Neuroprotection for Stroke: Current Status and Future Perspectives
Abstract
:1. Introduction
2. The Current Status of Experimental and Clinical Neuroprotection Research
3. Examples and Reasons for the Translational Failure and Future Strategies to Overcome It
4. Promising Neuroprotective Treatments
5. Conclusions
Acknowledgements
- Conflict of interestThe authors declare no conflict of interest with this manuscript.
References
- The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. N. Engl. J. Med. 1995, 333, 1581–1588.
- Donnan, G.A.; Davis, S.M.; Parsons, M.W.; Ma, H.; Dewey, H.M.; Howells, D.W. How to make better use of thrombolytic therapy in acute ischemic stroke. Nat. Rev. Neurol 2011, 7, 400–409. [Google Scholar]
- Astrup, J.; Siesjö, B.K.; Symon, L. Thresholds in cerebral ischemia—The ischemic penumbra. Stroke 1981, 12, 723–725. [Google Scholar]
- Kincses, Z.T.; Vecsei, L. Pharmacological therapy in Parkinson’s disease: Focus on neuroprotection. CNS Neurosci. Ther 2011, 17, 345–367. [Google Scholar]
- Kelso, M.L.; Pauly, J.R. Therapeutic targets for neuroprotection and/or enhancement of functional recovery following traumatic brain injury. Prog. Mol. Biol. Transl. Sci 2011, 98, 85–131. [Google Scholar]
- Sutherland, B.A.; Minnerup, J.; Balami, J.S.; Arba, F.; Buchan, A.M.; Kleinschnitz, C. Neuroprotection for ischaemic stroke: Translation from the bench to the bedside. Int. J. Stroke 2012, 7, 407–418. [Google Scholar]
- Ginsberg, M.D. Neuroprotection for ischemic stroke: Past, present and future. Neuropharmacology 2008, 55, 363–389. [Google Scholar]
- Durukan, A.; Tatlisumak, T. Acute ischemic stroke: Overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharmacol. Biochem. Behav 2007, 87, 179–197. [Google Scholar]
- O’Collins, V.E.; Macleod, M.R.; Donnan, G.A.; Horky, L.L.; van der Worp, B.H.; Howells, D.W. 1026 experimental treatments in acute stroke. Ann. Neurol 2006, 59, 467–477. [Google Scholar]
- Stroke Trials Registry Home Page. Available online: http://www.strokecenter.org/trials/ accessed on 17 August 2012.
- Schaar, K.L.; Brenneman, M.M.; Savitz, S.I. Functional assessments in the rodent stroke model. Exp. Transl. Stroke Med 2010, 2, 13. [Google Scholar]
- Fisher, M.; Feuerstein, G.; Howells, D.W.; Hurn, P.D.; Kent, T.A.; Savitz, S.I.; Lo, E.H. Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke 2009, 40, 2244–2250. [Google Scholar]
- Stroke Therapy Academic Industry Roundtable (STAIR). Recommendations for standards regarding preclinical neuroprotective and restorative drug development. Stroke 1999, 30, 2752–2758.
- Sutherland, B.A.; Papadakis, M.; Chen, R.L.; Buchan, A.M. Cerebral blood flow alteration in neuroprotection following cerebral ischaemia. J. Physiol 2011, 589, 4105–4114. [Google Scholar]
- Van der Worp, H.B.; Sena, E.S.; Donnan, G.A.; Howells, D.W.; Macleod, M.R. Hypothermia in animal models of acute ischaemic stroke: A systematic review and meta-analysis. Brain 2007, 130, 3063–3074. [Google Scholar]
- De Georgia, M.A.; Krieger, D.W.; Abou-Chebl, A.; Devlin, T.G.; Jauss, M.; Davis, S.M.; Koroshetz, W.J.; Rordorf, G.; Warach, S. Cooling for Acute Ischemic Brain Damage (COOL AID): A feasibility trial of endovascular cooling. Neurology 2004, 63, 312–317. [Google Scholar]
- Hemmen, T.M.; Raman, R.; Guluma, K.Z.; Meyer, B.C.; Gomes, J.A.; Cruz-Flores, S.; Wijman, C.A.; Rapp, K.S.; Grotta, J.C.; Lyden, P.D. Intravenous thrombolysis plus hypothermia for acute treatment of ischemic stroke (ICTuS-L): Final results. Stroke 2010, 41, 2265–2270. [Google Scholar]
- Krieger, D.W.; de Georgia, M.A.; Abou-Chebl, A.; Andrefsky, J.C.; Sila, C.A.; Katzan, I.L.; Mayberg, M.R.; Furlan, A.J. Cooling for acute ischemic brain damage (cool aid): An open pilot study of induced hypothermia in acute ischemic stroke. Stroke 2001, 32, 1847–1854. [Google Scholar]
- The Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N. Engl. J. Med. 2002, 346, 549–556.
