Optimization of Glutamine Peptide Production from Soybean Meal and Analysis of Molecular Weight Distribution of Hydrolysates
Abstract
:1. Introduction
2. Results and Discussion
2.1. Statistical Analysis and Model Fit of Hydrolysis Process
2.2. Effect of pH, Temperature, E/S Ratio and Reaction Time on Hydrolysis
2.3. Optimization and Validation of the Experimental Design
2.4. Effect of the Diversification of Hydrolysis Degree on the Molecular Weight Distribution
3. Experimental Section
3.1. Materials
3.2. Enzymatic Hydrolysis
3.3. Determination of the Degree of Hydrolysis
3.4. Quantitative Analysis of Glutamine in Soybean Meal Hydrolysates
3.5. Size Exclusion Chromatography
3.6. Experiment Design
3.7. Statistical Analysis
4. Conclusions
Acknowledgments
References
- Hojilla-Evangelista, M.P.; Sessa, D.J.; Mohamed, A. Functional properties of soybean and lupin protein concentrates produced by ultrafiltration-diafiltration. J. Am. Oil. Chem. Soc 2004, 81, 1153–1157. [Google Scholar]
- Kong, X.Z.; Guo, M.M.; Hua, Y.F.; Cao, D.; Zhang, C.M. Enzymatic preparation of immunomodulating hydrolysates from soy proteins. Bioresour. Technol 2008, 99, 8873–8879. [Google Scholar]
- Lacey, J.M.; Wilmore, D.W. Is glutamine a conditionally essential amino acid? Nutr. Rev 1990, 48, 297–309. [Google Scholar]
- Rombouts, I.; Lamberts, L.; Celus, I.; Lagrain, B.; Brijs, K.; Delcour, J.A. Wheat gluten amino acid composition analysis by high-performance anion-exchange chromatography with integrated pulsed amperometric detection. J. Chromat 2009, 1216, 5557–5562. [Google Scholar]
- Harstad, O.M.; Prestlǿkken, E. Rumen degradability and intestinal indigestibility of individual amino acids in corn gluten meal, canola meal and fish meal determined in situ. Anim. Feed 2001, 94, 127–135. [Google Scholar]
- Han, B.Z.; Rombouts, F.M.; Robert Nout, M.J. Amino acid profiles of sufu, a Chinese fermented soybean food. J. Food Comp. Anal 2004, 17, 689–698. [Google Scholar]
- Sacks, G.S. Effect of glutamine-supplemented parenteral nutrition on mortality in critically ill patients. Nutr. Clin. Pract 2011, 26, 44–47. [Google Scholar]
- Prabhu, R.; Thomas, S.; Balasubramanian, K.A. Oral glutamine attenuates surgical manipulation-induced alterations in the intestinal brush border membrane. J. Surg. Res 2003, 115, 148–156. [Google Scholar]
- Rogero, M.M.; Tirapegui, J.; Pedrosa, R.G.; Castro, I.A.D.; Oliveira Pires, I.S.D. Effect of alanyl-glutamine supplementation on plasma and tissue glutamine concentrations in rats submitted to exhaustive exercise. Nutrition 2006, 22, 564–571. [Google Scholar]
- Schneider, T.; Butzb, P.; Ludwig, H.; Tauscher, B. Pressure-induced formation of pyroglutamic acid from glutamine in neutral and alkaline solutions. LWT Food Sci. Technol 2003, 36, 365–367. [Google Scholar]
