Comparison of Culture and Molecular Identification of Bacteria in Chronic Wounds
Abstract
:1. Introduction
1.1. Chronic Wounds
1.2. Bacterial Biofilms
1.3. Bacteria in Wounds
1.4. Molecular Identification of Bacteria
2. Study Design and Methods
2.1. Inclusion Criteria
- The presence of a chronic wound (“Chronic wound” is defined as a wound that fails to progress through the normal healing trajectory);
- Debridement required as part of standard of care wound management;
- The medical record revealed that parallel samples from the wound were sent for both, culture and molecular testing.
2.2. Sample Collection
2.3. Bacterial Identification Methods
2.3.1. Culture Identification of Bacteria
2.3.2. Molecular Identification of Bacteria using 16S Sequencing
2.3.2.1. DNA Extraction
2.3.2.2. Partial Ribosomal Amplification
2.3.2.3. Massively Parallel bTEFAP Titanium
2.3.3. Polymerase Chain Reaction
2.4. Description of Analysis
3. Results of Bacterial Identification
4. Analysis and Discussion of Results
5. Conclusions
- Authors’ Disclosures: The author(s) herewith certify that they are responsible for the contents of the manuscript. He/she has complied with the guidelines for conducting research in human subjects. RDW and SED are part owners of Pathogenius®, which is a clinical diagnostic company. RDW is the Medical Director of Southwest Regional Wound Care Center and owner of Research and Testing Laboratory. DDR and SED were previously employees of Research and Testing Laboratory. DDR was also previously employed by Southwest Regional Wound Care Center. DDR is currently a student at Texas Tech University Health Sciences Center School of Medicine and has studied at the Southwest Regional Wound Care Center. YS is currently employed by Research and Testing Laboratory.
Reference
- Wolcott, R.D.; Rhoads, D.D.; Bennett, M.E. Chronic wounds and the medical biofilm paradigm. J. Wound Care 2010, 19, 45–46. [Google Scholar]
- Sen, C.K.; Gordillo, G.M.; Roy, S.; Kirsner, R.; Lamber, L.; Hunt, T.K.; Gottrup, F.; Gurtner, G.C.; Longaker, M.T. Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen 2009, 17, 763–771. [Google Scholar]
- O’Meara, S.; Al-Kurdi, D.; Ovington, L.G. Antibiotics and antiseptics for venous leg ulcers. Cochrane Database Syst. Rev 2008, 1, CD003557. [Google Scholar]
- Howell-Jones, R.S.; Wilson, M.J.; Hill, K.E.; Howard, A.J.; Price, P.E.; Thomas, D.W. A review of the microbiology, antibiotic usage and resistance in chronic skin wounds. J. Antimicrob. Chemother 2005, 55, 143–149. [Google Scholar]
- Ousey, K.; McIntosh, C. Topical antimicrobial agents for the treatment of chronic wounds. Br. J. Community Nurs 2009, 14. [Google Scholar]
- Costerton, J.W.; Stewart, P.S.; Greenberg, E.P. Bacterial biofilms: a common cause of persistent infections. Science 1999, 284, 1318–1322. [Google Scholar]
- del Pozo, J.L.; Patel, R. The challenge of treating biofilm-associated bacterial infections. Clin. Pharmacol. Ther 2007, 82, 204–209. [Google Scholar]
- Fux, C.A.; Costerton, J.W.; Stewart, P.S.; Stoodley, P. Survival strategies of infectious biofilms. Trends Microbiol 2005, 13, 34–40. [Google Scholar]
- James, G.A.; Swogger, E.; Wolcott, R.; Pulcini, E.; Secor, P.; Sestrich, J.; Costerton, J.W.; Stewart, P.S. Biofilms in chronic wounds. Wound Repair Regen 2008, 16, 37–44. [Google Scholar]
