Modulation of Cancer Traits by Tumor Suppressor microRNAs
Abstract
:1. Introduction
2. TS-miRNAs that Suppress Cell Growth and Proliferation
3. TS-miRNAs that Enhance Cell Death
4. TS-miRNAs that Suppress Angiogenesis
5. TS-miRNAs that Enhance Immune Recognition
6. TS-miRNAs that Suppress Invasion and Metastasis
7. TS-miRNAs in Cancer Therapeutics
8. Concluding Remarks and Perspectives
Acknowledgments
- Conflict of InterestThe authors declare no conflict of interest.
References
- Bartel, D.P. MicroRNAs: Target recognition and regulatory functions. Cell 2004, 136, 215–233. [Google Scholar]
- Fabian, M.R.; Sonenberg, N.; Filipowicz, W. Regulation of mRNA translation and stability by microRNAs. Annu. Rev. Biochem 2010, 79, 351–379. [Google Scholar]
- Lal, A.; Navarro, F.; Maher, C.A.; Maliszewski, L.E.; Yan, N.; O’Day, E.; Chowdhury, D.; Dykxhoorn, D.M.; Tsai, P.; Hofmann, O.; et al. MiR-24 inhibits cell proliferation by targeting E2F2, MYC and other cell-cycle genes via binding to “seedless” 3′UTR microRNA recognition elements. Mol. Cell 2009, 35, 610–625. [Google Scholar]
- Thomas, M.; Lieberman, J.; Lal, A. Desperately seeking microRNA targets. Nat. Struct. Mol. Biol 2010, 17, 1169–1174. [Google Scholar]
- Kloosterman, W.P.; Plasterk, R.H.A. The diverse functions of MicroRNAs in animal development and disease. Dev. Cell 2006, 11, 441–450. [Google Scholar]
- Bushati, N.; Cohen, S.M. MicroRNA functions. Annu. Rev. Cell. Dev. Biol 2007, 23, 175–205. [Google Scholar]
- Braun, T.; Gautel, M. Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis. Nat. Rev. Mol. Cell. Bio 2011, 12, 349–361. [Google Scholar]
- Lima, R.T.; Busacca, S.; Almeida, G.M.; Gaudino, G.; Fennell, D.A.; Vasconcelos, M.H. MicroRNA regulation of core apoptosis pathways in cancer. Eur. J. Cancer 2011, 47, 163–174. [Google Scholar]
- Daoud, M.S.A.; Nuin, P.; Chen, J.; Zhang, X.; Feilloter, H.; Tron, V.A. MicroRNAs as prognostic biomarkers in malignant melanoma. Mod. Pathol 2012, 25, 113a. [Google Scholar]
- Wang, Q.M.; Wang, S.; Wang, H.J.; Li, P.; Ma, Z.Y. MicroRNAs: Novel biomarkers for lung cancer diagnosis, prediction and treatment. Exp. Biol. Med 2012, 237, 227–235. [Google Scholar]
- Chen, Z.H.; Zhang, G.L.; Li, H.R.; Luo, J.D.; Li, Z.X.; Chen, G.M.; Yang, J. A panel of five circulating microRNAs as potential biomarkers for prostate cancer. Prostate 2012, 72, 1443–1452. [Google Scholar]
- Chen, X.; Hu, Z.B.; Wang, W.J.; Ba, Y.; Ma, L.J.; Zhang, C.N.; Wang, C.; Ren, Z.J.; Zhao, Y.; Wu, S.J.; et al. Identification of ten serum microRNAs from a genome-wide serum microRNA expression profile as novel noninvasive biomarkers for nonsmall cell lung cancer diagnosis. Inter. J. Cancer 2012, 130, 1620–1628. [Google Scholar]
- Corsini, L.R.; Bronte, G.; Terrasi, M.; Amodeo, V.; Fanale, D.; Fiorentino, E.; Cicero, G.; Bazan, V.; Russo, A. The role of microRNAs in cancer: Diagnostic and prognostic biomarkers and targets of therapies. Expert Opin. Ther. Targets 2012, 16, S103–S109. [Google Scholar]