- Tanabe, S.; Watanabe, M.; Arai, S. Production of a high-glutamine oligopeptide fraction from gluten by enzymatic treatment and evaluation of its nutritional effect on the small intestine of rats. J. Food Biochem 1992, 16, 235–248. [Google Scholar]
- Wu, Z.P.; Chang, S.; Jin, Q.G. Research on the effects of glutamine and soybean peptide supplementation on the structure of kidney filtration barrier and component of urinary of over-training rats. J. Guangzhou Sport Univ 2008, 28, 93–97. (in Chinese). [Google Scholar]
- Peričin, D.; Radulović-Popović, L.J.; Vaštag, Ž.; Madarev-Popović, S.; Trivić, S. Enzymatic hydrolysis of protein isolate from hull-less pumpkin oil cake: Application of response surface methodology. Food Chem 2009, 115, 753–757. [Google Scholar]
- Lv, Y.; Guo, S.T.; Yang, B.C. Aggregation of hydrophobic soybean protein hydrolysates: Changes in molecular weight distribution during storage. LWT Food Sci. Technol 2009, 42, 914–917. [Google Scholar]
- Tavares, T.G.; Contreras, M.M.; Amorim, M.; Martín-Álvarez, P.J.; Pintado, M.E.; Recio, I.; Malcata, F.X. Optimisation, by response surface methodology, of degree of hydrolysis and antioxidant and ACE-inhibitory activities of whey protein ydrolysates obtained with cardoon extract. Int. Dairy J 2011, 21, 926–933. [Google Scholar]
- Contreras, M.D.M.; Hernández-Ledesma, B.; Amigo, L.; Martín-Álvarez, P.J. Production of antioxidant hydrolyzates from a whey protein concentrate with thermolysin: Optimization by response surface methodology. LWT Food Sci. Technol 2011, 44, 9–15. [Google Scholar]
- Murthy, M.; Swaminathan, T.; Rakshit, S.K.; Kosugi, Y. Statistical optimization of lipase catalyzed hydrolysis of methyloleate by response surface methodology. Bioprocess. Eng 2000, 22, 35–39. [Google Scholar]
- Xie, Y.L.; Ma, C.Y.; Wang, J.S. Optimization of the trypsinase hydrolysis condition of glutamine peptides from defatted soybean meal by response surface analysis. J. Henan Univ. Technol. (Nat. Sci. Ed.) 2009, 30, 25–28. (in Chinese). [Google Scholar]
- Chen, L.; Chen, J.S.; Ren, J.Y.; Zhao, M.M. Modifications of soy protein isolates using combined extrusion pretreatment and controlled enzymatic hydrolysis for improved emulsifying properties. Food Hydroc 2011, 25, 887–897. [Google Scholar]
- Guo, Y.X.; Pan, D.D.; Tanokura, M. Optimisation of hydrolysis conditions for the production of the angiotensin-I converting enzyme (ACE) inhibitory peptides from whey protein using response surface methodology. Food Chem 2009, 114, 328–333. [Google Scholar]
- Adler-Nissen, J. Limited enzymic degradation of proteins: A new approach in the industrial application of hydrolysates. J. Chem. Tech 1982, 32, 138–156. [Google Scholar]