- Rickard, A.H.; Gilbert, P.; High, N.J.; Kolenbrander, P.E.; Handley, P.S. Bacterial coaggregation: an integral process in the development of multi-species biofilms. Trends Microbiol 2003, 11, 94–100. [Google Scholar]
- Hoiby, N.; Bjarnsholt, T.; Givskov, M.; Molin, S.; Ciofu, O. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents 2010, 35, 322–332. [Google Scholar]
- Dowd, S.E.; Sun, Y.; Secor, P.R.; Rhoads, D.D.; Wolcott, B.M.; James, G.A.; Wolcott, R.D. Survey of bacterial diversity in chronic wounds using pyrosequencing, DGGE, and full ribosome shotgun sequencing. BMC Microbiol 2008, 8, 43. [Google Scholar]
- Han, A.; Zenilman, J.M.; Melendez, J.H.; Shirtliff, M.E.; Agostinho, A.; James, G.; Stewart, P.S.; Mongodin, E.F.; Rao, D.; Rickard, A.H.; et al. The importance of a multifaceted approach to characterizing the microbial flora of chronic wounds. Wound Repair Regen 2011, 19, 532–541. [Google Scholar]
- Wolcott, R.D.; Gontcharova, V.; Sun, Y.; Dowd, S.E. Evaluation of the bacterial diversity among and within individual venous leg ulcers using bacterial tag-encoded FLX and titanium amplicon pyrosequencing and metagenomic approaches. BMC Microbiol 2009, 9, 226. [Google Scholar]
- Percival, S.L.; Thomas, J.G.; Williams, D.W. Biofilms and bacterial imbalances in chronic wounds: anti-Koch. Int. Wound J 2010, 7, 169–175. [Google Scholar]
- Bowler, P.G.; Davies, B.J. The microbiology of infected and noninfected leg ulcers. Int. J. Dermatol 1999, 38, 573–578. [Google Scholar]
- Dowd, S.E.; Wolcott, R.D.; Sun, Y.; McKeehan, T.; Smith, E.; Rhoads, D. Polymicrobial nature of chronic diabetic foot ulcer biofilm infections determined using bacterial tag encoded FLX amplicon pyrosequencing (bTEFAP). PLoS One 2008, 3, e3326. [Google Scholar]
- Espy, M.J.; Uhl, J.R.; Sloan, L.M.; Buckwalter, S.P.; Jones, M.F.; Vetter, E.A.; Yao, J.D.; Wengenack, N.L.; Rosenblatt, J.E.; Cockerill, F.R., III; et al. Real-time PCR in clinical microbiology: applications for routine laboratory testing. Clin. Microbiol. Rev 2006, 19, 165–256. [Google Scholar]
- Seng, P.; Rolain, J.M.; Fournier, P.E.; La Scola, B.; Drancourt, M.; Raoult, D. MALDI-TOF-mass spectrometry applications in clinical microbiology. Future Microbiol 2010, 5, 1733–1754. [Google Scholar]
- Falkow, S. Molecular Koch’s postulates applied to bacterial pathogenicity—a personal recollection 15 years later. Nat. Rev. Microbiol. 2004, 2, 67–72. [Google Scholar]
- Falkow, S. Molecular Koch’s postulates applied to microbial pathogenicity. Rev. Infect. Dis 1988, 10, S274–S276. [Google Scholar]
- Dowd, S.E.; Wolcott, R.D.; Kennedy, J.; Jones, C.; Cox, S.B. Molecular diagnostics and personalised medicine in wound care: assessment of outcomes. J. Wound Care 2011, 20. [Google Scholar]
- Wolcott, R.D.; Cox, S.B.; Dowd, S.E. Healing and healing rates of chronic wounds in the age of molecular pathogen diagnostics. J. Wound Care 2010, 19, 272–278. [Google Scholar]
- Dowd, S.E.; Delton Hanson, J.; Rees, E.; Wolcott, R.D.; Zischau, A.M.; Sun, Y.; White, J.; Smith, D.M.; Kennedy, J.; Jones, C.E. Survey of fungi and yeast in polymicrobial infections in chronic wounds. J. Wound Care 2011, 20, 40–47. [Google Scholar]
- Gargas, A.D.; DePriest, P.T. A nomenclature for fungal PCR primers with examples from intro-containing SSU rDNA. Mycologia 1996, 88, 745–748. [Google Scholar]
- Tuttle, M.S.; Mostow, E.; Mukherjee, P.; Hu, F.Z.; Melton-Kreft, R.; Ehrlich, G.D.; Dowd, S.E.; Ghannoum, M.A. Characterization of bacterial communities in venous insufficiency wounds by use of conventional culture and molecular diagnostic methods. J. Clin. Microbiol 2011, 49, 3812–3819. [Google Scholar]
