A Novel Collection of snRNA-Like Promoters with Tissue-Specific Transcription Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. RNA Polymerase (pol) III Transcripts Are Widely Spread throughout the Human Genome
2.2. Analysis of the Gene List
2.3. In vitro Promoter Activity Assay
3. Experimental Section
3.1. Identification of Polymerase III Promoters
3.2. Analysis of the Gene List-David Bioinformatics Resources
3.3. Cell Cultures
3.4. In Vitro Promoter Activity Assay
4. Conclusions
Supplementary Materials
ijms-13-11323-s003.pdfAcknowledgments
References
- Dieci, G.; Fiorino, G.; Castelnuovo, M.; Teichmann, M.; Pagano, A. The expanding RNA polymerase III transcriptome. Trends Genet 2007, 23, 614–622. [Google Scholar]
- White, R.J. RNA polymerases I and III, non-coding RNAs and cancer. Trends Genet 2008, 24, 622–629. [Google Scholar]
- White, R.J. Transcription by RNA polymearse III: More complex then we thought. Nat. Rev. Genet 2011, 12, 459–463. [Google Scholar]
- Pagano, A.; Castelnuovo, M.; Tortelli, F.; Ferrari, R.; Dieci, G.; Cancedda, R. New small nuclear RNA gene-like transcriptional units as sources of regulatory transcripts. PLoS Genet 2007, 3, e1. [Google Scholar]
- Castelnuovo, M.; Massone, S.; Tasso, R.; Fiorino, G.; Gatti, M.; Robello, M.; Gatta, E.; Berger, A.; Strub, K.; Florio, T.; et al. An Alu-like RNA promotes cell differentiation and reduces malignancy of human neuroblastoma cells. FASEB J 2010, 24, 4033–4046. [Google Scholar]
- Massone, S.; Vassallo, I.; Castelnuovo, M.; Fiorino, G.; Gatta, E.; Robello, M.; Borghi, R.; Tabaton, M.; Russo, C.; Dieci, G.; et al. RNA polymerase III drives alternative splicing of the potassium channel-interacting protein contributing to brain complexity and neurodegeneration. J. Cell Biol 2011, 193, 851–866. [Google Scholar]
- Massone, S.; Vassallo, I.; Fiorino, G.; Castelnuovo, M.; Barbieri, F.; Borghi, R.; Tabaton, M.; Robello, M.; Gatta, E.; Russo, C.; et al. 17A, a novel non-coding RNA, regulates GABA B alternative splicing and signaling in response to inflammatory stimuli and in Alzheimer disease. Neurobiol. Dis 2011, 41, 308–317. [Google Scholar]
- Massone, S.; Ciarlo, E.; Vella, S.; Nizzari, M.; Florio, T.; Russo, C.; Cancedda, R.; Pagano, A. NDM29, a RNA polymerase III-dependent non coding RNA, promotes amyloidogenic processing of APP and amyloid beta secretion. Biochim. Biophys. Acta 2012, 1823, 1170–1177. [Google Scholar]
- Vella, S.; Conti, M.; Tasso, R.; Cancedda, R.; Pagano, A. Dichloroacetate inhibits neuroblastoma growth by specifically acting against malignant undifferentiated cells. Int. J. Cancer 2012, 130, 1484–1493. [Google Scholar]
- Gavazzo, P.; Vella, S.; Marchetti, C.; Nizzari, M.; Cancedda, R.; Pagano, A. Acquisition of neuron-like electrophysiological properties in neuroblastoma cells by controlled expression of NDM29 ncRNA. J. Neurochem 2011, 119, 989–1001. [Google Scholar]
