Cyclodextrin-Based [1]Rotaxanes on Gold Nanoparticles
Abstract
:1. Introduction
2. Results and Discussion
2.1. Self-Inclusion of CDAS in an Aqueous Environment
2.2. Construction of [1]Rotaxanes on AuNPs
2.3. Competitive Binding with Adamantane Dimer
2.4. Photoisomerization of [1]Rotaxanes on AuNPs
3. Experimental Section
3.1. General
3.2. Materials
3.3. Synthesis of Mono-(6-O-p-Toluenesulfonyl)-β-CD
3.4. Synthesis of 4-((4-Hydroxyphenyl)diazenyl)phenol
3.5. Synthesis of Mono-(6-O-4-((4-Hydroxyphenyl)diazenyl)phenyl)-β-CD (CDA)
3.6. Synthesis of CDAS
3.7. Citrate-Stabilized AuNPs with an Average Diameter of 15 nm
3.8. Preparations of Au@CDAS-1 and Au@CDAS-2
4. Conclusions
Acknowledgments
References
- Balzani, V.; Credi, A.; Venturi, M. Light powered molecular machines. Chem. Soc. Rev 2009, 38, 1542–1550. [Google Scholar]
- Fang, L.; Olson, M.A.; Benítez, D.; Tkatchouk, E.; Goddard, W.A., III; Stoddart, J.F. Mechanically bonded macromolecules. Chem. Soc. Rev. 2010, 39, 17–29. [Google Scholar]
- Qu, D.H.; Tian, H. Novel and efficient templates for assembly of rotaxanes and catenanes. Chem. Sci 2011, 2, 1011–1015. [Google Scholar]
- Beves, J.E.; Blight, B.A.; Campbell, C.J.; Leigh, D.A.; McBurney, R.T. Strategies and tactics for the metal-directed synthesis of rotaxanes, knots, catenanes, and higher order links. Angew. Chem. Int. Ed 2011, 50, 9260–9327. [Google Scholar]
- Loeb, S.J.; Wisner, J.A. [2]Rotaxane molecular shuttles employing 1,2-bis(pyridinium)ethane binding sites and dibenzo-24-crown-8 ethers. Chem. Commun 2000, 1939–1940. [Google Scholar]
- Hsueh, S.-Y.; Lai, C.-C.; Chiu, S.-H. Squaraine-based [2]rotaxanes that function as visibly active molecular switches. Chem. Eur. J 2010, 16, 2997–3000. [Google Scholar]
- Zhu, L.; Lu, M.; Qu, D.; Wang, Q.; Tian, H. Coordination-assembly for quantitative construction of bis-branched molecular shuttles. Org. Biomol. Chem 2011, 9, 4226–4233. [Google Scholar]
- Ma, X.; Qu, D.; Ji, F.; Wang, Q.; Zhu, L.; Xu, Y.; Tian, H. A light-driven [1]rotaxane via self-complementary and Suzuki-coupling capping. Chem. Commun 2007, 2007, 1409–1411. [Google Scholar]
- Franchi, P.; Fani, M.; Mezzina, E.; Lucarini, M. Increasing the persistency of stable free-radicals: Synthesis and characterization of a nitroxide based [1]Rotaxane. Org. Lett 2008, 10, 1901–1904. [Google Scholar]
- Zheng, X.; Mayer, M.F. Actuator prototype: Capture and release of a self-entangled [1]rotaxane. J. Am. Chem. Soc 2010, 132, 3274–3276. [Google Scholar]
- Davis, J.J.; Orlowski, G.A.; Rahman, H.; Beer, P.D. Mechanically interlocked and switchable molecules at surfaces. Chem. Commun 2010, 46, 54–63. [Google Scholar]
- Willner, I.; Pardo-Yissar, V.; Katz, E.; Ranjit, K.T. A photoactivated ‘molecular train’ for optoelectronic applications: light-stimulated translocation of a β-cyclodextrin receptor within a stoppered azobenzene-alkyl chain supramolecular monolayer assembly on a Au-electrode. J. Electroanal. Chem 2001, 497, 172–177. [Google Scholar]