- Yenari, M.; Kitagawa, K.; Lyden, P.; Perez-Pinzon, M. Metabolic downregulation: A key to successful neuroprotection? Stroke 2008, 39, 2910–2917. [Google Scholar]
- Berger, C.; Schäbitz, W.R.; Georgiadis, D.; Steiner, T.; Aschoff, A.; Schwab, S. Effects of hypothermia on excitatory amino acids and metabolism in stroke patients: a microdialysis study. Stroke 2002, 33, 519–524. [Google Scholar]
- Globus, M.Y.T.; Alonso, O.; Dietrich, W.D.; Busto, R.; Ginsberg, M.D. Glutamate Release and Free Radical Production Following Brain Injury: Effects of Posttraumatic Hypothermia. J. Neurochem 1995, 65, 1704–1711. [Google Scholar]
- Hemmen, T.M.; Lyden, P.D. Induced hypothermia for acute stroke. Stroke 2007, 38, 794–799. [Google Scholar]
- Lyden, P.D.; Krieger, D.; Yenari, M.; Dietrich, W.D. Therapeutic hypothermia for acute stroke. Int. J. Stroke 2006, 1, 9–19. [Google Scholar]
- Schwab, S.; Georgiadis, D.; Berrouschot, J.; Schellinger, P.D.; Graffagnino, C.; Mayer, S.A. Feasibility and safety of moderate hypothermia after massive hemispheric infarction. Stroke 2001, 32, 2033–2035. [Google Scholar]
- Macleod, M.R.; Petersson, J.; Norrving, B.; Hacke, W.; Dirnagl, U.; Wagner, M.; Schwab, S. Hypothermia for Stroke: Call to action 2010. Int. J. Stroke 2010, 5, 489–492. [Google Scholar]
- He, M.; Xing, S.; Yang, B.; Zhao, L.; Hua, H.; Liang, Z.; Zhou, W.; Zeng, J.; Pei, Z. Ebselen attenuates oxidative DNA damage and enhances its repair activity in the thalamus after focal cortical infarction in hypertensive rats. Brain Res 2007, 1181, 83–92. [Google Scholar]
- Koizumi, H.; Fujisawa, H.; Suehiro, E.; Shirao, S.; Suzuki, M. Neuroprotective effects of ebselen following forebrain ischemia: involvement of glutamate and nitric oxide. Neurol. Med. Chir (Tokyo) 2011, 51, 337–343. [Google Scholar]
- Seo, J.Y.; Lee, C.H.; Cho, J.H.; Choi, J.H.; Yoo, K.-Y.; Kim, D.W.; Park, O.K.; Li, H.; Choi, S.Y.; Hwang, I.K.; et al. Neuroprotection of ebselen against ischemia/reperfusion injury involves GABA shunt enzymes. J. Neurol. Sci 2009, 285, 88–94. [Google Scholar]
- Ogawa, A.; Yoshimoto, T.; Kikuchi, H.; Sano, K.; Saito, I.; Yamaguchi, T.; Yasuhara, H. Ebselen in acute middle cerebral artery occlusion: A placebo-controlled, double-blind clinical trial. Cerebrovasc. Dis 1999, 9, 112–118. [Google Scholar]
- Edaravone Acute Infarction Study Group. Effect of a novel free radical scavenger, edaravone (MCI-186), on acute brain infarction. Randomized, placebo-controlled, double-blind study at multicenters. Cerebrovasc. Dis. 2003, 15, 222–229.
- Nakase, T.; Yoshioka, S.; Suzuki, A. Free radical scavenger, edaravone, reduces the lesion size of lacunar infarction in human brain ischemic stroke. BMC Neurol 2011, 11, 39. [Google Scholar]
- O’Collins, V.E.; Macleod, M.R.; Cox, S.F.; van Raay, L.; Aleksoska, E.; Donnan, G.A.; Howells, D.W. Preclinical drug evaluation for combination therapy in acute stroke using systematic review, meta-analysis, and subsequent experimental testing. J. Cereb. Blood Flow Metab 2011, 31, 962–975. [Google Scholar]
- Ovbiagele, B.; Kidwell, C.S.; Starkman, S.; Saver, J.L. Neuroprotective agents for the treatment of acute ischemic stroke. Curr. Neurol. Neurosci. Rep 2003, 3, 9–20. [Google Scholar]
- Saver, J.L.; Kidwell, C.; Eckstein, M.; Starkman, S. Prehospital neuroprotective therapy for acute stroke: Results of the Field Administration of Stroke Therapy-Magnesium (FAST-MAG) pilot trial. Stroke 2004, 35, e106–e108. [Google Scholar]
- Mees, S.M.D.; Algra, A.; Vandertop, W.P.; van Kooten, F.; Kuijsten, H.A.J.M.; Boiten, J.; van Oostenbrugge, R.J.; Al-Shahi Salman, R.; Lavados, P.M.; Rinkel, G.J.E.; et al. Magnesium for aneurysmal subarachnoid haemorrhage (MASH-2): A randomised placebo-controlled trial. Lancet 2012, 380, 44–49. [Google Scholar]