- Thomson, J.M.; Newman, M.; Parker, J.S.; Morin-Kensicki, E.M.; Wright, T.; Hammond, S.M. Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev 2006, 20, 2202–2207. [Google Scholar]
- Faggad, A.; Budczies, J.; Tchernitsa, O.; Darb-Esfahani, S.; Sehouli, J.; Muller, B.M.; Wirtz, R.; Chekerov, R.; Weichert, W.; Sinn, B.; et al. Prognostic significance of Dicer expression in ovarian cancer—Link to global microRNA changes and oestrogen receptor expression. J. Pathol 2010, 220, 382–391. [Google Scholar]
- Dedes, K.J.; Natrajan, R.; Lambros, M.B.; Geyer, F.C.; Lopez-Garcia, M.A.; Savage, K.; Jones, R.L.; Reis-Filho, J.S. Down-regulation of the miRNA master regulators Drosha and Dicer is associated with specific subgroups of breast cancer. Eur. J. Cancer 2011, 47, 138–150. [Google Scholar]
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646–674. [Google Scholar]
- Malumbres, M.; Barbacid, M. Cell cycle, CDKs and cancer: A changing paradigm. Nat. Rev. Cancer 2009, 9, 153–166. [Google Scholar]
- Witsch, E.; Sela, M.; Yarden, Y. Roles for growth factors in cancer progression. Physiology 2010, 25, 85–101. [Google Scholar]
- Li, L.; Yuan, L.; Luo, J.; Gao, J.; Guo, J.; Xie, X. MiR-34a inhibits proliferation and migration of breast cancer through down-regulation of Bcl-2 and SIRT1. Clin. Exp. Med 2012. [Google Scholar] [CrossRef]
- Sun, L.; Wu, Z.; Shao, Y.; Pu, Y.; Miu, W.; Yao, J.; Wu, Y.; Yang, Z.X. MicroRNA-34a suppresses cell proliferation and induces apoptosis in U87 glioma stem cells. Technol. Cancer Res. Treat 2012, 11, 483–490. [Google Scholar]
- Yang, J.; Liu, X.; Bhalla, K.; Kim, C.N.; Ibrado, A.M.; Cai, J.; Peng, T.I.; Jones, D.P.; Wang, X. Prevention of apoptosis by Bcl-2: Release of cytochrome c from mitochondria blocked. Science 1997, 275, 1129–1132. [Google Scholar]
- Concepcion, C.P.; Han, Y.C.; Mu, P.; Bonetti, C.; Yao, E.; D’Andrea, A.; Vidigal, J.A.; Maughan, W.P.; Ogrodowski, P.; Ventura, A. Intact p53-dependent responses in miR-34-deficient mice. PLoS Genet 2012, 8, e1002797. [Google Scholar]
- Hossain, A.; Kuo, M.T.; Saunders, G.F. Mir-17-5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA. Mol. Cell. Biol 2006, 26, 8191–8201. [Google Scholar]
- Tilli, M.T.; Reiter, R.; Oh, A.S.; Henke, R.T.; McDonnell, K.; Gallicano, G.I.; Furth, P.A.; Riegel, A.T. Overexpression of an N-terminally truncated isoform of the nuclear receptor coactivator amplified in breast cancer 1 leads to altered proliferation of mammary epithelial cells in transgenic mice. Mol. Endocrinol 2005, 19, 644–656. [Google Scholar]
- Fereshteh, M.P.; Tilli, M.T.; Kim, S.E.; Xu, J.; O’Malley, B.W.; Wellstein, A.; Furth, P.A.; Riegel, A.T. The nuclear receptor coactivator amplified in breast cancer-1 is required for Neu (ErbB2/HER2) activation, signaling and mammary tumorigenesis in mice. Cancer Res 2008, 68, 3697–3706. [Google Scholar]
- Abdelmohsen, K.; Gorospe, M. Posttranscriptional regulation of cancer traits by HuR. Wiley Interdiscip. Rev. RNA 2010, 1, 214–229. [Google Scholar]
- Guo, X.; Wu, Y.; Hartley, R.S. MicroRNA-125a represses cell growth by targeting HuR in breast cancer. RNA Biol 2009, 6, 575–583. [Google Scholar]