- Thomsen, T.R.; Aasholm, M.S.; Rudkjobing, V.B.; Saunders, A.M.; Bjarnsholt, T.; Givskov, M.; Kirketerp-Møller, K.; Nielsen, P.H. The bacteriology of chronic venous leg ulcer examined by culture-independent molecular methods. Wound Repair Regen 2010, 18, 38–49. [Google Scholar]
- Stephens, P.; Wall, I.B.; Wilson, M.J.; Hill, K.E.; Davies, C.E.; Hill, C.M.; Harding, K.G.; Thomas, D.W. Anaerobic cocci populating the deep tissues of chronic wounds impair cellular wound healing responses in vitro. Br. J. Dermatol 2003, 148, 456–466. [Google Scholar]
- Smith, D.M.; Snow, D.E.; Rees, E.; Zischkau, A.M.; Hanson, J.D.; Wolcott, R.D.; Sun, Y.; White, J.; Kumar, S.; Dowd, S.E. Evaluation of the bacterial diversity of pressure ulcers using bTEFAP pyrosequencing. BMC Med. Genomics 2010, 3, 41. [Google Scholar]
- Gontcharova, V.; Youn, E.; Sun, Y.; Wolcott, R.D.; Dowd, S.E. A comparison of bacterial composition in diabetic ulcers and contralateral intact skin. Open Microbiol. J 2010, 4, 8–19. [Google Scholar]
- Bowler, P.G.; Davies, B.J.; Jones, S.A. Microbial involvement in chronic wound malodour. J. Wound Care 1999, 8, 216–218. [Google Scholar]
- Lewis, K. Multidrug tolerance of biofilms and persister cells. Curr. Top Microbiol. Immunol 2008, 322, 107–131. [Google Scholar]
- Aul, J.J.; Anderson, K.W.; Wadowsky, R.M.; Doyle, W.J.; Kingsley, L.A.; Post, J.C.; Ehrlich, G.D. Comparative evaluation of culture and PCR for the detection and determination of persistence of bacterial strains and DNAs in the Chinchilla laniger model of otitis media. Ann. Otol. Rhinol. Laryngol 1998, 107, 508–513. [Google Scholar]
- Post, J.C.; Aul, J.J.; White, G.J.; Wadowsky, R.M.; Zavoral, T.; Tabari, R.; Kerber, B.; Doyle, W.J.; Ehrlich, G.D. PCR-based detection of bacterial DNA after antimicrobial treatment is indicative of persistent, viable bacteria in the chinchilla model of otitis media. Am. J. Otolaryngol 1996, 17, 106–111. [Google Scholar]
- Domingue, G.; Ellis, B.; Dasgupta, M.; Costerton, J.W. Testing antimicrobial susceptibilities of adherent bacteria by a method that incorporates guidelines of the National Committee for Clinical Laboratory Standards. J. Clin. Microbiol 1994, 32, 2564–2568. [Google Scholar]
- Dowd, S.E.; Sun, Y.; Smith, E.; Kennedy, J.P.; Jones, C.E.; Wolcott, R. Effects of biofilm treatments on the multi-species Lubbock chronic wound biofilm model. J. Wound Care 2009, 18. [Google Scholar]
- Sun, Y.; Dowd, S.E.; Smith, E.; Rhoads, D.D.; Wolcott, R.D. In vitro multispecies Lubbock chronic wound biofilm model. Wound Repair Regen 2008, 16, 805–813. [Google Scholar]
- Abdi-Ali, A.; Mohammadi-Mehr, M.; Agha Alaei, Y. Bactericidal activity of various antibiotics against biofilm-producing Pseudomonas aeruginosa. Int. J. Antimicrob. Agents 2006, 27, 196–200. [Google Scholar]
- Rose, W.E.; Poppens, P.T. Impact of biofilm on the in vitro activity of vancomycin alone and in combination with tigecycline and rifampicin against Staphylococcus aureus. J. Antimicrob. Chemother 2009, 63, 485–488. [Google Scholar]
- Khoury, A.E.; Lam, K.; Ellis, B.; Costerton, J.W. Prevention and control of bacterial infections associated with medical devices. Asaio J 1992, 38, M174–M178. [Google Scholar]
- Barken, K.B.; Haagensen, J.A.; Tolker-Nielsen, T. Advances in nucleic acid-based diagnostics of bacterial infections. Clin. Chim. Acta 2007, 384, 1–11. [Google Scholar]
