Phytochemical and Biological Studies of Agave attenuata
Abstract
:1. Introduction
2. Results and Discussion
2.1. GC-MS Analysis of n-Hexane Fraction
2.2. Antioxidant Potential of A. attenuata Leaves
2.3. In Vitro Hemolytic Activity
2.4. Antimicrobial Activity
3. Experimental
3.1. Plant Material
3.2. Preparation of Extract and Organic Fractions
3.3. Gas Chromatography/Mass Spectrometry Analysis
3.4. Antimicrobial Assay
3.4.1. Test Microorganisms
3.4.2. Disc Diffusion Method
3.4.3. Resazurin Microtitre-Plate Assay
3.5. In Vitro Hemolytic Activity
3.6. Evaluation of Antioxidant Activity
3.6.1. Determination of Total Phenolic Contents (TPC)
3.6.2. Determination of Total Flavonoid Contents (TFC)
3.6.3. DPPH Radical Scavenging Assay
3.6.4. Antioxidant Activity in Linoleic Acid System
3.6.5. Determination of Reducing Power
3.7. Statistical Analysis
4. Conclusions
References
- Policegoudra, R.S.; Rehna, K.; Rao, L.J.; Aradhya, S.M. Antimicrobial, antioxidant, cytotoxicity and platelet aggregation inhibitory activity of a novel molecule isolated and characterized from mango ginger (Curcuma amada Roxb.) rhizome. J. Biosci 2010, 35, 231–240. [Google Scholar]
- Vichi, S.; Eseer, Z.; Jugl, K.; Franz, M.C. Determination of the presence of antioxidants derived from sage and organic extracts added to the animal fat by means of assessment of the radical scavenging capacity by photochemilumenescence analysis. Nahrung 2001, 45, 101–104. [Google Scholar]
- Gupta, A.K. Quality standards of Indian Medicinal plants. Indian Council Med. Res 2003, 2, 62–65. [Google Scholar]
- Bedour, M.S.; Elgamal, M.H.A.; El-Tawil, B.A.H. Steroid sapogenins. Part XV. The constituents of Agave utahensis var. nevadensis, A. lophanta and A. parasana. Planta Med 1979, 36, 180–181. [Google Scholar]
- Tyler, V.E.; Brady, L.R.; Robbers, J.E. Pharmacognosy; Lea & Febriger: Philadelphia, PA, USA, 1988. [Google Scholar]
- Peana, A.; Moretti, M.D.L.; Manconi, V.; Desole, G.; Pippia, P. Antiinflammatory activity of aqueous extracts and steroidal sapogenins of Agave americana. Planta Med 1997, 63, 199–202. [Google Scholar]
- Bianchi, E.; Cole, J.R. Antitumour agents from Agave schotti (Amaryllidaceae). J. Pharm. Sci 1969, 58, 589–591. [Google Scholar]
- Sanchez, E.; Heredia, N.; Garcia, S. Inhibition of growth and mycotoxin production of Aspergillus flavus and Aspergillus parasiticus by extracts of Agave species. Int. J. Food Microbiol 2005, 98, 271–279. [Google Scholar]
- Verastegui, A.; Verde, J.; Garcia, S.; Heredia, N.; Oranday, A.; Rivas, C. Species of Agave with antimicrobial activity against selected pathogenic bacteria and fungi. World J. Microbiol. Biotechnol 2008, 24, 1249–1252. [Google Scholar]
- Davidson, J.R.; Montellano, B.R. The antibacterial properties of an Aztec wound remedy. J. Ethnopharmacol 1983, 8, 149–161. [Google Scholar]
