Phospholipids and Alzheimer’s Disease: Alterations, Mechanisms and Potential Biomarkers
Abstract
:1. Introduction
2. Phospholipid Changes in Alzheimer’s Disease
2.1. Alzheimer’s Disease
2.2. Phospholipid Changes in the Brain of Individuals with Alzheimer’s Disease
2.3. Phospholipid Changes in the CSF and Blood of Individuals with Alzheimer’s Disease
3. Lipids as Biomarkers for Alzheimer’s Disease Diagnosis and as Targets for Potential Novel Treatment Strategies
3.1. Sulfatides
3.2. Ceramide
3.3. Lipid Rafts
4. Conclusions
Abbreviations
Aβ | Amyloid beta peptide |
AD | Alzheimer’s disease |
Apo E | apolipoprotein E |
APP | Amyloid Precursor Protein |
CDR | clinical dementia rating |
CSF | cerebrospinal fluid |
CTF | Amyloid Precursor Protein C-terminal fragments |
ESI-MS | electrospray mass spectrometry |
GC | gas chromatography |
HPG | subiculum of the hippocampus and parahippocampal gyrus |
HPLC | high-performance liquid chromatography |
IPL | inferior parietal lobe |
MFG | middle frontal gyrus |
MTG | middle temporal gyrus |
PC | phosphatidylcholine |
PE | phosphatidylethanolamine |
PI | phosphatidylinositol |
PPE | ethanolamine plasmalogen |
sAPP | soluble Amyloid Precursor Protein N-terminal fragments α or β |
SM | sphingomyelin |
SMFG | superior-middle frontal gyrus |
SMTG | superior-middle temporal gyrus |
SFG | superior frontal gyrus |
STG | superior temporal gyrus |
TLC | thin layer chromatography |
- Conflict of InterestThe authors declare no conflict of interest.
References
- Veloso, A.; Fernandez, R.; Astigarraga, E.; Barreda-Gomez, G.; Manuel, I.; Giralt, M.T.; Ferrer, I.; Ochoa, B.; Rodriguez-Puertas, R.; Fernandez, J.A. Distribution of Lipids in Human Brain. Anal. Bioanal. Chem 2011, 401, 89–101. [Google Scholar]
- Farooqui, A.A.; Liss, L.; Horrocks, L.A. Neurochemical Aspects of Alzheimers-Disease: Involvement of Membrane Phospholipids. Metab. Brain Dis 1988, 3, 19–35. [Google Scholar]
- Soderberg, M.; Edlund, C.; Kristensson, K.; Dallner, G. Lipid Compositions of Different Regions of the Human-Brain During Aging. J. Neurochem 1990, 54, 415–423. [Google Scholar]
- Svennerholm, L.; Bostrom, K.; Jungbjer, B.; Olsson, L. Membrane-Lipids of Adult Human Brain: Lipid-Composition of Frontal and Temporal-Lobe in Subjects of Age 20 to 100 Years. J. Neurochem 1994, 63, 1802–1811. [Google Scholar]
- Svennerholm, L.; Bostrom, K.; Helander, C.G.; Jungbjer, B. Membrane-Lipids in the Aging Human Brain. J. Neurochem 1991, 56, 2051–2059. [Google Scholar]
- Horrocks, L.A.; VanRollins, M.; Yates, A.J. Lipid Changes in the Ageing Brain. In The Molecular Basis of Neuropathology; Davison, A.N., Thompson, R.H.S., Eds.; Edward Arnold: London, UK, 1981. [Google Scholar]
- Ledesma, M.D.; Martin, M.G.; Dotti, C.G. Lipid Changes in the Aged Brain: Effect on Synaptic Function and Neuronal Survival. Prog. Lipid Res 2012, 51, 23–35. [Google Scholar]