- Abdelmohsen, K.; Srikantan, S.; Kuwano, Y.; Gorospe, M. miR-519 reduces cell proliferation by lowering RNA-binding protein HuR levels. Proc. Natl. Acad. Sci. USA 2008, 105, 20297–20302. [Google Scholar]
- Abdelmohsen, K.; Kim, M.M.; Srikantan, S.; Mercken, E.M.; Brennan, S.E.; Wilson, G.M.; Cabo, R.; Gorospe, M. MiR-519 suppresses tumor growth by reducing HuR levels. Cell Cycle 2010, 9, 1354–1359. [Google Scholar]
- Zhang, Y.; Yan, L.X.; Wu, Q.N.; Du, Z.M.; Chen, J.; Liao, D.Z.; Huang, M.Y.; Hou, J.H.; Wu, Q.L.; Zeng, M.S.; et al. MiR-125b is methylated and functions as a tumor suppressor by regulating the ETS1 proto-oncogene in human invasive breast cancer. Cancer Res 2011, 71, 3552–3562. [Google Scholar]
- Zhao, A.H.; Zeng, Q.; Xie, X.Y.; Zhou, J.N.; Yue, W.; Li, Y.L.; Pei, X.T. MicroRNA-125b induces cancer cell apoptosis through suppression of Bcl-2 expression. J. Genet. Genomics 2012, 39, 29–35. [Google Scholar]
- Bousquet, M.; Harris, M.H.; Zhou, B.; Lodish, H.F. MicroRNA miR-125b causes leukemia. Proc. Natl. Acad. Sci. USA 2012, 107, 21558–21563. [Google Scholar]
- Klusmann, J.H.; Li, Z.; Böhmer, K.; Maroz, A.; Koch, M.L.; Emmrich, S.; Godinho, F.J.; Orkin, S.H.; Reinhardt, D. MiR-125b-2 is a potential oncomiR on human chromosome 21 in megakaryoblastic leukemia. Genes Dev 2010, 24, 478–490. [Google Scholar]
- Leone, V.; D’Angelo, D.; Rubio, I.; de Freitas, P.M.; Federico, A.; Colamaio, M.; Pallante, P.; Medeiros-Neto, G.; Fusco, A. MiR-1 is a tumor suppressor in thyroid carcinogenesis targeting CCND2, CXCR4 and SDF-1alpha. J. Clin. Endocrinol. MeTable 2011, 96, E1388–E1398. [Google Scholar]
- Hudson, R.S.; Yi, M.; Esposito, D.; Watkins, S.K.; Hurwitz, A.A.; Yfantis, H.G.; Lee, D.H.; Borin, J.F.; Naslund, M.J.; Alexander, R.B.; et al. MicroRNA-1 is a candidate tumor suppressor and prognostic marker in human prostate cancer. Nucleic Acids Res 2012, 40, 3689–3703. [Google Scholar]
- Datta, J.; Kutay, H.; Nasser, M.W.; Nuovo, G.J.; Wang, B.; Majumder, S.; Liu, C.G.; Volinia, S.; Croce, C.M.; Schmittgen, T.D.; et al. Methylation mediated silencing of MicroRNA-1 gene and its role in hepatocellular carcinogenesis. Cancer Res 2008, 68, 5049–5058. [Google Scholar]
- Nasser, M.W.; Datta, J.; Nuovo, G.; Kutay, H.; Motiwala, T.; Majumder, S.; Wang, B.; Suster, S.; Jacob, S.T.; Ghoshal, K. Down-regulation of micro-RNA-1 (miR-1) in lung cancer. Suppression of tumorigenic property of lung cancer cells and their sensitization to doxorubicin-induced apoptosis by miR-1. J. Biol. Chem 2008, 283, 33394–33405. [Google Scholar]
- Almeida, M.I.; Nicoloso, M.S.; Zeng, L.Z.; Ivan, C.; Spizzo, R.; Gafa, R.; Xiao, L.C.; Zhang, X.N.; Vannini, I.; Fanini, F.; et al. Strand-specific miR-28-5p and miR-28-3p have distinct effects in colorectal cancer cells. Gastroenterology 2012, 142. [Google Scholar]
- Majid, S.; Dar, A.A.; Saini, S.; Yamamura, S.; Hirata, H.; Tanaka, Y.; Deng, G.R.; Dahiya, R. MicroRNA-205-directed transcriptional activation of tumor suppressor egnes in prostate cancer. Cancer 2010, 116, 5637–5649. [Google Scholar]