- Cimino, M.; Gelosa, P.; Gianella, A.; Nobili, E.; Tremoli, E.; Sironi, L. Statins: Multiple mechanisms of action in the ischemic brain. Neuroscientist 2007, 13, 208–213. [Google Scholar]
- Cimino, M.; Balduini, W.; Carloni, S.; Gelosa, P.; Guerrini, U.; Tremoli, E.; Sironi, L. Neuroprotective effect of simvastatin in stroke: A comparison between adult and neonatal rat models of cerebral ischemia. Neurotoxicology 2005, 26, 929–933. [Google Scholar]
- Elkind, M.S.V.; Sacco, R.L.; Macarthur, R.B.; Peerschke, E.; Neils, G.; Andrews, H.; Stillman, J.; Corporan, T.; Leifer, D.; Liu, R.; et al. High-dose lovastatin for acute ischemic stroke: Results of the phase I dose escalation neuroprotection with statin therapy for acute recovery trial (NeuSTART). Cerebrovasc. Dis 2009, 28, 266–275. [Google Scholar]
- Angel, I.; Bar, A.; Horovitz, T.; Taler, G.; Krakovsky, M.; Resnitsky, D.; Rosenberg, G.; Striem, S.; Friedman, J.E.; Kozak, A. Metal ion chelation in neurodegenerative disorders. Drug Dev. Res 2002, 56, 300–309. [Google Scholar]
- Diener, H.-C.; Schneider, D.; Lampl, Y.; Bornstein, N.M.; Kozak, A.; Rosenberg, G. DP-b99, a membrane-activated metal ion chelator, as neuroprotective therapy in ischemic stroke. Stroke 2008, 39, 1774–1778. [Google Scholar]
- Rosenberg, G.; Bornstein, N.; Diener, H.-C.; Gorelick, P.B.; Shuaib, A.; Lees, K. The Membrane-Activated Chelator Stroke Intervention (MACSI) Trial of DP-b99 in acute ischemic stroke: A randomized, double-blind, placebo-controlled, multinational pivotal phase III study. Int. J. Stroke 2011, 6, 362–367. [Google Scholar]
- ClinicalTrials.gov home page. Available online: http://www.clinicaltrials.gov accessed on 17 August 2012.
- Lampl, Y.; Boaz, M.; Gilad, R.; Lorberboym, M.; Dabby, R.; Rapoport, A.; Anca-Hershkowitz, M.; Sadeh, M. Minocycline treatment in acute stroke: an open-label, evaluator-blinded study. Neurology 2007, 69, 1404–1410. [Google Scholar]
- Prass, K.; Meisel, C.; Höflich, C.; Braun, J.; Halle, E.; Wolf, T.; Ruscher, K.; Victorov, I.V.; Priller, J.; Dirnagl, U.; et al. Stroke-induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by poststroke T helper cell type 1-like immunostimulation. J. Exp. Med 2003, 198, 725–736. [Google Scholar]
- Fagan, S.C.; Waller, J.L.; Nichols, F.T.; Edwards, D.J.; Pettigrew, L.C.; Clark, W.M.; Hall, C.E.; Switzer, J.A.; Ergul, A.; Hess, D.C. Minocycline to improve neurologic outcome in stroke (MINOS): A dose-finding study. Stroke 2010, 41, 2283–2287. [Google Scholar]
- Padma Srivastava, M.V.; Bhasin, A.; Bhatia, R.; Garg, A.; Gaikwad, S.; Prasad, K.; Singh, M.B.; Tripathi, M. Efficacy of minocycline in acute ischemic stroke: A single-blinded, placebo-controlled trial. Neurol. India 2012, 60, 23–28. [Google Scholar]
- He, P.; Curry, F.E. Albumin modulation of capillary permeability: role of endothelial cell [Ca2+]i. Am. J. Physiol 1993, 265, H74–H82. [Google Scholar]
- Belayev, L.; Liu, Y.; Zhao, W.; Busto, R.; Ginsberg, M.D. Human albumin therapy of acute ischemic stroke: marked neuroprotective efficacy at moderate doses and with a broad therapeutic window. Stroke 2001, 32, 553–560. [Google Scholar]
- Hill, M.D.; Martin, R.H.; Palesch, Y.Y.; Tamariz, D.; Waldman, B.D.; Ryckborst, K.J.; Moy, C.S.; Barsan, W.G.; Ginsberg, M.D. The Albumin in Acute Stroke Part 1 Trial: An exploratory efficacy analysis. Stroke 2011, 42, 1621–1625. [Google Scholar]
- Ginsberg, M.D.; Hill, M.D.; Palesch, Y.Y.; Ryckborst, K.J.; Tamariz, D. The ALIAS Pilot Trial: A dose-escalation and safety study of albumin therapy for acute ischemic stroke-I: Physiological responses and safety results. Stroke 2006, 37, 2100–2106. [Google Scholar]