- Hirtz, D.; Thurman, D.J.; Gwinn-Hardy, K.; Mohamed, M.; Chaudhuri, A.R.; Zalutsky, R. How Common Are the “Common” Neurologic Disorders? Neurology 2007, 68, 326–337. [Google Scholar]
- Ferri, C.P.; Prince, M.; Brayne, C.; Brodaty, H.; Fratiglioni, L.; Ganguli, M.; Hall, K.; Hasegawa, K.; Hendrie, H.; Huang, Y.Q.; et al. Global Prevalence of Dementia: A Delphi Consensus Study. Lancet 2005, 366, 2112–2117. [Google Scholar]
- Wenk, G.L. Neuropathologic Changes in Alzheimer’s Disease. J. Clin. Psychiatry 2003, 64, 7–10. [Google Scholar]
- Querfurth, H.W.; LaFerla, F.M. Mechanisms of Disease Alzheimer’s Disease. N. Eng. J. Med 2010, 362, 329–344. [Google Scholar]
- Blennow, K.; de Leon, M.J.; Zetterberg, H. Alzheimer’s Disease. Lancet 2006, 368, 387–403. [Google Scholar]
- Blennow, K.; Hampel, H.; Weiner, M.; Zetterberg, H. Cerebrospinal Fluid and Plasma Biomarkers in Alzheimer Disease. Nat. Rev. Neurol 2010, 6, 131–144. [Google Scholar]
- Prasad, M.R.; Lovell, M.A.; Yatin, M.; Dhillon, H.; Markesbery, W.R. Regional Membrane Phospholipid Alterations in Alzheimer’s Disease. Neurochem. Res 1998, 23, 81–88. [Google Scholar]
- Stokes, C.E.; Hawthorne, J.N. Reduced Phosphoinositide Concentrations in Anterior Temporal Cortex of Alzheimer-Diseased Brains. J. Neurochem 1987, 48, 1018–1021. [Google Scholar]
- Nitsch, R.M.; Blusztajn, J.K.; Pittas, A.G.; Slack, B.E.; Growdon, J.H.; Wurtman, R.J. Evidence for A Membrane Defect in Alzheimer-Disease Brain. Proc. Natl. Acad. Sci. USA 1992, 89, 1671–1675. [Google Scholar]
- Wells, K.; Farooqui, A.A.; Liss, L.; Horrocks, L.A. Neural Membrane Phospholipids in Alzheimer Disease. Neurochem. Res 1995, 20, 1329–1333. [Google Scholar]
- Ginsberg, L.; Rafique, S.; Xuereb, J.H.; Rapoport, S.I.; Gershfeld, N.L. Disease and Anatomic Specificity of Ethanolamine Plasmalogen Deficiency in Alzheimers-Disease Brain. Brain Res 1995, 698, 223–226. [Google Scholar]
- Guan, Z.Z.; Wang, Y.A.; Cairns, N.J.; Lantos, P.L.; Dallner, G.; Sindelar, P.J. Decrease and Structural Modifications of Phosphatidylethanolamine Plasmalogen in the Brain With Alzheimer Disease. J. Neuropathol. Exp. Neurol 1999, 58, 740–747. [Google Scholar]
- Igarashi, M.; Ma, K.Z.; Gao, F.; Kim, H.W.; Rapoport, S.I.; Rao, J.S. Disturbed Choline Plasmalogen and Phospholipid Fatty Acid Concentrations in Alzheimer’s Disease Prefrontal Cortex. J. Alzheimers Dis 2011, 24, 507–517. [Google Scholar]
- Pettegrew, J.W.; Panchalingam, K.; Hamilton, R.L.; McClure, R.J. Brain Membrane Phospholipid Alterations in Alzheimer’s Disease. Neurochem. Res 2001, 26, 771–782. [Google Scholar]
- Han, X.L.; Holtzman, D.M.; Mckeel, D.W. Plasmalogen Deficiency in Early Alzheimer’s Disease Subjects and in Animal Models: Molecular Characterization Using Electrospray Ionization Mass Spectrometry. J. Neurochem 2001, 77, 1168–1180. [Google Scholar]