- Marlene, T.; Don, E.O. Quantification of glutamine in proteins and peptides using enzymatic hydrolysis and reverse-phase high-performance liquid chromatography. Anal. Chem 1999, 269, 143–148. [Google Scholar]
- Dong, S.Y.; Zeng, M.Y.; Wang, D.F.; Liu, Z.Y.; Zhao, Y.H.; Yang, H.C. Antioxidant and biochemical properties of protein hydrolysates prepared from Silver carp (Hypophthalmichthys molitrix). Food Chem 2008, 107, 1485–1493. [Google Scholar]
Independent Variable | Response | |||||
---|---|---|---|---|---|---|
X1 | X2/°C | X3/% | X4/h | Y1:DH, % | Y2:Gln mmol/L | |
1 | −1 | 1 | 1 | −1 | 15.83 ± 0.18 | 5.32 ± 0.06 |
2 | 1 | −1 | −1 | 1 | 13.34 ± 0.20 | 5.23 ± 0.15 |
3 | −1 | −1 | −1 | 1 | 14.23 ± 0.26 | 5.72 ± 0.14 |
4 | −1 | −1 | 1 | −1 | 14.52 ± 0.14 | 5.31 ± 0.06 |
5 | −2 | 0 | 0 | 0 | 15.32 ± 0.13 | 5.54 ± 0.16 |
6 | 0 | 0 | 0 | 0 | 15.41 ± 0.06 | 5.49 ± 0.21 |
7 | 0 | 2 | 0 | 0 | 13.94 ± 0.14 | 5.69 ± 0.06 |
8 | −1 | −1 | −1 | −1 | 13.17 ± 0.25 | 5.64 ± 0.04 |
9 | 0 | 0 | −2 | 0 | 12.91 ± 0.02 | 5.67 ± 0.08 |
10 | 1 | 1 | 1 | 1 | 14.01 ± 0.16 | 5.66 ± 0.11 |
11 | −1 | 1 | −1 | 1 | 16.08 ± 0.23 | 5.73 ± 0.07 |
12 | 0 | 0 | 2 | 0 | 15.75 ± 0.09 | 5.96 ± 0.10 |
13 | 0 | 0 | 0 | 0 | 15.27 ± 0.30 | 5.78 ± 0.14 |
14 | 0 | 0 | 0 | 0 | 15.21 ± 0.13 | 5.59 ± 0.08 |
15 | 1 | 1 | −1 | −1 | 12.03 ± 0.28 | 5.21 ± 0.04 |
16 | 1 | 1 | −1 | 1 | 12.62 ± 0.12 | 5.22 ± 0.12 |
17 | 0 | 0 | 0 | 0 | 15.01 ± 0.10 | 5.54 ± 0.19 |
18 | −1 | 1 | −1 | −1 | 15.39 ± 0.23 | 5.63 ± 0.11 |
19 | 0 | 0 | 0 | 2 | 15.38 ± 0.22 | 6.01 ± 0.18 |
20 | 0 | 0 | 0 | −2 | 13.77 ± 0.11 | 5.82 ± 0.15 |
21 | 1 | −1 | 1 | −1 | 14.61 ± 0.09 | 5.44 ± 0.06 |
22 | −1 | −1 | 1 | 1 | 15.83 ± 0.06 | 5.86 ± 0.13 |
23 | −1 | 1 | 1 | 1 | 16.09 ± 0.19 | 5.85 ± 0.05 |
24 | 1 | 1 | 1 | −1 | 13.35 ± 0.21 | 5.50 ± 0.11 |
25 | 0 | 0 | 0 | 0 | 15.52 ± 0.19 | 5.65 ± 0.09 |
26 | 0 | −2 | 0 | 0 | 13.45 ± 0.22 | 5.78 ± 0.11 |
27 | 1 | −1 | 1 | 1 | 15.21 ± 0.13 | 5.67 ± 0.08 |
28 | 1 | −1 | −1 | −1 | 12.64 ± 0.17 | 5.22 ± 0.12 |
29 | 2 | 0 | 0 | 0 | 12.44 ± 0.22 | 5.59 ± 0.21 |
30 | 0 | 0 | 0 | 0 | 15.12 ± 0.21 | 5.83 ± 0.15 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value/Prob > F | ||||
---|---|---|---|---|---|---|---|---|---|
DH | Gln | DH | Gln | DH | Gln | DH | Gln | ||
Model | 42.196 | 0.905 | 14 | 3.014 | 0.065 | 57.952 | 1.790 | <0.0001 **** | 0.1377 ns |
Linear | |||||||||
X1 | 15.185 | 0.137 | 1 | 15.185 | 0.137 | 291.963 | 3.780 | <0.0001 **** | 0.0709 ns |
X2 | 0.334 | 0.001 | 1 | 0.334 | 0.001 | 6.416 | 0.026 | 0.0230 * | 0.8741 ns |
X3 | 10.179 | 0.105 | 1 | 10.179 | 0.105 | 195.719 | 2.917 | <0.0001 **** | 0.1083 ns |
X4 | 3.443 | 0.175 | 1 | 3.443 | 0.175 | 66.198 | 4.849 | < 0.0001 **** | 0.0437 ns |