Type of wound | # wounds | Culture overview | Molecular overview |
---|---|---|---|
Decubitus ulcer | 24 | Enterococcus | Corynebacterium |
Staphylococcus | Peptoniphilus * | ||
Pseudomonas | Staphylococcus | ||
Serratia | Anaerococcus * | ||
Proteus | Bacteroides * | ||
Diabetic extremity ulcer | 40 | Enterococcus | Anaerococcus * |
Pseudomonas | Peptoniphilus * | ||
Streptococcus | Corynebacterium | ||
Serratia | Finegoldia * | ||
Staphylococcus | Pseudomonas | ||
Surgical site | 23 | Staphylococcus | Corynebacterium |
Serratia | Staphylococcus | ||
Enterococcus | Bacteroides * | ||
no growth | Prevotella | ||
Pseudomonas | Serratia | ||
Venous leg ulcers | 49 | Staphylococcus | Corynebacterium |
no growth | Staphylococcus | ||
Serratia | Bacteroides * | ||
Streptococcus | Prevotella | ||
Pseudomonas | Peptoniphilus * | ||
Trauma/abscesses | 32 | no growth | Staphylococcus |
Staphylococcus | Prevotella | ||
Enterococcus | Bacteroides * | ||
Serratia | Peptoniphilus * | ||
Pseudomonas | Corynebacterium |
Bacterial taxa detected from 168 samples using aerobic culture testing | Number of positive samples using culture | Number of positive samples using 16S sequencing |
---|---|---|
Staphylococcus aureus | 41 | 72 |
Enterococcus spp. | 35 | 28 |
Serratia marcescens | 35 | 39 |
Pseudomonas | 24 | 27 |
Staphylococcus spp. (not S. aureus) | 20 | 47 |
Streptococcus agalactiae | 18 | 23 |
Proteus mirabilis | 9 | 10 |
Citrobacter freundii | 5 | 6 |
Escherichia coli | 4 | 3 |
Klebsiella pneumoniae | 3 | 8 |
Enterobacter aerogenes | 2 | 3 |
Enterobacter cloacae | 2 | 3 |
Morganella morganii | 2 | 5 |
Streptococcus spp. | 2 | 41 |
Xanthomonas maltophilia | 2 | 3 |
Acinetobacter baumannii | 1 | 5 |
Providencia spp. | 1 | 2 |
Bacteria identified using comprehensive molecular diagnostics | # of chronic wounds |
---|---|
Staphylococcus aureus 1 | 72 |
Finegoldia magna 2 | 54 |
Corynebacterium striatum | 53 |
Anaerococcus vaginalis 2 | 39 |
Bacteroides vulgatus 2 | 39 |
Serratia marcescens 1 | 39 |
Prevotella sp. | 34 |
Peptoniphilus harei 2 | 33 |
Peptoniphilus ivorii 2 | 30 |
Pseudomonas sp. 1 | 27 |
Anaerococcus sp. 2 | 26 |
Streptococcus agalactiae. 1 | 23 |
Klebsiella sp. | 18 |
Prevotella sp. | 17 |
Enterococcus sp. 1 | 15 |
Peptoniphilus sp. 2 | 15 |
Corynebacterium tuberculostearicum | 14 |
Peptostreptococcus sp. 2 | 14 |
Clostridium cellobioparum 2 | 12 |
Staphylococcus capitis | 11 |
Sample | Culture | PCR | 16S & 18S | % | Comments |
---|---|---|---|---|---|
1 | Pseudomonas aeruginosa | Pseudomonas aeruginosa | Pseudomonas aeruginosa | 65 | Good agreement between all 3 testing methods |
Finegoldia magna * | 30 | ||||
Group D Enterococcus | <1 | ||||
Serratia marcescens | <1 | ||||
2 | Streptococcus spp. | Streptococcus pyogenes | Prevotella * | 49 | Streptococci were detected by culture, but staphylococci were missed by culture. The molecular methods are in agreement, but the predominant bacterium in the sample was not attempted to be detected by culture or PCR. |
Streptococcus agalactiae | Staphylococcus aureus | 21 | |||
Staphylococcus aureus | Unknown Bacterium | 16 | |||
Streptococcus agalactiae | 9 | ||||
Streptococcus pyogenes | 4 | ||||
3 | No Growth | Klebsiella pneumoniae | Haemophilus parainfluenza | 33 | The predominant bacterium was missed by culture and not attempted to be detected by PCR. Yeast and bacteria were both detected by molecular methods. |