- Han, X.; Holtzman, M.; McKeel, D.W., Jr; Kelley, J.; Morris, J.C. Substantial Sulfatide Deficiency and Ceramide Elevation in Very Early Alzheimer’s Disease: Potential Role in Disease Pathogenesis. J. Neurochem. 2002, 82, 809–818. [Google Scholar]
- He, X.; Huang, Y.; Li, B.; Gong, C.X.; Schuchman, E.H. Deregulation of Sphingolipid Metabolism in Alzheimer’s Disease. Neurobiol. Aging 2010, 31, 398–408. [Google Scholar]
- Cutler, R.G.; Kelly, J.; Storie, K.; Pedersen, W.A.; Tammara, A.; Hatanpaa, K.; Troncoso, J.C.; Mattson, M.P. Involvement of Oxidative Stress-Induced Abnormalities in Ceramide and Cholesterol Metabolism in Brain Aging and Alzheimer’s Disease. Proc. Natl. Acad. Sci. USA 2004, 101, 2070–2075. [Google Scholar]
- Bandaru, V.V.; Troncoso, J.; Wheeler, D.; Pletnikova, O.; Wang, J.; Conant, K.; Haughey, N.J. ApoE4 Disrupts Sterol and Sphingolipid Metabolism in Alzheimer’s, but Not Normal Brain. Neurobiol. Aging 2009, 30, 591–599. [Google Scholar]
- Han, X.L. Potential Mechanisms Contributing to Sulfatide Depletion at the Earliest Clinically Recognizable Stage of Alzheimer’s Disease: A Tale of Shotgun Lipidomics. J. Neurochem 2007, 103, 171–179. [Google Scholar]
- Haughey, N.J.; Bandaru, V.V.R.; Bae, M.; Mattson, M.P. Roles for Dysfunctional Sphingolipid Metabolism in Alzheimer’s Disease Neuropathogenesis. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2010, 1801, 878–886. [Google Scholar]
- Van Echten-Deckert, G.; Walter, J. Sphingolipids: Critical Players in Alzheimer’s Disease. Prog. Lipid Res 2012, 51, 378–393. [Google Scholar]
- Mulder, C.; Wahlund, L.O.; Teerlink, T.; Blomberg, M.; Veerhuis, R.; van Kamp, G.J.; Scheltens, P.; Scheffer, P.G. Decreased Lysophosphatidylcholine/Phosphatidylcholine Ratio in Cerebrospinal Fluid in Alzheimer’s Disease. J. Neural Transm 2003, 110, 949–955. [Google Scholar]
- Walter, A.; Korth, U.; Hilgert, M.; Hartmann, J.; Weichel, O.; Hilgert, M.; Fassbender, K.; Schmitt, A.; Klein, J. Glycerophosphocholine Is Elevated in Cerebrospinal Fluid of Alzheimer Patients. Neurobiol. Aging 2004, 25, 1299–1303. [Google Scholar]
- Satoi, H.; Tomimoto, H.; Ohtani, R.; Kitano, T.; Kondo, T.; Watanabe, M.; Oka, N.; Akiguchi, I.; Furuya, S.; Hirabayashi, Y.; et al. Astroglial Expression of Ceramide in Alzheimer’s Disease Brains: a Role During Neuronal Apoptosis. Neuroscience 2005, 130, 657–666. [Google Scholar]
- Han, X.; Fagan, A.M.; Cheng, H.; Morris, J.C.; Xiong, C.; Holtzman, D.M. Cerebrospinal Fluid Sulfatide Is Decreased in Subjects With Incipient Dementia. Ann. Neurol 2003, 54, 115–119. [Google Scholar]
- Kosicek, M.; Kirsch, S.; Bene, R.; Trkanjec, Z.; Titlic, M.; Bindila, L.; Peter-Katalinic, J.; Hecimovic, S. Nano-HPLC-MS Analysis of Phospholipids in Cerebrospinal Fluid of Alzheimer’s Disease Patients—A Pilot Study. Anal. Bioanal. Chem 2010, 398, 2929–2937. [Google Scholar]