Quadratic | |||||||||
X12 | 2.680 | 0.103 | 1 | 2.680 | 0.103 | 51.537 | 2.840 | <0.0001 **** | 0.1126 ns |
X22 | 3.532 | 0.010 | 1 | 3.532 | 0.010 | 67.915 | 0.264 | <0.0001 **** | 0.6148 ns |
X32 | 1.098 | 0.000 | 1 | 1.098 | 0.000 | 21.118 | 0.001 | 0.0004 *** | 0.9707 ns |
X42 | 0.529 | 0.019 | 1 | 0.529 | 0.019 | 10.168 | 0.528 | 0.0061 *** | 0.4788 ns |
Interaction | |||||||||
X1X2 | 5.558 | 0.000 | 1 | 5.558 | 0.000 | 106.864 | 0.002 | <0.0001 **** | 0.9690 ns |
X1X3 | 0.620 | 0.196 | 1 | 0.620 | 0.196 | 11.924 | 5.422 | 0.0035 ** | 0.0343 ns |
X1X4 | 0.037 | 0.045 | 1 | 0.037 | 0.045 | 0.7125 | 1.251 | 0.4119 ns | 0.2810 ns |
X2X3 | 0.824 | 0.000 | 1 | 0.824 | 0.000 | 15.835 | 0.008 | 0.0012 ** | 0.9278 ns |
X2X4 | 0.135 | 0.000 | 1 | 0.135 | 0.000 | 2.597 | 0.008 | 0.1279 ns | 0.9278 ns |
X3X4 | 0.003 | 0.101 | 1 | 0.003 | 0.101 | 0.053 | 2.792 | 0.8210 ns | 0.1155 ns |
Statistic analysis for the model | |||||||||
Residual | 0.780 | 15 | 0.052 | 0.036 | |||||
Lack of Fit | 0.605 | 10 | 0.061 | 0.045 | 1.732 | 2.491 | 0.2829 ns | 0.1627 ns | |
Pure Error | 0.175 | 5 | 0.035 | 0.018 | |||||
Cor Total | 42.976 | 29 |
Process Parameter | Code | Level | ||||
---|---|---|---|---|---|---|
−2 | −1 | 0 | +1 | +2 | ||
pH | X1 | 6.0 | 6.5 | 7.0 | 7.5 | 8.0 |
Temperature/°C | X2 | 40 | 45 | 50 | 55 | 60 |
E/S (%) | X3 | 1 | 1.5 | 2 | 2.5 | 3.0 |
Reaction time (h) | X4 | 8 | 9 | 10 | 11 | 12 |
© 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Xie, Y.; Liang, X.; Wei, M.; Zhao, W.; He, B.; Lu, Q.; Huo, Q.; Ma, C. Optimization of Glutamine Peptide Production from Soybean Meal and Analysis of Molecular Weight Distribution of Hydrolysates. Int. J. Mol. Sci. 2012, 13, 7483-7495. https://doi.org/10.3390/ijms13067483
Xie Y, Liang X, Wei M, Zhao W, He B, Lu Q, Huo Q, Ma C. Optimization of Glutamine Peptide Production from Soybean Meal and Analysis of Molecular Weight Distribution of Hydrolysates. International Journal of Molecular Sciences. 2012; 13(6):7483-7495. https://doi.org/10.3390/ijms13067483
Chicago/Turabian StyleXie, Yanli, Xinhong Liang, Min Wei, Wenhong Zhao, Baoshan He, Qiyu Lu, Quangong Huo, and Chengye Ma. 2012. "Optimization of Glutamine Peptide Production from Soybean Meal and Analysis of Molecular Weight Distribution of Hydrolysates" International Journal of Molecular Sciences 13, no. 6: 7483-7495. https://doi.org/10.3390/ijms13067483
APA StyleXie, Y., Liang, X., Wei, M., Zhao, W., He, B., Lu, Q., Huo, Q., & Ma, C. (2012). Optimization of Glutamine Peptide Production from Soybean Meal and Analysis of Molecular Weight Distribution of Hydrolysates. International Journal of Molecular Sciences, 13(6), 7483-7495. https://doi.org/10.3390/ijms13067483