- Garcia-Mendoza, A. Riqueza y Endemismos de la Familia Agavaceae en Mexico. In Conservación de Plantas en Peligro de Extinción: Diferentes Enfoques; Linares, E., Davila, P., Chiang, F., Bye, R., Elias, T., Eds.; Universidad Nacional Autónoma de México: Mexico City, México, 1995; p. 51. [Google Scholar]
- Hocking, G.M. A Dictionary of Natural Products; Plexus Publishing Inc: Medford, NJ, USA, 1997; Volume 7. [Google Scholar]
- Mendes, T.P.; De Medeiros, S.G.; Da Silva Pereira, G.; Parente, J.P. A new steroidal sapogenin from Agave attenuate. Nat. Prod. Res 2004, 18, 183–188. [Google Scholar]
- Da Silva, B.P.; de Sousa, A.C.; Silva, G.M.; Mendes, T.P.; Parente, J.P. A new steroidal bioactive saponin from Agave attenuata. Z. Natorforsch. C 2002, 57, 423–428. [Google Scholar]
- Bedour, M.S.; Fayez, M.B.E. Steroidal sapogenins. V. The constituents of Agave attenuata, A. macracantha and A. angustifolia. J. Chem. UAR 1961, 4, 265–272. [Google Scholar]
- Brackenbury, T.D.; Appleton, C.C. A comprehensive evaluation of Agave attenuata, a candidate plant molluscicide in South Africa. Acta Trop 1997, 68, 201–213. [Google Scholar]
- Brackenbury, T.D. Gross histopathological effects of and extract of Agave attenuate on the epithelium of the digestive tract of Bulinus africanus. Ann. Trop. Med. Parasitol 1999, 93, 519–526. [Google Scholar]
- Gutierrez, A.; Rodrıguez, I.M.; Rio, J.C. Chemical composition of lipophilic extractives from sisal (Agave sisalana) fibers. Ind. Crop. Prod 2008, 28, 81–87. [Google Scholar]
- Anwar, F.; Ali, M.; Hussain, A.I.; Shahid, M. Antioxidant and antimicrobial activities of essential oil and extracts of fennel (Foeniculum vulgare Mill.) seeds from Pakistan. Flavour Frag. J 2009, 24, 170–176. [Google Scholar]
- Bushra, S.; Anwar, F.; Przybylski, R. Antioxidant activity of phenolic components present in barks of Azadirachta indica, Terminalia arjuna, Acacia nilotica and Eugenia jambolana Lam. Trees. Food Chem 2007, 104, 1106–1114. [Google Scholar]
- Grishkovets, V.I.; Tsvetkov, O.Y.; Shashkov, A.S.; Chirva, V.Y. Triterpene glycosides of Hedera taurica XIV. Structure of glycosides St-G0–2, St-j, and St-K from the stems of Crimean ivy. Chem. Nat. Compd 1997, 33, 305–309. [Google Scholar]
- Massada, Y. Analysis of Essential Oils by Gas Chromatography and Mass Spectrometry; John Wiley and Sons: New York, NY, USA, 1976. [Google Scholar]
- Mass Spectral Library. Available online: http://www.sisweb.com/software/ms/nist.htm accessed on 23 May 2002.
- National Committee for Clinical Laboratory Standards, Performance Standards for Antimicrobial Disc Susceptibility Test, 5th ed; In Approved Standard, M2-A6Clinical and Laboratory Standards Institute: Wayne, PA, USA, 1997.
- Sarker, S.D.; Nahar, L.; Kumarasamy, Y. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 2007, 42, 321–324. [Google Scholar]
- Powell, W.A.; Catranis, C.M.; Maynard, C.A. Design of self-processing antimicrobial peptides for plant protection. Lett. Appl. Microbiol 2000, 31, 163–168. [Google Scholar]