- Kosicek, M.; Zetterberg, H.; Andreasen, N.; Peter-Katalinic, J.; Hecimovic, S. Elevated Cerebrospinal Fluid Sphingomyelin Levels in Prodromal Alzheimer’s Disease. Neurosci. Lett 2012, 516, 302–305. [Google Scholar]
- Mielke, M.M.; Bandaru, V.V.; Haughey, N.J.; Rabins, P.V.; Lyketsos, C.G.; Carlson, M.C. Serum Sphingomyelins and Ceramides Are Early Predictors of Memory Impairment. Neurobiol. Aging 2010, 31, 17–24. [Google Scholar]
- Mielke, M.M.; Haughey, N.J.; Bandaru, V.V.R.; Schech, S.; Carrick, R.; Carlson, M.C.; Mori, S.; Miller, M.I.; Ceritoglu, C.; Brown, T.; et al. Plasma Ceramides Are Altered in Mild Cognitive Impairment and Predict Cognitive Decline and Hippocampal Volume Loss. Alzheimer’s Dementia 2010, 6, 378–385. [Google Scholar]
- Mielke, M.M.; Lyketsos, C.G. Alterations of the Sphingolipid Pathway in Alzheimer’s Disease: New Biomarkers and Treatment Targets? Neuromol. Med 2010, 12, 331–340. [Google Scholar]
- Mattsson, N.; Zetterberg, H.; Hansson, O.; Andreasen, N.; Parnetti, L.; Jonsson, M.; Herukka, S.K.; van der Flier, W.M.; Blankenstein, M.A.; Ewers, M.; et al. CSF Biomarkers and Incipient Alzheimer Disease in Patients With Mild Cognitive Impairment. J. Am. Med. Assoc 2009, 302, 385–393. [Google Scholar]
- Cheng, H.; Xu, J.; Mckeel, D.W.; Han, X. Specificity and Potential Mechanism of Sulfatide Deficiency in Alzheimer’s Disease: An Electrospray Ionization Mass Spectrometric Study. Cell. Mol. Biol 2003, 49, 809–818. [Google Scholar]
- Fredman, P.; Wallin, A.; Blennow, K.; Davidsson, P.; Gottfries, C.G.; Svennerholm, L. Sulfatide As A Biochemical Marker in Cerebrospinal Fluid of Patients With Vascular Dementia. Acta Neurol. Scand 1992, 85, 103–106. [Google Scholar]
- Jonsson, M.; Zetterberg, H.; Rolstad, S.; Edman, A.; Gouw, A.A.; Bjerke, M.; Lind, K.; Blennow, K.; Pantoni, L.; Inzitari, D.; et al. Low Cerebrospinal Fluid Sulfatide Predicts Progression of White Matter Lesions—The LADIS Study. Dementia Geriatr. Cognit. Disord 2012, 34, 61–67. [Google Scholar]
- Han, X. Lipid Alterations in the Earliest Clinically Recognizable Stage of Alzheimer’s Disease: Implication of the Role of Lipids in the Pathogenesis of Alzheimer’s Disease. Curr. Alzheimer Res 2005, 2, 65–77. [Google Scholar]
- Strittmatter, W.J.; Roses, A.D. Apolipoprotein E and Alzheimer’s Disease. Ann. Rev. Neurosci 1996, 19, 53–77. [Google Scholar]
- Verghese, P.B.; Castellano, J.M.; Holtzman, D.M. Apolipoprotein E in Alzheimer’s Disease and Other Neurological Disorders. Lancet Neurol 2011, 10, 241–252. [Google Scholar]
- Keene, C.D.; Cudaback, E.; Li, X.W.; Montine, K.S.; Montine, T.J. Apolipoprotein E Isoforms and Regulation of the Innate Immune Response in Brain of Patients with Alzheimer’s Disease. Curr. Opin. Neurobiol 2011, 21, 920–928. [Google Scholar]