- Coskun, A.; Wesson, P.J.; Klajn, R.; Trabolsi, A.; Fang, L.; Olson, M.A.; Dey, S.K.; Grzybowski, B.A.; Stoddart, J.F. Molecular-mechanical switching at the nanoparticle-solvent interface: Practice and theory. J. Am. Chem. Soc 2010, 132, 4310–4320. [Google Scholar]
- Zhu, L.; Yan, H.; Nguyen, K.T.; Tian, H.; Zhao, Y. Sequential self-assembly for construction of Pt(II)-bridged [3]rotaxanes on gold nanoparticles. Chem. Commun 2012, 48, 4290–4292. [Google Scholar]
- Liu, Y.; Zhao, Y.-L.; Zhang, H.-Y.; Fan, Z.; Wen, G.-D.; Ding, F. Spectrophotometric study of inclusion complexation of aliphatic alcohols by β-cyclodextrins with azobenzene tether. J. Phys. Chem. B 2004, 108, 8836–8843. [Google Scholar]
- Inoue, Y.; Miyauchi, M.; Nakajima, H.; Takashima, Y.; Yamaguchi, H.; Harada, A. Self-threading of a poly(ethylene glycol) chain in a cyclodextrin-ring: Control of the exchange dynamics by chain length. J. Am. Chem. Soc 2006, 128, 8994–8995. [Google Scholar]
- Inoue, Y.; Kuad, P.; Okumura, Y.; Takashima, Y.; Yamaguchi, H.; Harada, A. Thermal and photochemical switching of conformation of poly(ethylene glycol)-substituted cyclodextrin with an azobenzene group at the chain end. J. Am. Chem. Soc 2007, 129, 6396–6394. [Google Scholar]
- Liu, Y.; Flood, A.H.; Stoddart, J.F. Thermally and electrochemically controllable self-complexing molecular switches. J. Am. Chem. Soc 2004, 126, 9150–9151. [Google Scholar]
- Zhu, L.; Zhang, D.; Qu, D.; Wang, Q.; Ma, X.; Tian, H. Dual-controllable stepwise supramolecular interconversions. Chem. Commun 2010, 46, 2587–2589. [Google Scholar]
- Zhu, L.; Ma, X.; Ji, F.; Wang, Q.; Tian, H. Effective Enhancement of fluorescence signals in rotaxane-doped reversible hydrosol–gel systems. Chem. Eur. J 2007, 13, 9216–9222. [Google Scholar]
- Byun, H.S.; Zhong, N.; Bittman, R. 6A-O-p-toluenesulfonyl-beta-cyclodextrin. Org. Synth 2000, 77, 225–230. [Google Scholar]
- Grabar, K.C.; Freeman, R.G.; Hommer, M.B.; Natan, M.J. Preparation and characterization of Au colloid monolayers. Anal. Chem 1995, 67, 735–743. [Google Scholar]
© 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Zhu, L.; Yan, H.; Zhao, Y. Cyclodextrin-Based [1]Rotaxanes on Gold Nanoparticles. Int. J. Mol. Sci. 2012, 13, 10132-10142. https://doi.org/10.3390/ijms130810132
Zhu L, Yan H, Zhao Y. Cyclodextrin-Based [1]Rotaxanes on Gold Nanoparticles. International Journal of Molecular Sciences. 2012; 13(8):10132-10142. https://doi.org/10.3390/ijms130810132
Chicago/Turabian StyleZhu, Liangliang, Hong Yan, and Yanli Zhao. 2012. "Cyclodextrin-Based [1]Rotaxanes on Gold Nanoparticles" International Journal of Molecular Sciences 13, no. 8: 10132-10142. https://doi.org/10.3390/ijms130810132
APA StyleZhu, L., Yan, H., & Zhao, Y. (2012). Cyclodextrin-Based [1]Rotaxanes on Gold Nanoparticles. International Journal of Molecular Sciences, 13(8), 10132-10142. https://doi.org/10.3390/ijms130810132