- Palesch, Y.Y.; Hill, M.D.; Ryckborst, K.J.; Tamariz, D.; Ginsberg, M.D. The ALIAS Pilot Trial: A dose-escalation and safety study of albumin therapy for acute ischemic stroke-II: Neurologic outcome and efficacy analysis. Stroke 2006, 37, 2107–2114. [Google Scholar]
- Ginsberg, M.D.; Palesch, Y.Y.; Martin, R.H.; Hill, M.D.; Moy, C.S.; Waldman, B.D.; Yeatts, S.D.; Tamariz, D.; Ryckborst, K. The albumin in acute stroke (ALIAS) multicenter clinical trial: safety analysis of part 1 and rationale and design of part 2. Stroke 2011, 42, 119–127. [Google Scholar]
- Chan, P.H. Role of oxidants in ischemic brain damage. Stroke 1996, 27, 1124–1129. [Google Scholar]
- Green, A.R.; Ashwood, T.; Odergren, T.; Jackson, D.M. Nitrones as neuroprotective agents in cerebral ischemia, with particular reference to NXY-059. Pharmacol. Ther 2003, 100, 195–214. [Google Scholar]
- Bath, P.; Gray, L.; Bath, A.; Buchan, A.; Miyata, T.; Green, A. Effects of NXY-059 in experimental stroke: An individual animal meta-analysis. Br. J. Pharmacol 2009, 157, 1157–1171. [Google Scholar]
- Macleod, M.R.; van der Worp, H.B.; Sena, E.S.; Howells, D.W.; Dirnagl, U.; Donnan, G.A. Evidence for the efficacy of NXY-059 in experimental focal cerebral ischaemia is confounded by study quality. Stroke 2008, 39, 2824–2829. [Google Scholar]
- Marshall, J.W.B.; Cummings, R.M.; Bowes, L.J.; Ridley, R.M.; Green, A.R. Functional and histological evidence for the protective effect of NXY-059 in a primate model of stroke when given 4 hours after occlusion. Stroke 2003, 34, 2228–2233. [Google Scholar]
- Lees, K.R.; Zivin, J.A.; Ashwood, T.; Davalos, A.; Davis, S.M.; Diener, H.-C.; Grotta, J.; Lyden, P.; Shuaib, A.; Hårdemark, H.-G.; et al. NXY-059 for acute ischemic stroke. N. Engl. J. Med 2006, 354, 588–600. [Google Scholar]
- Shuaib, A.; Lees, K.R.; Lyden, P.; Grotta, J.; Davalos, A.; Davis, S.M.; Diener, H.-C.; Ashwood, T.; Wasiewski, W.W.; Emeribe, U. NXY-059 for the treatment of acute ischemic stroke. N. Engl. J. Med 2007, 357, 562–571. [Google Scholar]
- Diener, H.-C.; Lees, K.R.; Lyden, P.; Grotta, J.; Davalos, A.; Davis, S.M.; Shuaib, A.; Ashwood, T.; Wasiewski, W.; Alderfer, V.; et al. NXY-059 for the treatment of acute stroke: pooled analysis of the SAINT I and II Trials. Stroke 2008, 39, 1751–1758. [Google Scholar]
- Fisher, M.; Lees, K.; Papadakis, M.; Buchan, A.M. NXY-059: brain or vessel protection. Stroke 2006, 37, 2189–2190. [Google Scholar]
- Papadakis, M.; Nagel, S.; Buchan, A.M. Development and efficacy of NXY-059 for the treatment of acute ischemic stroke. Future Neurol 2008, 3, 229–240. [Google Scholar]
- Philip, M.; Benatar, M.; Fisher, M.; Savitz, S.I. Methodological quality of animal studies of neuroprotective agents currently in phase II/III acute ischemic stroke trials. Stroke 2009, 40, 577–581. [Google Scholar]
- Savitz, S.I. Cosmic implications of NXY-059. Stroke 2009, 40, S115–S118. [Google Scholar]
- Savitz, S.I. A critical appraisal of the NXY-059 neuroprotection studies for acute stroke: A need for more rigorous testing of neuroprotective agents in animal models of stroke. Exp. Neurol 2007, 205, 20–25. [Google Scholar]
- Sachs, L. The molecular control of hematopoiesis: From clonal development in culture to therapy in the clinic. Int. J. Cell Cloning 1992, 10, 196–204. [Google Scholar]
- Sirén, A.L.; Knerlich, F.; Poser, W.; Gleiter, C.H.; Brück, W.; Ehrenreich, H. Erythropoietin and erythropoietin receptor in human ischemic/hypoxic brain. Acta Neuropathol 2001, 101, 271–276. [Google Scholar]