- Wei, J.J.; Wu, X.Y.; Peng, Y.; Shi, G.Z.; Olca, B.; Yang, X.M.; Daniels, G.; Osman, I.; Ouyang, J.Y.; Hernando, E.; et al. Regulation of HMGA1 expression by microRNA-296 affects prostate cancer growth and invasion. Clin. Cancer Res 2011, 17, 1297–1305. [Google Scholar]
- Song, Y.X.; Yue, Z.Y.; Wang, Z.N.; Xu, Y.Y.; Luo, Y.; Xu, H.M.; Zhang, X.; Jiang, L.; Xing, C.Z.; Zhang, Y. MicroRNA-148b is frequently down-regulated in gastric cancer and acts as a tumor suppressor by inhibiting cell proliferation. Mol. Cancer 2011, 10, 1. [Google Scholar]
- Wu, H.; Huang, M.; Cao, P.; Wang, T.S.; Shu, Y.Q.; Liu, P. MiR-135a targets JAK2 and inhibits gastric cancer cell proliferation. Cancer Biol. Ther 2012, 13, 281–288. [Google Scholar]
- Labbaye, C.; Testa, U. The emerging role of MIR-146A in the control of hematopoiesis, immune function and cancer. J. Hematol. Oncol 2012, 5, 13. [Google Scholar]
- Paik, J.H.; Jang, J.Y.; Jeon, Y.K.; Kim, W.Y.; Kim, T.M.; Heo, D.S.; Kim, C.W. MicroRNA-146a downregulates NF kappa B Activity via targeting TRAF6 and functions as a tumor suppressor having strong prognostic implications in NK/T cell lymphoma. Clin. Cancer Res 2011, 17, 4761–4771. [Google Scholar]
- Zou, C.; Xu, Q.; Mao, F.; Li, D.; Bian, C.X.; Liu, L.Z.; Jiang, Y.; Chen, X.N.; Qi, Y.T.; Zhang, X.L.; et al. MiR-145 inhibits tumor angiogenesis and growth by N-RAS and VEGF. Cell Cycle 2012, 11, 2137–2145. [Google Scholar]
- Xu, Q.; Liu, L.Z.; Qian, X.; Chen, Q.; Jiang, Y.; Li, D.; Lai, L.H.; Jiang, B.H. MiR-145 directly targets p70S6K1 in cancer cells to inhibit tumor growth and angiogenesis. Nucleic Acids Res 2012, 40, 761–774. [Google Scholar]
- Papagiannakopoulos, T.; Friedmann-Morvinski, D.; Neveu, P.; Dugas, J.C.; Gill, R.M.; Huillard, E.; Liu, C.; Zong, H.; Rowitch, D.H.; Barres, B.A.; et al. Pro-neural miR-128 is a glioma tumor suppressor that targets mitogenic kinases. Oncogene 2012, 31, 1884–1895. [Google Scholar]
- Friedman, J.M.; Liang, G.N.; Liu, C.C.; Wolff, E.M.; Tsai, Y.C.; Ye, W.; Zhou, X.H.; Jones, P.A. The putative tumor suppressor microRNA-101 modulates the cancer epigenome by repressing the polycomb group protein EZH2. Cancer Res 2009, 69, 2623–2629. [Google Scholar]
- Ugras, S.; Brill, E.; Jacobsen, A.; Hafner, M.; Socci, N.D.; DeCarolis, P.L.; Khanin, R.; O’Connor, R.; Mihailovic, A.; Taylor, B.S.; et al. Small RNA sequencing and functional characterization reveals microRNA-143 tumor suppressor activity in Liposarcoma. Cancer Res 2011, 71, 5659–5669. [Google Scholar]
- Guo, Y.; Fu, W.N.; Chen, H.; Shang, C.; Zhong, M. MiR-24 functions as a tumor suppressor in Hep2 laryngeal carcinoma cells partly through down-regulation of the S100A8 protein. Oncol. Rep 2012, 27, 1097–1103. [Google Scholar]
- Deng, M.; Tang, H.L.; Zhou, Y.H.; Zhou, M.; Xiong, W.; Zheng, Y.; Ye, Q.R.; Zeng, X.; Liao, Q.J.; Guo, X.F.; et al. MiR-216b suppresses tumor growth and invasion by targeting KRAS in nasopharyngeal carcinoma. J. Cell Sci 2011, 124, 2997–3005. [Google Scholar]