- Han, X.L.; Cheng, H.; Fryer, J.D.; Fagan, A.M.; Holtzman, D.M. Novel Role for Apolipoprotein E in the Central Nervous System—Modulation of Sulfatide Content. J. Biol. Chem 2003, 278, 8043–8051. [Google Scholar]
- Han, X.L. Multi-Dimensional Mass Spectrometry-Based Shotgun Lipidomics and the Altered Lipids at the Mild Cognitive Impairment Stage of Alzheimer’s Disease. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2010, 1801, 774–783. [Google Scholar]
- Bartke, N.; Hannun, Y.A. Bioactive Sphingolipids: Metabolism and Function. J. Lipid Res 2009, 50, S91–S96. [Google Scholar]
- Colombaioni, L.; Garcia-Gil, M. Sphingolipid Metabolites in Neural Signalling and Function. Brain Res. Rev 2004, 46, 328–355. [Google Scholar]
- Katsel, P.; Li, C.; Haroutunian, V. Gene Expression Alterations in the Sphingolipid Metabolism Pathways During Progression of Dementia and Alzheimer’s Disease: A Shift Toward Ceramide Accumulation at the Earliest Recognizable Stages of Alzheimer’s Disease? Neurochem. Res 2007, 32, 845–856. [Google Scholar]
- Lee, J.T.; Xu, J.; Lee, J.M.; Ku, G.; Han, X.L.; Yang, D.I.; Chen, S.W.; Hsu, C.Y. Amyloid-Beta Peptide Induces Oligodendrocyte Death by Activating the Neutral Sphingomyelinase-Ceramide Pathway. J. Cell Biol 2004, 164, 123–131. [Google Scholar]
- Patil, S.; Melrose, J.; Chan, C. Involvement of Astroglial Ceramide in Palmitic Acid-Induced Alzheimer-Like Changes in Primary Neurons. Eur. J. Neurosci 2007, 26, 2131–2141. [Google Scholar]
- Puglielli, L.; Ellis, B.C.; Saunders, A.J.; Kovacs, D.M. Ceramide Stabilizes Beta-Site Amyloid Precursor Protein-Cleaving Enzyme 1 and Promotes Amyloid Beta-Peptide Biogenesis. J. Biol. Chem 2003, 278, 19777–19783. [Google Scholar]
- Horres, C.R.; Hannun, Y.A. The Roles of Neutral Sphingomyelinases in Neurological Pathologies. Neurochem. Res 2012, 37, 1137–1149. [Google Scholar]
- Pike, L.J. The Challenge of Lipid Rafts. J. Lipid Res 2009, 50, S323–S328. [Google Scholar]
- Pike, L.J. Lipid Rafts: Heterogeneity on the High Seas. Biochem. J 2004, 378, 281–292. [Google Scholar]
- Ehehalt, R.; Keller, P.; Haass, C.; Thiele, C.; Simons, K. Amyloidogenic Processing of the Alzheimer Beta-Amyloid Precursor Protein Depends on Lipid Rafts. J. Cell Biol 2003, 160, 113–123. [Google Scholar]
- Riddell, D.R.; Christie, G.; Hussain, I.; Dingwall, C. Compartmentalization of Beta-Secretase (Asp2) into Low-Buoyant Density, Noncaveolar Lipid Rafts. Curr. Biol 2001, 11, 1288–1293. [Google Scholar]
- Vetrivel, K.S.; Cheng, H.P.; Lin, W.; Sakurai, T.; Li, T.; Nukina, N.; Wong, P.C.; Xu, H.X.; Thinakaran, G. Association of Gamma-Secretase With Lipid Rafts in Post-Golgi and Endosome Membranes. J. Biol. Chem 2004, 279, 44945–44954. [Google Scholar]