- Schneider, A.; Krüger, C.; Steigleder, T.; Weber, D.; Pitzer, C.; Laage, R.; Aronowski, J.; Maurer, M.H.; Gassler, N.; Mier, W.; et al. The hematopoietic factor G-CSF is a neuronal ligand that counteracts programmed cell death and drives neurogenesis. J. Clin. Invest 2005, 115, 2083–2098. [Google Scholar]
- Ruscher, K.; Freyer, D.; Karsch, M.; Isaev, N.; Megow, D.; Sawitzki, B.; Priller, J.; Dirnagl, U.; Meisel, A. Erythropoietin is a paracrine mediator of ischemic tolerance in the brain: Evidence from an in vitro model. J. Neurosci 2002, 22, 10291–10301. [Google Scholar]
- Solaroglu, I.; Cahill, J.; Tsubokawa, T.; Beskonakli, E.; Zhang, J.H. Granulocyte colony-stimulating factor protects the brain against experimental stroke via inhibition of apoptosis and inflammation. Neurol. Res 2009, 31, 167–172. [Google Scholar]
- Villa, P.; Bigini, P.; Mennini, T.; Agnello, D.; Laragione, T.; Cagnotto, A.; Viviani, B.; Marinovich, M.; Cerami, A.; Coleman, T.R.; et al. Erythropoietin selectively attenuates cytokine production and inflammation in cerebral ischemia by targeting neuronal apoptosis. J. Exp. Med 2003, 198, 971–975. [Google Scholar]
- Wang, L.; Zhang, Z.; Wang, Y.; Zhang, R.; Chopp, M. Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats. Stroke 2004, 35, 1732–1737. [Google Scholar]
- Lee, S.-T.; Chu, K.; Jung, K.-H.; Ko, S.-Y.; Kim, E.-H.; Sinn, D.I.; Lee, Y.S.; Lo, E.H.; Kim, M.; Roh, J.K. Granulocyte colony-stimulating factor enhances angiogenesis after focal cerebral ischemia. Brain Res 2005, 1058, 120–128. [Google Scholar]
- Minnerup, J.; Heidrich, J.; Wellmann, J.; Rogalewski, A.; Schneider, A.; Schäbitz, W.-R. Meta-analysis of the efficacy of granulocyte-colony stimulating factor in animal models of focal cerebral ischemia. Stroke 2008, 39, 1855–1861. [Google Scholar]
- England, T.J.; Gibson, C.L.; Bath, P.M.W. Granulocyte-colony stimulating factor in experimental stroke and its effects on infarct size and functional outcome: A systematic review. Brain Res. Rev 2009, 62, 71–82. [Google Scholar]
- Jerndal, M.; Forsberg, K.; Sena, E.S.; Macleod, M.R.; O’Collins, V.E.; Linden, T.; Nilsson, M.; Howells, D.W. A systematic review and meta-analysis of erythropoietin in experimental stroke. J. Cereb. Blood Flow Metab 2010, 30, 961–968. [Google Scholar]
- Minnerup, J.; Heidrich, J.; Rogalewski, A.; Schäbitz, W.-R.; Wellmann, J. The efficacy of erythropoietin and its analogues in animal stroke models: A meta-analysis. Stroke 2009, 40, 3113–3120. [Google Scholar]
- Ehrenreich, H.; Hasselblatt, M.; Dembowski, C.; Cepek, L.; Lewczuk, P.; Stiefel, M.; Rustenbeck, H.-H.; Breiter, N.; Jacob, S.; Knerlich, F.; et al. Erythropoietin therapy for acute stroke is both safe and beneficial. Mol. Med 2002, 8, 495–505. [Google Scholar]
- Ehrenreich, H.; Weissenborn, K.; Prange, H.; Schneider, D.; Weimar, C.; Wartenberg, K.; Schellinger, P.D.; Bohn, M.; Becker, H.; Wegrzyn, M.; et al. Recombinant human erythropoietin in the treatment of acute ischemic stroke. Stroke 2009, 40, e647–e656. [Google Scholar]
- Minnerup, J.; Wersching, H.; Schäbitz, W.-R. EPO for stroke therapy-Is there a future for further clinical development? Exp. Transl. Stroke Med 2010, 2, 10. [Google Scholar]
- Schäbitz, W.R.; Laage, R.; Vogt, G.; Koch, W.; Kollmar, R.; Schwab, S.; Schneider, D.; Hamann, G.F.; Rosenkranz, M.; Veltkamp, R.; et al. AXIS: A trial of intravenous granulocyte colony-stimulating factor in acute ischemic stroke. Stroke 2010, 41, 2545–2551. [Google Scholar]
- Ringelstein, E.B. AXIS-2 Study: AX200 for the Treatment of Acute Ischemic Stroke home page; Dallas, TX, USA, 2012. Bd. Available online: http://my.americanheart.org/idc/groups/ahamah-public/@wcm/@sop/@scon/documents/downloadable/ucm_435818.pdf accessed on 17 August 2012.