- Levati, L.; Alvino, E.; Pagani, E.; Arcelli, D.; Caporaso, P.; Bondanza, S.; di Leva, G.; Ferracin, M.; Volinia, S.; Bonmassar, E.; et al. Altered expression of selected microRNAs in melanoma: Antiproliferative and proapoptotic activity of miRNA-155. Int. J. Oncol 2009, 35, 393–400. [Google Scholar]
- Zhai, Q.N.; Zhou, L.; Zhao, C.J.; Wan, J.; Yu, Z.D.; Guo, X.; Qin, J.; Chen, J.; Lu, R.J. Identification of miR-508-3p and miR-509-3p that are associated with cell invasion and migration and involved in the apoptosis of renal cell carcinoma. Biochem. Biophys. Res. Commun 2012, 419, 621–626. [Google Scholar]
- Sigal, A.; Rotter, V. Oncogenic mutations of the p53 tumor suppressor: The demons of the guardian of the genome. Cancer Res 2000, 60, 6788–6793. [Google Scholar]
- Oren, M.; Vousden, K.H. Hot papers—Cancer research—Mdm2 promotes the rapid degradation of p53 by Y. Haupt, R. Maya, A. Kazaz, M. Oren and Regulation of p53 stability by Mdm2 by M.H.G. Kubbutat, S.N. Jones, K.H. Vousden—Comments. The Scientist 1999, 13, 11–11. [Google Scholar]
- Levine, A.J. p53, the cellular gatekeeper for growth and division. Cell 1997, 88, 323–331. [Google Scholar]
- Lukashchuk, N.; Vousden, K.H. Ubiquitination and degradation of mutant p53. Mol. Cell. Biol 2007, 27, 8284–8295. [Google Scholar]
- Zenz, T.; Mohr, J.; Eldering, E.; Kater, A.P.; Bühler, A.; Kienle, D.; Winkler, D.; Dürig, J.; van Oers, M.H.; Mertens, D.; et al. miR-34a as part of the resistance network in chronic lymphocytic leukemia. Blood 2009, 113, 3801–3808. [Google Scholar]
- Chang, T.C.; Wentzel, E.A.; Kent, O.A.; Ramachandran, K.; Mullendore, M.; Lee, K.H.; Feldmann, G.; Yamakuchi, M.; Ferlito, M.; Lowenstein, C.J.; et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol. Cell 2007, 26, 745–752. [Google Scholar]
- Liston, P.; Fong, W.G.; Korneluk, R.G. The inhibitors of apoptosis: There is more to life than Bcl2. Oncogene 2003, 22, 8568–8580. [Google Scholar]
- Sheikh, M.S.; Fornace, A.J. Death and decoy receptors and p53-mediated apoptosis. Leukemia 2000, 14, 1509–1513. [Google Scholar]
- Uren, A.G.; Pakusch, M.; Hawkins, C.J.; Puls, K.L.; Vaux, D.L. Cloning and expression of apoptosis inhibitory protein homologs that function to inhibit apoptosis and/or bind tumor necrosis factor receptor-associated factors. Proc. Natl. Acad. Sci. USA 1996, 93, 4974–4978. [Google Scholar]
- Ashkenazi, A.; Dixit, V.M. Apoptosis control by death and decoy receptors. Curr. Opin. Cell Biol 1999, 11, 255–260. [Google Scholar]
- Guessous, F.; Zhang, Y.; Kofman, A.; Catania, A.; Li, Y.; Schiff, D.; Purow, B.; Abounader, R. MicroRNA-34a is tumor suppressive in brain tumors and glioma stem cells. Cell Cycle 2010, 9, 1031–1036. [Google Scholar]
- Chen, F.; Hu, S.J. Effect of microRNA-34a in cell cycle, differentiation and apoptosis: A review. J. Biochem. Mol. Toxicol 2012, 26, 79–86. [Google Scholar]
- Tazawa, H.; Tsuchiya, N.; Izumiya, M.; Nakagama, H. Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc. Natl. Acad. Sci. USA 2007, 104, 15472–15477. [Google Scholar]