- Nizzari, M.; Thellung, S.; Corsaro, A.; Villa, V.; Pagano, A.; Porcile, C.; Russo, C.; Florio, T. Neurodegeneration in Alzheimer disease: Role of amyloid precursor protein and presenilin 1 intracellular signaling. J. Toxicol 2012, 2012, 187–297. [Google Scholar]
- Maccari, G.; Gemignani, F.; Landi, S. COMPASSS (COMplex PAttern of Sequence Search Software), a simple and effective tool for mining complex motifs in whole genomes. Bioinformatics 2010, 26, 1777–1778. [Google Scholar]
- Sakharkar, M.K.; Chow, V.T.; Kangueane, P. Distributions of exons and introns in the human genome. Silico Biol 2004, 4, 387–393. [Google Scholar]
- Rearick, D.; Prakash, A.; McSweeny, A.; Shepard, S.S.; Fedorova, L.; Fedorov, A. Critical association of ncRNA with introns. Nucleic Acids Res 2011, 39, 2357–2366. [Google Scholar]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc 2009, 4, 44–57. [Google Scholar]
- Qureshi, I.A.; Mehler, M.F. Non-coding RNA networks underlying cognitive disorders across the lifespan. Trends Mol. Med 2011, 17, 337–346. [Google Scholar]
- Khalil, A.M.; Faghihi, M.A.; Modarresi, F.; Brothers, S.P.; Wahlestedt, C. A novel RNA transcript with antiapoptotic function is silenced in fragile X syndrome. PLoS One 2008, 3, e1486. [Google Scholar]
- Mus, E.; Hof, P.R.; Tiedge, H. Dendritic BC200 RNA in aging and in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 2007, 104, 10679–10684. [Google Scholar]
- Scheele, C.; Petrovic, N.; Faghihi, M.A.; Lassmann, T.; Fredriksson, K.; Rooyackers, O.; Wahlestedt, C.; Good, L.; Timmons, J.A. The human PINK1 locus is regulated in vivo by a non-coding natural antisense RNA during modulation of mitochondrial function. BMC Genomics 2007, 8, 74. [Google Scholar]
- St Laurent, G., III; Faghihi, M.A.; Wahlestedt, C. Non-coding RNA transcripts: Sensors of neuronal stress, modulators of synaptic plasticity and agents of change in the onset of Alzheimer’s disease. Neurosci. Lett. 2009, 466, 81–88. [Google Scholar]
- UCSC Genome Bioinformatics Home Page. Available online: http://www.genome.ucsc.edu accessed on 18 March 2006.
- Thellung, S.; Corsaro, A.; Villa, V.; Simi, A.; Vella, S.; Pagano, A.; Florio, T. Human PrP90-231-induced cell death is associated with intracellular accumulation of insoluble and protease-resistant macroaggregates and lysosomal dysfunction. Cell Death Dis 2011, 2, e138. [Google Scholar]
PSE sequence | PSE/TATA spacer | TATA box | Transcribed portion length | Termination signal sequence |
---|---|---|---|---|
TYACCNTAAC | 35 ± 25 | TATA | 350 ± 200 | TTTT |
Category | Term | Count | % | p-Value | Benjamini |
---|---|---|---|---|---|
SP_PIR_KEYWORDS | alternative splicing | 646 | 60.1 | 7.70 × 10−48 | 3.90 × 10−45 |
SP_PIR_KEYWORDS | phosphoprotein | 548 | 51 | 2.40 × 10−20 | 6.10 × 10−18 |
SP_PIR_KEYWORDS | coiled coil | 191 | 17.8 | 1.10 × 10−13 | 1.80 × 10−11 |
SP_PIR_KEYWORDS | cell junction | 59 | 5.5 | 1.80 × 10−11 | 2.30 × 10−9 |
SP_PIR_KEYWORDS | synapse | 39 | 3.6 | 1.60 × 10−10 | 1.60 × 10−8 |
SP_PIR_KEYWORDS | polymorphism | 730 | 67.9 | 1.40 × 10−8 | 1.20 × 10−6 |