- Cheng, Y.D.; Al-Khoury, L.; Zivin, J.A. Neuroprotection for ischemic stroke: two decades of success and failure. NeuroRx 2004, 1, 36–45. [Google Scholar]
- Tymianski, M. Can molecular and cellular neuroprotection be translated into therapies for patients? Yes, but not the way we tried it before. Stroke 2010, 41, S87–S90. [Google Scholar]
- Lyden, P.; Wahlgren, N.G. Mechanisms of action of neuroprotectants in stroke. J. Stroke Cerebrovasc. Dis 2000, 9, 9–14. [Google Scholar]
- Small, D.L.; Buchan, A.M. Animal models. Br. Med. Bull 2000, 56, 307–317. [Google Scholar]
- Dirnagl, U.; Fisher, M. REPRINT: International, multicenter randomized preclinical trials in translational stroke research: It is time to act. Stroke 2012, 43, 1453–1454. [Google Scholar]
- Sena, E.S.; van der Worp, H.B.; Bath, P.M.W.; Howells, D.W.; Macleod, M.R. Publication bias in reports of animal stroke studies leads to major overstatement of efficacy. PLoS Biol 2010, 8, e1000344. [Google Scholar]
- Minnerup, J.; Seeger, F.H.; Kuhnert, K.; Diederich, K.; Schilling, M.; Dimmeler, S.; Schäbitz, W.-R. Intracarotid administration of human bone marrow mononuclear cells in rat photothrombotic ischemia. Exp. Transl. Stroke Med 2010, 2, 3. [Google Scholar]
- Brede, M.; Braeuninger, S.; Langhauser, F.; Hein, L.; Roewer, N.; Stoll, G.; Kleinschnitz, C. α(2)-adrenoceptors do not mediate neuroprotection in acute ischemic stroke in mice. J. Cereb. Blood Flow Metab 2011, 31, e1–e7. [Google Scholar]
- Hermann, D.M.; Chopp, M. Promoting brain remodelling and plasticity for stroke recovery: Therapeutic promise and potential pitfalls of clinical translation. Lancet. Neurol 2012, 11, 369–380. [Google Scholar]
- Lekieffre, D.; Benavides, J.; Scatton, B.; Nowicki, J.P. Neuroprotection afforded by a combination of eliprodil and a thrombolytic agent, rt-PA, in a rat thromboembolic stroke model. Brain Res 1997, 776, 88–95. [Google Scholar]
- Asahi, M.; Asahi, K.; Wang, X.; Lo, E.H. Reduction of tissue plasminogen activator-induced hemorrhage and brain injury by free radical spin trapping after embolic focal cerebral ischemia in rats. J. Cereb. Blood Flow Metab 2000, 20, 452–457. [Google Scholar]
- Lapchak, P.A.; Araujo, D.M.; Song, D.; Wei, J.; Zivin, J.A. Neuroprotective effects of the spin trap agent disodium-[(tert-butylimino)methyl]benzene-1,3-disulfonate N-oxide (generic NXY-059) in a rabbit small clot embolic stroke model: Combination studies with the thrombolytic tissue plasminogen activator. Stroke 2002, 33, 1411–1415. [Google Scholar]
- Sumii, T.; Lo, E.H. Involvement of matrix metalloproteinase in thrombolysis-associated hemorrhagic transformation after embolic focal ischemia in rats. Stroke 2002, 33, 831–836. [Google Scholar]
- Grotta, J. Combination Therapy Stroke Trial: recombinant tissue-type plasminogen activator with/without lubeluzole. Cerebrovasc. Dis 2001, 12, 258–263. [Google Scholar]
- Lyden, P.; Jacoby, M.; Schim, J.; Albers, G.; Mazzeo, P.; Ashwood, T.; Nordlund, A.; Odergren, T. The Clomethiazole Acute Stroke Study in tissue-type plasminogen activator-treated stroke (CLASS-T): Final results. Neurology 2001, 57, 1199–1205. [Google Scholar]
- Flamm, E.S.; Demopoulos, H.B.; Seligman, M.L.; Poser, R.G.; Ransohoff, J. Free radicals in cerebral ischemia. Stroke 1978, 9, 445–447. [Google Scholar]
- Crack, P.J.; Taylor, J.M. Reactive oxygen species and the modulation of stroke. Free Radic. Biol. Med 2005, 38, 1433–1444. [Google Scholar]
- Dhalla, N.S.; Temsah, R.M.; Netticadan, T. Role of oxidative stress in cardiovascular diseases. J. Hypertens 2000, 18, 655–673. [Google Scholar]
- Chan, P.H. Reactive oxygen radicals in signaling and damage in the ischemic brain. J. Cereb. Blood Flow Metab 2001, 21, 2–14. [Google Scholar]
- Bjelakovic, G.; Nikolova, D.; Gluud, L.L.; Simonetti, R.G.; Gluud, C. Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: Systematic review and meta-analysis. J. Am. Med. Assoc 2007, 297, 842–857. [Google Scholar]
- Radermacher, K.A.; Wingler, K.; Kleikers, P.; Altenhöfer, S.; Hermans, J., Jr; Kleinschnitz, C.; Hhw Schmidt, H. The 1027th target candidate in stroke: Will NADPH oxidase hold up? Exp. Transl. Stroke med. 2012, 4, 11. [Google Scholar]
- Miller, A.A.; Drummond, G.R.; Sobey, C.G. Novel isoforms of NADPH-oxidase in cerebral vascular control. Pharmacol. Ther 2006, 111, 928–948. [Google Scholar]
