Effects of Cyclooxygenase Inhibitors in Combination with Taxol on Expression of Cyclin D1 and Ki-67 in a Xenograft Model of Ovarian Carcinoma
Abstract
:1. Introduction
2. Results and Discussion
2.1. Inhibition of Ovarian Cancer Growth
2.2. Cyclin D1 Expression in Tumors
2.3. SC-560, Celecoxib and Taxol Inhibit Tumor Cell Proliferation
2.4. Correlation of Tumor Cell Proliferation with Cyclin D1 Expression
2.5. COX Expression
2.6. Discussion
3. Materials and Methods
3.1. Human Ovarian Tumors in Nude Mice
3.2. Dose and Administration Time of Drugs
3.3. Measurement of Tumor Volume
3.4. Immunohistochemistry for Ki-67 and Cyclin D1
3.5. Immunohistochemistry for COX-1 and COX-2 Expression
3.6. Statistical Analyses
4. Conclusions
References
- Colombo, N.; Parma, G.; Bocciolone, L.; Franchi, D.; Sideri, M.; Maqqioni, A. Medical therapy of advanced malignant epithelial tumours of the ovary. Forum (Genova) 2000, 10, 323–332. [Google Scholar]
- Markman, M. Taxol: An important new drug in the management of epithelial ovarian cancer. Yale J. Biol. Med 1991, 64, 583–590. [Google Scholar]
- Lawson, E.; Irada, I.; Hamdi, J.; Sevtap, S.; Mehran, M.; Kathleen, I.P.; Hilmi, O. Bioinformatic analyses identifies novel proteincoding pharmacogenomic markers associated with paclitaxel sensitivity in NCI60 cancer cell lines. BMC Med. Genomics 2011, 4, 18. [Google Scholar]
- Wang, Y.; Qu, Y.; Niu, X.L.; Sun, W.J.; Zhang, X.L.; Li, L.Z. Autocrine production of interleukin-8 confers cisplatin and paclitaxel resistance in ovarian cancer cells. Cytokine 2011, 56, 365–375. [Google Scholar]
- Ferrandina, G.; Lauriola, L.; Zannoni, G.F.; Faqotti, A.; Fanfani, F.; Maqqiano, N.; Gessi, M.; Mancuso, S.; Ranelletti, F.O.; Scambia, G. Increased cyclooxygenase-2 (COX-2) expression is associated with chemotherapy resistance and outcome in ovarian cancer patients. Ann. Oncol 2002, 13, 1205–1211. [Google Scholar]
- Subbaramaiah, K.; Hart, J.C.; Norton, L.; Dannenberq, A.J. Microtubule-interfering agents stimulate the transcription of cyclooxygenase-2: Evidence for involvement of ERK1/2 and p38 mitogen-activated protein kinase pathways. J. Biol. Chem 2000, 275, 14838–14845. [Google Scholar]
- Ferrandina, G.; Ranelletti, F.O.; Martinelli, E.; Paglia, A.; Zannoni, G.F.; Scambia, G. Cyclo-oxygenase-2 (Cox-2) expression and resistance to platinum versus platinum/paclitaxel containing chemotherapy in advanced ovarian cancer. BMC Cancer 2006, 6, 182. [Google Scholar]
- Dannenberg, A.J.; Subbaramaiah, K. Targeting cyclooxygenase-2 in human neoplasia: Rationale and promise. Cancer Cell 2003, 4, 431–436. [Google Scholar]
- Jaime, R.M.; Deepa, R.J.; Jeffrey, G.S.; He, X.Y.; Glenn, J.B.; Vikas, P.S. Increased endothelial uptake of paclitaxel as a potential mechanism for its antiangiogenic effects: Potentiation by Cox-2 inhibition. Int. J. Cancer 2005, 113, 490–498. [Google Scholar]
- Altorki, N.K.; Keresztes, R.S.; Port, J.L.; Libby, D.M.; Korst, R.J.; Flieder, D.B.; Ferrara, C.A.; Yankelevitz, D.F.; Subbaramaiah, K.; Pasmantier, M.W.; et al. Celecoxib, a selective cyclo-oxygenase-2 inhibitor, enhances the response to preoperative paclitaxel and carboplatin in early-stage non-small-cell lung cancer. J. Clil. Oncol 2003, 21, 2645–2650. [Google Scholar]
- Munkarah, A.R.; Genhai, Z.; Morris, R.; Baker, W.; Ceppe, G.; Diamond, M.P.; Saed, G.M. Inhibition of paclitaxel-induced apoptosis by the specific COX-2 inhibitor, NS398, in epithelial ovarian cancer cells. Gynecol Oncol 2003, 88, 429–433. [Google Scholar]
- Williams, C.S.; Mann, M.; DuBois, R.N. The role of cyclooxygenases in inflammation, cancer, and development. Oncogene 1999, 18, 7908–7916. [Google Scholar]