SP_PIR_KEYWORDS | ionic channel | 45 | 4.2 | 2.30 × 10−8 | 1.60 × 10−6 |
SP_PIR_KEYWORDS | cell adhesion | 54 | 5 | 2.50 × 10−8 | 1.60 × 10−6 |
SP_PIR_KEYWORDS | postsynaptic cell membrane | 24 | 2.2 | 3.10 × 10−8 | 1.70 × 10−6 |
SP_PIR_KEYWORDS | membrane | 425 | 39.5 | 3.30 × 10−7 | 1.70 × 10−5 |
SP_PIR_KEYWORDS | ion transport | 62 | 5.8 | 1.20 × 10−6 | 5.40 × 10−5 |
SP_PIR_KEYWORDS | voltage-gated channel | 25 | 2.3 | 2.80 × 10−6 | 1.20 × 10−4 |
SP_PIR_KEYWORDS | transport | 137 | 12.7 | 3.50 × 10−6 | 1.30 × 10−4 |
SP_PIR_KEYWORDS | Nucleotide-binding | 135 | 12.6 | 1.40 × 10−5 | 5.00 × 10−4 |
SP_PIR_KEYWORDS | chromosomal rearrangement | 35 | 3.3 | 1.50 × 10−5 | 5.00 × 10−4 |
Annotation cluster 1 | Enrichment score: 9.19 | Count | p-Value | Benjamini |
---|---|---|---|---|
GOTERM_CC_FAT | cell junction | 78 | 7.2 × 10−14 | 3.7 × 10−11 |
GOTERM_CC_FAT | synapse | 59 | 2.0 × 10−12 | 5.1 × 10−10 |
SP_PIR_KEYWORDS | cell junction | 59 | 1.8 × 10−11 | 2.3 × 10−9 |
SP_PIR_KEYWORDS | synapse | 39 | 1.6 × 10−10 | 1.6 × 10−8 |
GOTERM_CC_FAT | synapse part | 41 | 6.8 × 10−9 | 5.8 × 10−7 |
SP_PIR_KEYWORDS | postsynaptic cell membrane | 24 | 3.1 × 10−8 | 1.7 × 10−6 |
GOTERM_CC_FAT | postsynaptic membrane | 27 | 1.0 × 10−7 | 7.3 × 10−6 |
GOTERM_CC_FAT | postsynaptic density | 17 | 3.4 × 10−6 | 1.8 × 10−4 |
Category | Term | Count | % | p-Value | Benjamini |
---|---|---|---|---|---|
UP_TISSUE | Brain | 610 | 56.7 | 1.4 × 10−24 | 3.9 × 10−22 |
UP_TISSUE | Hippocampus | 55 | 5.1 | 4.3 × 10−7 | 0.000041 |
UP_TISSUE | Epithelium | 196 | 18.2 | 0.000024 | 0.0017 |
UP_TISSUE | Amygdala | 61 | 5.7 | 0.00003 | 0.0017 |
UP_TISSUE | Fetal brain | 71 | 6.6 | 0.00011 | 0.0053 |
UP_TISSUE | Retina | 36 | 3.3 | 0.00072 | 0.029 |
UP_TISSUE | Neuron | 8 | 0.7 | 0.0013 | 0.041 |
© 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Garritano, S.; Gigoni, A.; Costa, D.; Malatesta, P.; Florio, T.; Cancedda, R.; Pagano, A. A Novel Collection of snRNA-Like Promoters with Tissue-Specific Transcription Properties. Int. J. Mol. Sci. 2012, 13, 11323-11332. https://doi.org/10.3390/ijms130911323
Garritano S, Gigoni A, Costa D, Malatesta P, Florio T, Cancedda R, Pagano A. A Novel Collection of snRNA-Like Promoters with Tissue-Specific Transcription Properties. International Journal of Molecular Sciences. 2012; 13(9):11323-11332. https://doi.org/10.3390/ijms130911323
Chicago/Turabian StyleGarritano, Sonia, Arianna Gigoni, Delfina Costa, Paolo Malatesta, Tullio Florio, Ranieri Cancedda, and Aldo Pagano. 2012. "A Novel Collection of snRNA-Like Promoters with Tissue-Specific Transcription Properties" International Journal of Molecular Sciences 13, no. 9: 11323-11332. https://doi.org/10.3390/ijms130911323
APA StyleGarritano, S., Gigoni, A., Costa, D., Malatesta, P., Florio, T., Cancedda, R., & Pagano, A. (2012). A Novel Collection of snRNA-Like Promoters with Tissue-Specific Transcription Properties. International Journal of Molecular Sciences, 13(9), 11323-11332. https://doi.org/10.3390/ijms130911323