- Sedwick, C. NOX4: A Guilty Party in Stroke Damage. PLoS Biol 2010, 8, e1000478. [Google Scholar]
- Kleinschnitz, C.; Grund, H.; Wingler, K.; Armitage, M.E.; Jones, E.; Mittal, M.; Barit, D.; Schwarz, T.; Geis, C.; Kraft, P.; et al. Post-stroke inhibition of induced NADPH oxidase type 4 prevents oxidative stress and neurodegeneration. PLoS Biol 2010, 8. [Google Scholar]
- Arimura, K.; Ago, T.; Kuroda, J.; Ishitsuka, K.; Nishimura, A.; Sugimori, H.; Kamouch, M.; Sasak, T.; Kitazono, T. Role of NADPH oxidase 4 in brain endothelial cells after ischemic stroke. J. Neurosci 2012, 43, A2514. [Google Scholar]
- Sancho, P.; Fabregat, I. The NADPH oxidase inhibitor VAS2870 impairs cell growth and enhances TGF-β-induced apoptosis of liver tumor cells. Biochem. Pharmacol 2011, 81, 917–924. [Google Scholar]
- Aarts, M.; Liu, Y.; Liu, L.; Besshoh, S.; Arundine, M.; Gurd, J.W.; Wang, Y.-T.; Salter, M.W.; Tymianski, M. Treatment of ischemic brain damage by perturbing NMDA receptor-PSD-95 protein interactions. Science 2002, 298, 846–850. [Google Scholar]
- Sattler, R.; Xiong, Z.; Lu, W.Y.; Hafner, M.; MacDonald, J.F.; Tymianski, M. Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science 1999, 284, 1845–1848. [Google Scholar]
- Soriano, F.X.; Martel, M.-A.; Papadia, S.; Vaslin, A.; Baxter, P.; Rickman, C.; Forder, J.; Tymianski, M.; Duncan, R.; Aarts, M.; et al. Specific targeting of pro-death NMDA receptor signals with differing reliance on the NR2B PDZ ligand. J. Neurosci 2008, 28, 10696–10710. [Google Scholar]
- Ikonomidou, C.; Turski, L. Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet. Neurol 2002, 1, 383–386. [Google Scholar]
- Zhou, L.; Li, F.; Xu, H.-B.; Luo, C.-X.; Wu, H.-Y.; Zhu, M.-M.; Lu, W.; Ji, X.; Zhou, Q.-G.; Zhu, D.-Y. Treatment of cerebral ischemia by disrupting ischemia-induced interaction of nNOS with PSD-95. Nat. Med 2010, 16, 1439–1443. [Google Scholar]
- Jones, N. Stroke: Disruption of the nNOS–PSD-95 complex is neuroprotective in models of cerebral ischemia. Nat. Rev. Neurol 2011, 7, 61. [Google Scholar]
- Cook, D.J.; Teves, L.; Tymianski, M. Treatment of stroke with a PSD-95 inhibitor in the gyrencephalic primate brain. Nature 2012, 483, 213–217. [Google Scholar]
- Dolgin, E. To serve and neuroprotect. Nat. Med 2012, 18, 1003–1006. [Google Scholar]
- Pugh, C.W.; Ratcliffe, P.J. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat. Med 2003, 9, 677–684. [Google Scholar]
- Harten, S.K.; Ashcroft, M.; Maxwell, P.H. Prolyl hydroxylase domain inhibitors: a route to HIF activation and neuroprotection. Antioxid. Redox Signal 2010, 12, 459–480. [Google Scholar]
- Endres, M.; Laufs, U.; Liao, J.K.; Moskowitz, M.A. Targeting eNOS for stroke protection. Trends Neurosci 2004, 27, 283–289. [Google Scholar]
- Hermann, D.M.; Zechariah, A. Implications of vascular endothelial growth factor for postischemic neurovascular remodeling. J. Cereb. Blood Flow Metab 2009, 29, 1620–1643. [Google Scholar]
- Siddiq, A.; Ayoub, I.A.; Chavez, J.C.; Aminova, L.; Shah, S.; LaManna, J.C.; Patton, S.M.; Connor, J.R.; Cherny, R.A.; Volitakis, I.; et al. Hypoxia-inducible factor prolyl 4-hydroxylase inhibition. A target for neuroprotection in the central nervous system. J. Biol. Chem 2005, 280, 41732–41743. [Google Scholar]
- Baranova, O.; Miranda, L.F.; Pichiule, P.; Dragatsis, I.; Johnson, R.S.; Chavez, J.C. Neuron-specific inactivation of the hypoxia inducible factor 1 alpha increases brain injury in a mouse model of transient focal cerebral ischemia. J. Neurosci 2007, 27, 6320–6332. [Google Scholar]
- Nagel, S.; Papadakis, M.; Chen, R.; Hoyte, L.C.; Brooks, K.J.; Gallichan, D.; Sibson, N.R.; Pugh, C.; Buchan, A.M. Neuroprotection by dimethyloxalylglycine following permanent and transient focal cerebral ischemia in rats. J. Cereb. Blood Flow Metab 2011, 31, 132–143. [Google Scholar]
- Chen, R.; Nagel, S.; Papadakis, M.; Bishop, T.; Pollard, P.; Ratcliffe, P.; Pugh, C.; Buchan, A. Roles of Individual Prolyl-4-Hydroxylase Isoforms (PHD1-3) in the First 24 Hours Following Transient Focal Cerebral Ischaemia: Insights from Genetically Modified Mice. J. physiol 2012, 590, 4079–4091. [Google Scholar]
- Loenarz, C.; Schofield, C.J. Expanding chemical biology of 2-oxoglutarate oxygenases. Nat. Chem. Biol 2008, 4, 152–156. [Google Scholar]