- Wahrle, S.; Das, P.; Nyborg, A.C.; McLendon, C.; Shoji, M.; Kawarabayashi, T.; Younkin, L.H.; Younkin, S.G.; Golde, T.E. Cholesterol-Dependent Gamma-Secretase Activity in Buoyant Cholesterol-Rich Membrane Microdomains. Neurobiol. Dis 2002, 9, 11–23. [Google Scholar]
- Kosicek, M.; Malnar, M.; Goate, A.; Hecimovic, S. Cholesterol Accumulation in Niemann Pick Type C (NPC) Model Cells Causes a Shift in APP Localization to Lipid Rafts. Biochem. Biophys. Res. Commun 2010, 393, 404–409. [Google Scholar]
- Cordy, J.M.; Hussain, I.; Dingwall, C.; Hooper, N.M.; Turner, A.J. Exclusively Targeting Beta-Secretase to Lipid Rafts by GPI-Anchor Addition Up-Regulates Beta-Site Processing of the Amyloid Precursor Protein. Proc. Natl. Acad. Sci. USA 2003, 100, 11735–11740. [Google Scholar]
- Vetrivel, K.S.; Meckler, X.; Chen, Y.; Nguyen, P.D.; Seidah, N.G.; Vassar, R.; Wong, P.C.; Fukata, M.; Kounnas, M.Z.; Thinakaran, G. Alzheimer Disease A Beta Production in the Absence of S-Palmitoylation-Dependent Targeting of BACE1 to Lipid Rafts. J. Biol. Chem 2009, 284, 3793–3803. [Google Scholar]
- Cheng, H.P.; Vetrivel, K.S.; Drisdel, R.C.; Meckler, X.; Gong, P.; Leem, J.Y.; Li, T.; Carter, M.; Chen, Y.; Nguyen, P.; et al. S-Palmitoylation of Gamma-Secretase Subunits Nicastrin and APH-1. J. Biol. Chem 2009, 284, 1373–1384. [Google Scholar]
- Rajendran, L.; Schneider, A.; Schlechtingen, G.; Weidlich, S.; Ries, J.; Braxmeier, T.; Schwille, P.; Schulz, J.B.; Schroeder, C.; Simons, M.; et al. Efficient Inhibition of the Alzheimer’s Disease Beta-Secretase by Membrane Targeting. Science 2008, 320, 520–523. [Google Scholar]
- Hartmann, T.; Kuchenbecker, J.; Grimm, M.O. Alzheimer’s Disease: The Lipid Connection. J. Neurochem 2007, 103, 159–170. [Google Scholar]
- Martins, I.J.; Berger, T.; Sharman, M.J.; Verdile, G.; Fuller, S.J.; Martins, R.N. Cholesterol Metabolism and Transport in the Pathogenesis of Alzheimer’s Disease. J. Neurochem 2009, 111, 1275–1308. [Google Scholar]
- Stefani, M.; Liguri, G. Cholesterol in Alzheimer’s Disease: Unresolved Questions. Curr. Alzheimer Res 2009, 6, 15–29. [Google Scholar]
Lipid class | Change/Normalization | Sample size/Examined brain regions/Analytical method | Reference |
---|---|---|---|
PI | decreased/wet weight | 9 AD and 9 controls/HPG, SMTG, IPL and cerebellum/TLC | [14] |
PI | decreased/wet weight | 17 AD and 18 controls/anterior temporal cortex/TLC | [15] |
PI | decreased/relative | 45 AD and 11 controls/SMFG, STG, IPL, occipital cortex and cerebellum/31P NMR | [21] |
PE | decreased/wet weight | 9 AD and 9 controls/HPG, SMTG, IPL and cerebellum/TLC | [14] |
PE | decreased/DNA | 10 AD and 10 controls/frontal, primary auditory and parietal cortex/photometrical phosphorus determination | [16] |
PPE | decreased/relative | 9 AD and 9 controls/middle-temporal cortex/HPLC and TLC | [18] |
PPE | decreased/phosphate | 15 AD and 13 controls/frontal cortex, hippocampus and white matter/HPLC and GC | [19] |