- Chaovanalikit, A.; Wrolstad, R.E. Total anthocyanins and total phenolics of fresh and processed cherries and their antioxidant properties. Food Chem. Toxicol 2004, 69, 67–72. [Google Scholar]
- Dewanto, V.; Wu, X.; Adom, K.K.; Liu, R.H. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem 2002, 50, 3010–3014. [Google Scholar]
- Bozin, B.; Mimica-Dukie, N.; Simin, N.; Anackov, G. Characterization of the volatile composition of essential oil of some lamiaceae species and the antimicrobial and antioxidant activities of the entire oils. J. Agric. Food Chem 2006, 54, 1822–1828. [Google Scholar]
- Iqbal, S.; Bhanger, M.I. Antioxidant properties and components of some commercially available varieties of rice bran in Pakistan. Food Chem 2005, 93, 265–272. [Google Scholar]
- Yen, G.C.; Duh, P.D.; Chuang, D.Y. Antioxidant activity of anthraquinones and anthrone. Food Chem 2000, 70, 307–315. [Google Scholar]
Retention Time | Compounds | Area% |
---|---|---|
3.338 | Benzothiazole | 0.94 |
4.186 | Tetradecane | 0.79 |
4.686 | n-Undecane | 2.12 |
5.005 | n-Pentadecane | 2.91 |
5.711 | (E)-1-Methoxymethoxy-1-tetradecane-3-ol | 0.88 |
5.915 | n-Hexadecane | 2.28 |
6.029 | 1,2-Benzenedicarboxylic acid | 6.33 |
6.877 | n-Heptadecane | 2.60 |
7.856 | n-Octadecane | 2.51 |
7.958 | Phytane | 1.29 |
8.339 | 2-Undecanone | 0.57 |
8.823 | Nonadecane | 2.42 |
9.090 | Hexadecanoic acid | 3.68 |
9.437 | Palmitic acid | 4.57 |
9.773 | Icosane | 2.43 |
10.695 | Heneicosane | 3.44 |
10.752 | 9-Octadecanoic acid | 3.65 |
10.951 | Octadecanoic acid | 0.60 |
11.099 | Linoleic acid | 2.57 |
11.577 | n-Docosane | 6.30 |
12.430 | Eicosane | 6.02 |
13.255 | Tetracosane | 2.01 |
14.052 | Pentacosane | 4.30 |
14.541 | Mono-2-ethylhexyl phthalate | 11.37 |
14.820 | n-Hexacosane | 3.98 |
15.657 | n-Octacosane | 0.60 |
15.861 | Tetracosanoic acid | 0.76 |
17.398 | Nonacosane | 3.57 |
18.536 | n-Triacontane | 2.15 |
19.366 | 2,5-Cyclohexadiene-1,4-dione | 0.85 |
19.879 | Nonadecane | 1.83 |
Total | 90.32% |
Extract or Reference Compound | Total Phenolic Contents (GAE mg/100 g) | Total Flavonoid Contents (CE mg/100 g) | DPPH (% inhibition, 0.1 mg/mL) | Inhibition in Linoleic Acid System (%) | Reducing Power (Absorbance, nm 1 mg/mL) |
---|---|---|---|---|---|
Methanol | 39.35 ± 0.69 a | 304.8 ± 5.02 a | 73.97 ± 1.49 b | 70.35 ± 1.34 b | 0.631 ± 0.016 b |
Chloroform | 19.3 ± 0.91 b | 79.8 ± 3.91 c | 64.94 ± 0.85 c | 60.25 ± 1.02 d | 0.664 ± 0.012 b |
Ethylacetate | 14.56 ± 1.11 c | 197.2 ± 4.96 b | 73.36 ± 0.94 b | 67.78 ± 1.64 b,c | 0.487 ± 0.015 b |
n-Butanol | 10.65 ± 1.24 d | 71.5 ± 2.96 c | 65.21 ± 0.98 c | 66.23 ± 1.82 c | 0.625 ± 0.019 b |
n-Hexane | 10.54 ± 0.40 d | 43.35 ± 2.99 d | 61.41 ± 1.07 d | 50.12 ± 1.12 e | 0.219 ± 0.013 c |
Ascorbic Acid | - | - | - | - | 0.8 ± 0.021 a |
BHT | - | - | 90.3 ± 2.04 a | 84.3 ± 2.33 a | - |
Plant Extract Fraction | % of Hemolysis |
---|---|
100% Methanol | 1.46 ± 0.14 |
Chloroform | 2.64 ± 0.11 |
Ethylacetate | 1.40 ± 0.04 |
n-Butanol | 1.01 ± 0.04 |
n-Hexane | 2.09 ± 0.08 |