- Rothwell, N. Interleukin-1 and neuronal injury: mechanisms, modification, and therapeutic potential. Brain Behav. Immun 2003, 17, 152–157. [Google Scholar]
- Stroemer, R.P.; Rothwell, N.J. Exacerbation of ischemic brain damage by localized striatal injection of interleukin-1beta in the rat. J. Cereb. Blood Flow Metab 1998, 18, 833–839. [Google Scholar]
- Arend, W.P. The balance between IL-1 and IL-1Ra in disease. Cytokine Growth Factor Rev 2002, 13, 323–340. [Google Scholar]
- Mulcahy, N.J.; Ross, J.; Rothwell, N.J.; Loddick, S.A. Delayed administration of interleukin-1 receptor antagonist protects against transient cerebral ischaemia in the rat. Br. J. Pharmacol 2003, 140, 471–476. [Google Scholar]
- Banwell, V.; Sena, E.S.; Macleod, M.R. Systematic review and stratified meta-analysis of the efficacy of interleukin-1 receptor antagonist in animal models of stroke. J. Stroke Cerebrovasc. Dis 2009, 18, 269–276. [Google Scholar]
- Pradillo, J.M.; Denes, A.; Greenhalgh, A.D.; Boutin, H.; Drake, C.; McColl, B.W.; Barton, E.; Proctor, S.D.; Russell, J.C.; Rothwell, N.J.; et al. Delayed administration of interleukin-1 receptor antagonist reduces ischemic brain damage and inflammation in comorbid rats. J. Cereb. Blood Flow Metab 2012, 32, 1810–1819. [Google Scholar]
- Greenhalgh, A.D.; Galea, J.; Dénes, A.; Tyrrell, P.J.; Rothwell, N.J. Rapid brain penetration of interleukin-1 receptor antagonist in rat cerebral ischaemia: Pharmacokinetics, distribution, protection. Br. J. Pharmacol 2010, 160, 153–159. [Google Scholar]
- Clark, S.R.; McMahon, C.J.; Gueorguieva, I.; Rowland, M.; Scarth, S.; Georgiou, R.; Tyrrell, P.J.; Hopkins, S.J.; Rothwell, N.J. Interleukin-1 receptor antagonist penetrates human brain at experimentally therapeutic concentrations. J. Cereb. Blood Flow Metab 2008, 28, 387–394. [Google Scholar]
- Emsley, H.C.A.; Smith, C.J.; Georgiou, R.F.; Vail, A.; Hopkins, S.J.; Rothwell, N.J.; Tyrrell, P.J. A randomised phase II study of interleukin-1 receptor antagonist in acute stroke patients. J. Neurol. Neurosurg. Psychiatr 2005, 76, 1366–1372. [Google Scholar]
- Smith, C.J.; Emsley, H.C.; Udeh, C.T.; Vail, A.; Hoadley, M.E.; Rothwell, N.J.; Tyrrell, P.J.; Hopkins, S.J. Interleukin-1 receptor antagonist reverses stroke-associated peripheral immune suppression. Cytokine 2012, 58, 384–389. [Google Scholar]
- Schiermeier, Q. Primate work faces German veto. Nature 2007, 446, 955. [Google Scholar]
Treatment | Mode of action |
---|---|
Magnesium Sulfate | Anti-excitotoxic, NMDA ion channel blocker |
Albumin | Antioxidant, Hemodiluiting agent |
Cyclosporin A | Anti-inflammatory, anti-excitotoxic |
Dapsone (diamino-diphenyl sulfone, DDS) | Anti-inflammatory, antioxidant |
Deferoxamine mesylate | Iron chelator, antioxidant |
Ebselen | Antioxidant, free radical scavenger |
GM602 | Anti-apoptotic and anti-inflammatory |
Hypothermia | Reduce cerebral oxygen metabolism, synaptic inhibitor |
Lovastatin | Antioxidant, HMGCoA inhibitor |
Minocycline | Anti-inflammatory, antioxidant |
PG2 (Polysaccharides of Astragalus membranaceus) | Chinese Herb, assumed antioxidative and anti-inflammatory |
Simvastatin | Antioxidant, HMGCoA inhibitor |
Spheno-Palatine Ganglion (SPG) stimulation | Induction of cerebral vasodilatation |
THR-18 | Synthetic plasminogen activator inhibitor |
Transcranial laser therapy | Mitochondrial stimulation |
© 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Minnerup, J.; Sutherland, B.A.; Buchan, A.M.; Kleinschnitz, C. Neuroprotection for Stroke: Current Status and Future Perspectives. Int. J. Mol. Sci. 2012, 13, 11753-11772. https://doi.org/10.3390/ijms130911753
Minnerup J, Sutherland BA, Buchan AM, Kleinschnitz C. Neuroprotection for Stroke: Current Status and Future Perspectives. International Journal of Molecular Sciences. 2012; 13(9):11753-11772. https://doi.org/10.3390/ijms130911753
Chicago/Turabian StyleMinnerup, Jens, Brad A. Sutherland, Alastair M. Buchan, and Christoph Kleinschnitz. 2012. "Neuroprotection for Stroke: Current Status and Future Perspectives" International Journal of Molecular Sciences 13, no. 9: 11753-11772. https://doi.org/10.3390/ijms130911753
APA StyleMinnerup, J., Sutherland, B. A., Buchan, A. M., & Kleinschnitz, C. (2012). Neuroprotection for Stroke: Current Status and Future Perspectives. International Journal of Molecular Sciences, 13(9), 11753-11772. https://doi.org/10.3390/ijms130911753