- Wang, X.F.; Shi, Z.M.; Wang, X.R.; Cao, L.; Wang, Y.Y.; Zhang, J.X.; Yin, Y.; Luo, H.; Kang, C.S.; Liu, N.; et al. MiR-181d acts as a tumor suppressor in glioma by targeting K-ras and Bcl-2. J. Cancer Res. Clin 2012, 138, 573–584. [Google Scholar]
- Nan, Y.; Han, L.; Zhang, A.L.; Wang, G.X.; Jia, Z.F.; Yang, Y.; Yue, X.A.; Pu, P.Y.; Zhong, Y.; Kang, C.S. MiRNA-451 plays a role as tumor suppressor in human glioma cells. Brain Res 2010, 1359, 14–21. [Google Scholar]
- Abdelmohsen, K.; Srikantan, S.; Tominaga, K.; Kang, M.J.; Yaniv, Y.; Martindale, J.L.; Yang, X.; Park, S.S.; Becker, K.G.; Subramanian, M.; et al. Growth inhibition by miR-519 via multiple p21-inducing pathways. Mol. Cell. Biol 2012, 32, 2530–2548. [Google Scholar]
- Marasa, B.S.; Srikantan, S.; Martindale, J.L.; Kim, M.M.; Lee, E.K.; Gorospe, M.; Abdelmohsen, K. MicroRNA profiling in human diploid fibroblasts uncovers miR-519 role in replicative senescence. Aging 2010, 2, 333–343. [Google Scholar]
- Carmeliet, P. VEGF as a key mediator of angiogenesis in cancer. Oncology 2005, 69, 4–10. [Google Scholar]
- Baeriswyl, V.; Christofori, G. The angiogenic switch in carcinogenesis. Semin. Cancer Biol 2009, 19, 329–337. [Google Scholar]
- Pugh, C.W.; Ratcliffe, P.J. Regulation of angiogenesis by hypoxia: Role of the HIF system. Nat. Med 2003, 9, 677–684. [Google Scholar]
- Egeblad, M.; Werb, Z. New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer 2002, 2, 161–174. [Google Scholar]
- Rundhaug, J.E. Matrix metalloproteinases, angiogenesis and cancer—Commentary re: A.C. Lockhart et al., reduction of wound angiogenesis in patients treated with BMS-275291, a broad spectrum matrix metalloproteinase inhibitor. Clin. Cancer Res 2003, 9, 551–554. [Google Scholar]
- Shi, Z.M.; Wang, J.; Yan, Z.P.; You, Y.P.; Li, C.Y.; Qian, X.; Yin, Y.; Zhao, P.; Wang, Y.Y.; Wang, X.F.; et al. MiR-128 inhibits tumor growth and angiogenesis by targeting p70S6K1. PLoS One 2012, 7, e32709. [Google Scholar]
- Yue, X.; Wang, P.G.; Xu, J.; Zhu, Y.F.; Sun, G.; Pang, Q.; Tao, R.J. MicroRNA-205 functions as a tumor suppressor in human glioblastoma cells by targeting VEGF-A. Oncol. Rep 2012, 27, 1200–1206. [Google Scholar]
- Cha, S.T.; Chen, P.S.; Johansson, G.; Chu, C.Y.; Wang, M.Y.; Jeng, Y.M.; Yu, S.L.; Chen, J.S.; Chang, K.J.; Jee, S.H.; et al. MicroRNA-519c suppresses hypoxia-inducible factor-1 alpha expression and tumor angiogenesis. Cancer Res 2010, 70, 2675–2685. [Google Scholar]
- Ristimaki, A. Tumor suppressor effect of the microRNA miR-519 is mediated via the mRNA-binding protein HuR. Cell Cycle 2010, 9, 1234–1234. [Google Scholar]
- Wu, Z.S.; Wu, Q.; Wang, C.Q.; Wang, X.N.; Huang, J.; Zhao, J.J.; Mao, S.S.; Zhang, G.H.; Xu, X.C.; Zhang, N. MiR-340 inhibition of breast cancer cell migration and invasion through targeting of oncoprotein c-Met. Cancer 2011, 117, 2842–2852. [Google Scholar]
- Fang, J.H.; Zhou, H.C.; Zeng, C.X.; Yang, J.; Liu, Y.L.; Huang, X.Z.; Zhang, J.P.; Guan, X.Y.; Zhuang, S.M. MicroRNA-29b suppresses tumor angiogenesis, invasion and metastasis by regulating matrix metalloproteinase 2 expression. Hepatology 2011, 54, 1729–1740. [Google Scholar]