Phosphate Buffer Saline (PBS) | 0 |
Triton X-100 | 100 ± 0.61 |
Tested Microorganism | Methanol Extract and Its Fractions (Diameter of Inhibition Zone, mm) | Standard Drugs | |||||
---|---|---|---|---|---|---|---|
Methanol | Chloroform | Ethylacetate | n-Butanol | n-Hexane | Rifampcin | Fluconazole | |
B. subtilis | 14.0 ± 1.41 b | 11.5 ± 1.11 c,d | 10.0 ± 1.58 d | 13.0 ± 0.70 b,c | 0 | 30.0 ± 1.41 a | n.d |
P. multocida | 0 | 10.0 ± 0.70 d | 12.5 ± 1.118 d | 16.5 ± 1.65 c | 25.75 ± 2.58 b | 29.75 ± 0.43 a | n.d |
S. aureus | 9.75 ± 0.43 c | 10.0 ± 0.70 c | 10.75 ± 0.78 c | 19.25 ± 0.43 b | 10.5 ± 0.5 c | 31.75 ± 2.04 a | n.d |
E. coli | 17.0 ± 1.22 b,c | 14.2 ± 0.82 c | 18.75 ± 0.43 a | 26.8 ± 0.62 b | 14.25 ± 2.27 c | 21.5 ± 2.06 a | n.d |
A. niger | 0 | 10.2 ± 1.47 b | 10.5 ± 1.11 b | 16.3 ± 1.65 a | 16.5 ± 1.68 b | n.d | 18.5 ± 1.11 a |
A. flavus | 27.5 ± 2.5 b | 19 ± 0.707 c | 0 | 19.2 ± 0.82 c | 17.0 ± 1.00 c | n.d | 1.0 ± 1.00 a |
A. alternata | 20.75 ±0.43 b | 14.5 ± 1.5 c | 0 | 19.5 ± 0.43 b | 12.25 ± 0.5 d | n.d | 25.5 ± 1.18 a |
R. solani | 16.50 ± 1.65 d | 26.7 ± 2.38 b | 0 | 20.0 ± 0.707 c | 14.75 ± 2.94 d | n.d | 30.25 ± 0.43 a |
Minimum Inhibitory Concentration (MIC) mg/mL. | |||||||
B. subtilis | 158 ± 1.15 | 205 ± 2.71 | 250 ± 2.10 | 170 ± 1.15 | 0 | 8.45 ± 0.25 | n.d |
P. multocida | 0 | 250 ± 2.47 | 185 ± 1.25 | 115 ± 1.28 | 27.4 ± 0.64 | 9.5 ± 0.45 | n.d |
S. aureus | 252 ± 1.45 | 250 ± 2.35 | 220 ± 2.40 | 89.3 ± 0.84 | 240 ± 2.45 | 5.32 ± 0.15 | n.d |
E. coli | 110 ± 0.75 | 152 ± 0.79 | 94.2 ± 0.87 | 15.2 ± 1.15 | 140 ± 1.45 | 62.1 ± 0.45 | n.d |
A. niger | 0 | 244 ± 2.24 | 240 ± 2.85 | 118 ± 1.12 | 115 ± 1.15 | n.d | 98.2 ± 0.55 |
A. flavus | 18.4 ± 0.75 | 25.1 ± 0.55 | 0 | 89.5 ± 0.52 | 110 ± 1.52 | n.d | 6.4 ± 0.25 |
A. alternata | 69.4 ± 0.25 | 142 ± 0.25c | 0 | 85.4 ± 0.75 | 189 ± 0.95 | n.d | 27.4 ± 0.15 |
R. solani | 115 ± 0.75 | 20.4 ± 0.75 | 0 | 80.2 ± 0.85 | 140 ± 0.75 | n.d | 7.8 ± 0.16 |
© 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Rizwan, K.; Zubair, M.; Rasool, N.; Riaz, M.; Zia-Ul-Haq, M.; De Feo, V. Phytochemical and Biological Studies of Agave attenuata. Int. J. Mol. Sci. 2012, 13, 6440-6451. https://doi.org/10.3390/ijms13056440
Rizwan K, Zubair M, Rasool N, Riaz M, Zia-Ul-Haq M, De Feo V. Phytochemical and Biological Studies of Agave attenuata. International Journal of Molecular Sciences. 2012; 13(5):6440-6451. https://doi.org/10.3390/ijms13056440
Chicago/Turabian StyleRizwan, Komal, Muhammad Zubair, Nasir Rasool, Muhammad Riaz, Muhammad Zia-Ul-Haq, and Vincenzo De Feo. 2012. "Phytochemical and Biological Studies of Agave attenuata" International Journal of Molecular Sciences 13, no. 5: 6440-6451. https://doi.org/10.3390/ijms13056440
APA StyleRizwan, K., Zubair, M., Rasool, N., Riaz, M., Zia-Ul-Haq, M., & De Feo, V. (2012). Phytochemical and Biological Studies of Agave attenuata. International Journal of Molecular Sciences, 13(5), 6440-6451. https://doi.org/10.3390/ijms13056440