- Gupta, R.A.; Tejada, L.V.; Tong, B.J.; Das, S.K.; Morrow, J.D.; Dey, S.K.; DuBois, R.N. Cyclooxygenase-1 is overexpressed and promotes angiogenic growth factor production in ovarian cancer. Cancer Res 2003, 63, 906–911. [Google Scholar]
- Daikoku, T.; Wang, D.Z.; Tranguch, S.; Morrow, J.D.; Orsulic, S.; DuBois, R.N.; Dey, S.K. Cyclooxygenase-1 is a potential target for prevention and treatment of ovarian epithelial cancer. Cancer Res 2005, 65, 3735–3744. [Google Scholar]
- Santarius, T.; Shipley, J.; Brewer, D.; Stratton, M.R.; Cooper, C.S. A census of amplified and overexpressed human cancer genes. Nat. Rev. Cancer 2010, 10, 59–64. [Google Scholar]
- Wu, G.Q.; Xie, D.; Yang, G.F.; Liao, Y.J.; Mai, S.J.; Deng, H.X.; Sze, J.; Guan, X.Y.; Zeng, Y.X.; Lin, M.C.; et al. Cell cycle-related kinase supports ovarian carcinoma cell proliferation via regulation of cyclin D1 and is a predictor of outcome in patients with ovarian carcinoma. Int. J. Cancer 2009, 125, 2631–2642. [Google Scholar]
- Shakir, R.; Ngo, N.; Naresh, K.N. Correlation of cyclin D1 transcript levels, transcript type and protein expression with proliferation and histology among mantle cell lymphoma. J. Clin. Pathol 2008, 61, 920–927. [Google Scholar]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar]
- Denkert, C.; Köbel, M.; Pest, S.; Koch, I.; Berger, S.; Schwabe, M.; Siegert, A.; Reles, A.; Klosterhalfen, B.; Hauptmann, S. Expression of cyclooxygenase-2 is an independent prognostic factor in human ovarian carcinoma. Am. J. Pathol 2002, 160, 893–903. [Google Scholar]
- Worsley, S.D.; Ponder, B.A.; Davies, B.R. Overexpression of cyclin D1 in epithelial ovarian cancers. Gynecol. Oncol 1997, 64, 189–195. [Google Scholar]
- Li, W.; Jiang, H.R.; Xu, X.L.; Wang, J.; Zhang, J.; Liu, M.L.; Zhai, L.Y. Cyclin d1 expression and the inhibitory effect of celecoxib on ovarian tumor growth in vivo. Int. J. Mol. Sci 2010, 11, 3999–4013. [Google Scholar]
- Hida, T.; Kozaki, K.; Ito, H.; Miyaishi, O.; Tatematsu, Y.; Suzuki, T.; Matsuo, K.; Sugiura, T.; Ogawa, M.; Takahashi, T.; et al. Significant growth inhibition of human lung cancer cells both in vitro and in vivo by the combined use of a selective cyclooxygenase 2 inhibitor, JTE-522, and conventional anticancer agents. Clin. Cancer Res 2002, 8, 2443–2447. [Google Scholar]
- Ju-Hee, K.; Ki-Hoon, S.; Kyung-Chae, J.; Kim, S.; Choi, C.; Lee, C.H.; Oh, S.H. Involvement of Cox-2 in the metastatic potential of chemotherapy-resistant breast cancer cells. BMC Cancer 2011, 11, 334. [Google Scholar]
- Andrews, P.; Zhao, X.; Allen, J.; Li, F.; Chang, M. A comparison of the effectiveness of selected non-steroidal anti-inflammatory drugs and their derivatives against cancer cells in vitro. Cancer Chemother. Pharmacol 2008, 61, 203–214. [Google Scholar]
- Bhatt, R.S.; Merchan, J.; Parker, R.; Wu, H.K.; Zhang, L.; Seery, V.; Heymach, J.V.; Atkins, M.B.; McDermott, D.; Sukhatme, V.P. A phase II pilot trial of low dose, continuous infusion, or “metronomic”, paclitaxel and oral celecoxib in patients with metastatic melanoma. Cancer 2010, 116, 1751–1756. [Google Scholar]
- Gasparini, G.; Meo, S.; Comella, G.; Stani, S.C.; Mariani, L.; Gamucci, T.; Avallone, A.; Lo Vullo, S.; Mansueto, G.; Bonginelli, P.; et al. The combination of the selective cyclooxygenase-2 inhibitor celecoxib with weekly paclitaxel is a safe and active second-line therapy for non-small cell lung cancer: A phase II study with biological correlates. Cancer J 2005, 11, 209–216. [Google Scholar]
- Li, W.; Wang, J.; Jiang, H.R.; Xu, X.L.; Zhang, J.; Liu, M.L.; Zhai, L.Y. Combined effects of cyclooxygenase-1 and cyclooxygenase-2 selective inhibitors on ovarian carcinoma in vivo. Int. J. Mol. Sci 2011, 12, 668–681. [Google Scholar]
- Satya, N.D.; Pratima, K.; Manoj, K.S.; Suresh, C.S. Correlation of cyclin D1 expression with aggressive DNA pattern in patients with tobacco-related intraoral squamous cell carcinoma. Indian J. Med. Res 2011, 133, 381–386. [Google Scholar]