PPE | decreased/relative | 45 AD and 11 controls/SMFG, STG, IPL, occipital cortex and cerebellum/31P NMR | [21] |
PPE | decreased/protein | 6 CDR = 0; 6 CDR = 0.5; 6 CDR = 1; 6 CDR = 2; 6 CDR = 5/white and gray matter from SFG, STG, IPL and cerebellum/ESI-MS | [22] |
PC | unchanged/wet weight | 9 AD and 9 controls/HPG, SMTG, IPL and cerebellum/TLC | [14] |
PC | decreased/DNA | 10 AD and 10 controls/frontal, primary auditory and parietal cortex/HPLC–fluorimetric detection | [16] |
PC | unchanged/wet weight | 6 AD and 4 controls/gray matter from frontal cortex, parietal and temporal region/HPLC | [17] |
PC | decreased/phosphate | 15 AD and 13 controls/frontal cortex, hippocampus and white matter/HPLC and GC | [19] |
SM | decreased/protein | 9 AD and 6 controls/gray matter from frontotemporal area/enzymatic assay–HPLC | [24] |
SM | decreased/relative | 7 AD and 7 controls/MFG, SFG and cerebellum/ESI-MS | [25] |
SM | increased/relative | 30 AD and 26 controls/MFG, MTG and cerebellum/ESI-MS | [26] |
SM | increased/relative | 45 AD and 11 controls/SMFG, STG, IPL, occipital cortex and cerebellum/31P NMR | [21] |
ceramide | increased/protein | 6 CDR = 0; 6 CDR = 0.5; 6 CDR = 1; 6 CDR = 2; 6 CDR = 5/white and gray matter from MFG, STG, IPL and cerebellum/ESI-MS | [22] |
ceramide | increased/protein | 9 AD and 6 controls/gray matter from frontotemporal area/enzymatic assay–HPLC | [24] |
ceramide | increased/relative | 7 AD and 7 controls/MFG, SFG and cerebellum/ESI-MS | [25] |
sulfatide | decreased/protein | 6 CDR = 0; 6 CDR = 0.5; 6 CDR = 1; 6 CDR = 2; 6 CDR = 5/white and gray matter from MFG, STG, IPL and cerebellum/ESI-MS | [23] |
Lipid class | Change | Sample size/Sample collection | Reference |
---|---|---|---|
PC | decreased lysoPC/PC | 30 AD and 31 controls/post mortem | [30] |
PC | increased PC metabolites | 12 AD and 30 controls/lumbar puncture | [31] |
SM | increase in prodromal AD | 21 AD and 16 controls/lumbar puncture | [35] |
ceramide | increase | 16 AD and 14 controls/lumbar puncture | [32] |
sulfatide | decrease | 19 CDR = 0; 20 CDR = 0.5/lumbar puncture | [33] |
© 2013 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Kosicek, M.; Hecimovic, S. Phospholipids and Alzheimer’s Disease: Alterations, Mechanisms and Potential Biomarkers. Int. J. Mol. Sci. 2013, 14, 1310-1322. https://doi.org/10.3390/ijms14011310
Kosicek M, Hecimovic S. Phospholipids and Alzheimer’s Disease: Alterations, Mechanisms and Potential Biomarkers. International Journal of Molecular Sciences. 2013; 14(1):1310-1322. https://doi.org/10.3390/ijms14011310
Chicago/Turabian StyleKosicek, Marko, and Silva Hecimovic. 2013. "Phospholipids and Alzheimer’s Disease: Alterations, Mechanisms and Potential Biomarkers" International Journal of Molecular Sciences 14, no. 1: 1310-1322. https://doi.org/10.3390/ijms14011310