotherapy to rescue neuronal oxidative stress. Evid. Based Complement. Alternat. Med 2011, 2011, 519517:1–519517:7. [Google Scholar]
Group | Concentration (mg/L) | C(liver) (nmol/mg protein) | Liver IR% | C(brain) (nmol/mg protein) | Brain IR% |
---|---|---|---|---|---|
Normal | — | 0.62 ± 0.38 b | 0.38 ± 0.29 b | ||
Model | — | 4.32 ± 1.65 | 4.84 ± 1.62 | ||
APS | 2.0 | 3.56 ± 0.89 | 20.54 | 4.05 ± 1.16 | 17.71 |
4.0 | 3.08 ± 0.53 | 33.51 | 3.46 ± 0.78 | 30.94 | |
8.0 | 2.37 ± 0.65 a | 52.70 | 2.88 ± 0.66 a | 43.95 | |
16.0 | 1.65 ± 0.49 b | 72.16 | 1.96 ± 0.57 b | 64.57 | |
32.0 | 0.92 ± 0.35 b | 91.89 | 1.35 ± 0.79 b | 78.25 |
A540nm | ||||||
---|---|---|---|---|---|---|
Group | Normal | Model | RR (0.3 μM) | RR (0.5 μM) | APS (32 mg/L) | APS (64 mg/L) |
0 min | 0.481 ± 0.035 | 0.493 ± 0.033 | 0.486 ± 0.024 | 0.479 ± 0.038 | 0.480 ± 0.034 | 0.491 ± 0.026 |
2 min | 0.452 ± 0.031 a | 0.405 ± 0.023 | 0.429 ± 0.028 | 0.448 ± 0.029 a | 0.422 ± 0.024 | 0.443 ± 0.022 a |
5 min | 0.431 ± 0.033 b | 0.366 ± 0.026 | 0.402 ± 0.023 a | 0.432 ± 0.025 b | 0.394 ± 0.018 | 0.419 ± 0.023 b |
10 min | 0.413 ± 0.030 b | 0.341 ± 0.033 | 0.383 ± 0.031 a | 0.415 ± 0.037 b | 0.376 ± 0.036 | 0.407 ± 0.035 b |
15 min | 0.398 ± 0.046 b | 0.309 ± 0.034 | 0.376 ± 0.026 b | 0.400 ± 0.035 b | 0.361 ± 0.036 a | 0.393 ± 0.036 b |
30 min | 0.369 ± 0.033 b | 0.276 ± 0.041 | 0.355 ± 0.038 b | 0.371 ± 0.043 b | 0.336 ± 0.035 a | 0.366 ± 0.045 b |
Group | Conc. (mg/L) | A560nm(O2• −) | SR% (O2• −) | Group | Conc. (mg/L) | A536 nm (•OH) | SR% (•OH) |
---|---|---|---|---|---|---|---|
Control | — | 0.376 ± 0.038 | Blank | 0.136 ± 0.019 b | |||
Vitamin C | 4 | 0.343 ± 0.042 | 8.78 | Control | 0.034 ± 0.016 | ||
8 | 0.271 ± 0.048 b | 27.93 | BHT | 0.30 | 0.045 ± 0.020 | 10.78 | |
16 | 0.220 ± 0.033 b | 41.49 | 0.60 | 0.072 ± 0.018 b | 37.25 | ||
32 | 0.117 ± 0.026 b | 68.88 | 1.20 | 0.101 ± 0.028 b | 65.69 | ||
64 | 0.065 ± 0.028 b | 82.71 | 2.40 | 0.128 ± 0.025 b | 92.16 | ||
APS | 4 | 0.361 ± 0.028 | 3.99 | APS | 4 | 0.042 ± 0.017 | 7.84 |
8 | 0.335 ± 0.029 | 10.90 | 8 | 0.066 ± 0.026 a | 31.37 | ||
16 | 0.286 ± 0.037 b | 23.94 | 16 | 0.088 ± 0.021 b | 52.94 | ||
32 | 0.220 ± 0.042 b | 41.49 | 32 | 0.107 ± 0.013 b | 71.57 | ||
64 | 0.148 ± 0.036 b | 60.64 | 64 | 0.121 ± 0.014 b | 85.29 |
Group | Concentration (mg/L) | V (Na2S2O3 mL) | SR% |
---|---|---|---|
Control | — | 1.638 ± 0.057 | |
APS | 4 | 1.544 ± 0.051a | 5.74 |
8 | 1.364 ± 0.042b | 16.73 | |
16 | 1.116 ± 0.029b | 31.87 | |
32 | 0.860 ± 0.032b | 47.50 | |
64 | 0.688 ± 0.026b | 58.00 | |
128 | 0.536 ± 0.023b | 67.28 |
Group | Dose (mg/kg/d) | CAT (U/mg protein) | SOD (U/mg protein) | GPx (U/mg protein) | Anti-OH (U/mg protein) |
---|---|---|---|---|---|
Normal | — | 14.3 ± 3.1 b | 268 ± 45 b | 58.1 ± 7.8 b | 93.7 ± 15.2 b |
Model | — | 8.5 ± 3.0 | 203 ± 32 | 41.3 ± 9.3 | 62.6 ± 14.1 |
Vit E | 100 | 12.6 ± 2.5 b | 266 ± 28 b | 51.7 ± 6.8 a | 88.3 ± 10.3 b |
ASP 1 | 100 | 9.2 ± 2.4 | 227 ± 36 | 45.3 ± 7.7 | 68.1 ± 8.6 |
ASP 2 | 200 | 11.4 ± 2.6 a | 243 ± 29 b | 53.5 ± 6.6 b | 75.9 ± 10.8 a |
ASP 3 | 300 | 14.1 ± 3.3 b | 271 ± 33 b | 57.3 ± 7.2 b | 90.5 ± 13.5 b |
© 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Li, X.-T.; Zhang, Y.-K.; Kuang, H.-X.; Jin, F.-X.; Liu, D.-W.; Gao, M.-B.; Liu, Z.; Xin, X.-J. Mitochondrial Protection and Anti-aging Activity of Astragalus Polysaccharides and Their Potential Mechanism. Int. J. Mol. Sci. 2012, 13, 1747-1761. https://doi.org/10.3390/ijms13021747
Li X-T, Zhang Y-K, Kuang H-X, Jin F-X, Liu D-W, Gao M-B, Liu Z, Xin X-J. Mitochondrial Protection and Anti-aging Activity of Astragalus Polysaccharides and Their Potential Mechanism. International Journal of Molecular Sciences. 2012; 13(2):1747-1761. https://doi.org/10.3390/ijms13021747
Chicago/Turabian StyleLi, Xing-Tai, Ya-Kui Zhang, Hai-Xue Kuang, Feng-Xin Jin, De-Wen Liu, Ming-Bo Gao, Ze Liu, and Xiao-Juan Xin. 2012. "Mitochondrial Protection and Anti-aging Activity of Astragalus Polysaccharides and Their Potential Mechanism" International Journal of Molecular Sciences 13, no. 2: 1747-1761. https://doi.org/10.3390/ijms13021747
APA StyleLi, X.-T., Zhang, Y.-K., Kuang, H.-X., Jin, F.-X., Liu, D.-W., Gao, M.-B., Liu, Z., & Xin, X.-J. (2012). Mitochondrial Protection and Anti-aging Activity of Astragalus Polysaccharides and Their Potential Mechanism. International Journal of Molecular Sciences, 13(2), 1747-1761. https://doi.org/10.3390/ijms13021747