- Chioniso, P.M.; Doris, M.B. Cyclin D1 degradation is sufficient to induce G1 cell cycle arrest despite constitutive expression of cyclin E2 in ovarian cancer cells. Cancer Res 2009, 69, 6565–6572. [Google Scholar]
- Sakoguchi-Okada, N.; Takahashi-Yanaga, F.; Fukada, K.; Shiraishi, F.; Taba, Y.; Miwa, Y.; Morimoto, S.; Lida, M.; Sasaquri, T. Celecoxib inhibits the expression of survivin via the suppression of promoter activity in human colon cancer cells. Biochem. Pharmacol 2007, 73, 1318–1329. [Google Scholar]
- Alao, J.P. The regulation of cyclin D1 degradation: Roles in cancer development and the potential for therapeutic invention. Mol. Cancer 2007, 6, 24. [Google Scholar]
- Wang, J.Y.; Wang, Q.; Cui, Y.; Liu, Z.Y.; Zhao, W.; Dong, Y.; Hou, L.; Hu, G.; Luo, C.; Chen, J.; et al. Knockdown of cyclin D1 inhibits proliferation, induces apoptosis, and attenuates the invasive capacity of human glioblastoma cells. J. Neurooncol 2012, 106, 473–484. [Google Scholar]
- Shan, J.; Zhao, W.; Gu, W. Suppression of cancer cell growth by promoting cyclin D1 degradation. Mol. Cell 2009, 36, 469–476. [Google Scholar]
- Kritpracha, K.; Hanprasertpong, J.; Chandeying, V.; Dechsukhum, C.; Geater, A. Survival analysis in advanced epithelial ovarian carcinoma in relation to proliferative index of MIB-1 immunostaining. J. Obstet. Gynaecol. Res 2005, 31, 268–276. [Google Scholar]
- Aune, G.; Stunes, A.K.; Tingulstad, S.; Salvesen, O.; Swersen, U.; Torp, S.H. The proliferation markers Ki-67/MIB-1, phospho histone H3, and survivin may contribute in the identification of aggressive ovarian carcinomas. Int. J. Clin. Exp. Pathol 2011, 4, 444–453. [Google Scholar]
- Devalapally, H.; Duan, Z.F.; Seiden, M.V.; Amiji, M.M. Modulation of drug resistance in ovarian adenocarcinoma by enhangcing intracellular ceramide using tamoxifen-loaded bioderadable polymeric nanoparticles. Clin. Cancer Res 2008, 14, 3193–3203. [Google Scholar]
- Williams, C.S.; Watson, A.J.; Sheng, H.; Helou, R.; Shao, J.; DuBois, R.N. Celecoxib prevents tumor growth in vivo without toxicity to normal gut: Lack of correlation between in vitro and in vivo models. Cancer Res 2000, 60, 6045–6051. [Google Scholar]
- Gerdes, J.; Lemke, H.; Baisch, H.; Wacker, H.H.; Schwab, U.; Stein, H. Cell cycle analysis of a cell proliferation associated human nuclear antigen defined by the monoclonal antibody Ki-67. J. Immunol 1984, 133, 1710–1715. [Google Scholar]
© 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Li, W.; Cai, J.-H.; Zhang, J.; Tang, Y.-X.; Wan, L. Effects of Cyclooxygenase Inhibitors in Combination with Taxol on Expression of Cyclin D1 and Ki-67 in a Xenograft Model of Ovarian Carcinoma. Int. J. Mol. Sci. 2012, 13, 9741-9753. https://doi.org/10.3390/ijms13089741
Li W, Cai J-H, Zhang J, Tang Y-X, Wan L. Effects of Cyclooxygenase Inhibitors in Combination with Taxol on Expression of Cyclin D1 and Ki-67 in a Xenograft Model of Ovarian Carcinoma. International Journal of Molecular Sciences. 2012; 13(8):9741-9753. https://doi.org/10.3390/ijms13089741
Chicago/Turabian StyleLi, Wei, Jia-Hui Cai, Jun Zhang, Yun-Xian Tang, and Liang Wan. 2012. "Effects of Cyclooxygenase Inhibitors in Combination with Taxol on Expression of Cyclin D1 and Ki-67 in a Xenograft Model of Ovarian Carcinoma" International Journal of Molecular Sciences 13, no. 8: 9741-9753. https://doi.org/10.3390/ijms13089741
APA StyleLi, W., Cai, J. -H., Zhang, J., Tang, Y. -X., & Wan, L. (2012). Effects of Cyclooxygenase Inhibitors in Combination with Taxol on Expression of Cyclin D1 and Ki-67 in a Xenograft Model of Ovarian Carcinoma. International Journal of Molecular Sciences, 13(8), 9741-9753. https://doi.org/10.3390/ijms13089741