Candida albicans | Candida albicans | 15 | |||
Klebsiella pneumoniae | 13 | ||||
4 | Pseudomonas spp. | Streptococcus pyogenes | Serratia spp. | 31 | Culture and PCR detected two different organisms. 16S sequencing detected both organisms, but several other bacteria were present at a higher concentration in the sample than either of the bacteria detected by culture or PCR. |
Peptoniphilus harei * | 28 | ||||
Corynebacterium striatum | 9 | ||||
Pseudomonas spp. | 5 | ||||
Streptococcus pyogenes | <1 | ||||
5 | Serratia marcescens | Serratia marcescens | Corynebacterium striatum | 50 | Serratia was detected by all methods, but 16S determined it to be a small contributor to the microbiota. |
Proteus mirabilis | Anaerococcus vaginalis * | 19 | |||
Serratia marcescens | 3 | ||||
Proteus spp. | 2 | ||||
6 | Staphylococcus aureus | Staphylococcu s aureus | Prevotella spp. * | 40 | Staphylococcus was detected by all methods, but 16S determined it to be a very small contributor to the microbiota. The most predominant organisms were anaerobes that were not attempted to be detected by culture or PCR. |
Unknown Bacterium | 32 | ||||
Bacteroides vulgatus * | 25 | ||||
Staphylococcus aureus | <1 | ||||
7 | Acinetobacter baumannii | Group D Enterococcus | Staphylococcus spp. | 83 | Culture and PCR detected different organisms, and 16S sequencing confirmed the presence of all of these organisms. PCR detected bacteria that were very small contribultors to the microbiota. |
Streptococcus pyogenes | Acinetobacter baumannii | 6 | |||
Streptococcus pyogenes | <1 | ||||
Group D Enterococcus | <1 | ||||
8 | No Growth | Negative | Unknown Bacterium | 91 | The predominant bacterium is from an unknown bacterium |
9 | Klebsiella pneumoniae | Klebsiella pneumoniae | Klebsiella pneumoniae | 43 | All methods agree that Klebsiella and Enterococcus are present in the sample. PCR detected Staphylococcus, which 16S sequencing determined to be a very small contributor to the microbiota. |
Enterococcus spp. | Group D Enterococcus | Unknown Bacterium | 23 | ||
Staphylococcus aureus | Group D Enterococcus | 16 | |||
Veillonella spp. * | 16 | ||||
Staphylococcus aureus | <1 | ||||
10 | Yeast | Candida albicans | Candida albicans | 63 | All methods detected yeast. Molecular methods also detected Staphylococcus. |
Staphylococcus aureus | Staphylococcus aureus | 12 |
© 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Rhoads, D.D.; Wolcott, R.D.; Sun, Y.; Dowd, S.E. Comparison of Culture and Molecular Identification of Bacteria in Chronic Wounds. Int. J. Mol. Sci. 2012, 13, 2535-2550. https://doi.org/10.3390/ijms13032535
Rhoads DD, Wolcott RD, Sun Y, Dowd SE. Comparison of Culture and Molecular Identification of Bacteria in Chronic Wounds. International Journal of Molecular Sciences. 2012; 13(3):2535-2550. https://doi.org/10.3390/ijms13032535
Chicago/Turabian StyleRhoads, Daniel D., Randall D. Wolcott, Yan Sun, and Scot E. Dowd. 2012. "Comparison of Culture and Molecular Identification of Bacteria in Chronic Wounds" International Journal of Molecular Sciences 13, no. 3: 2535-2550. https://doi.org/10.3390/ijms13032535
APA StyleRhoads, D. D., Wolcott, R. D., Sun, Y., & Dowd, S. E. (2012). Comparison of Culture and Molecular Identification of Bacteria in Chronic Wounds. International Journal of Molecular Sciences, 13(3), 2535-2550. https://doi.org/10.3390/ijms13032535