- Zhang, H.Y.; Qi, M.; Li, S.W.; Qi, T.; Mei, H.; Huang, K.; Zheng, L.D.; Tong, Q.S. MicroRNA-9 targets matrix metalloproteinase 14 to inhibit invasion, metastasis and angiogenesis of neuroblastoma cells. Mol. Cancer Ther 2012, 11, 1454–1466. [Google Scholar]
- Teng, M.W.L.; Swann, J.B.; Koebel, C.M.; Schreiber, R.D.; Smyth, M.J. Immune-mediated dormancy: An equilibrium with cancer. J. Leukocyte Biol 2008, 84, 988–993. [Google Scholar]
- Kim, R.; Emi, M.; Tanabe, K. Cancer immunoediting from immune surveillance to immune escape. Immunology 2007, 121, 1–14. [Google Scholar]
- Yang, R.Y.; Rabinovich, G.A.; Liu, F.T. Galectins: Structure, function and therapeutic potential. Expert Rev. Mol. Med 2008, 10, e17. [Google Scholar]
- Rubinstein, N.; Ilarregui, J.M.; Toscano, M.A.; Rabinovich, G.A. The role of galectins in the initiation, amplification and resolution of the inflammatory response. Tissue Antigens 2004, 64, 1–12. [Google Scholar]
- Uyttenhove, C.; Pilotte, L.; Theate, I.; Stroobant, V.; Colau, D.; Parmentier, N.; Boon, T.; van den Eynde, B.J. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat. Med 2003, 9, 1269–1274. [Google Scholar]
- Teicher, B.A. Transforming growth factor-beta and the immune response to malignant disease. Clin. Cancer Res 2007, 13, 6247–6251. [Google Scholar]
- Khong, H.T.; Restifo, N.P. Natural selection of tumor variants in the generation of “tumor escape” phenotypes. Nat. Immunol 2002, 3, 999–1005. [Google Scholar]
- Wang, T.; Niu, G.L.; Kortylewski, M.; Burdelya, L.; Shain, K.; Zhang, S.M.; Bhattacharya, R.; Gabrilovich, D.; Heller, R.; Coppola, D.; et al. Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat. Med 2004, 10, 209. [Google Scholar]
- Groh, V.; Rhinehart, R.; Randolph-Habecker, J.; Topp, M.S.; Riddell, S.R.; Spies, T. Costimulation of CD8αβ T cells by NKG2D via engagement by MIC induced on virus-infected cells. Nat. Immunol 2001, 2, 255–260. [Google Scholar]
- Kusmartsev, S.; Nagaraj, S.; Gabrilovich, D.I. Tumor-associated CD8+ T cell tolerance induced by bone marrow-derived immature myeloid cells. J. Immunol 2005, 175, 4583–4592. [Google Scholar]
- Ramasamy, S.; Duraisamy, S.; Barbashov, S.; Kawano, T.; Kharbanda, S.; Kufe, D. The MUC1 and galectin-3 oncoproteins function in a microRNA-dependent regulatory loop. Mol. Cell 2007, 27, 992–1004. [Google Scholar]
- Liu, L.; Wang, Y.; Fan, H.; Zhao, X.; Liu, D.; Hu, Y.; Kidd, A.R., III; Bao, J.; Hou, Y. MicroRNA-181a regulates local immune balance by inhibiting proliferation and immunosuppressive properties of mesenchymal stem cells. Stem cells 2012, 30, 1756–1770. [Google Scholar]
- Lynch, J.; Fay, J.; Meehan, M.; Bryan, K.; Watters, K.M.; Murphy, D.M.; Stallings, R.L. MiRNA-335 suppresses neuroblastoma cell invasiveness by direct targeting of multiple genes from the non-canonical TGF-β signalling pathway. Carcinogenesis 2012, 33, 976–985. [Google Scholar]
- Zheng, B.; Liang, L.; Wang, C.; Huang, S.; Cao, X.; Zha, R.; Liu, L.; Jia, D.; Tian, Q.; Wu, J.; et al. MicroRNA-148a suppresses tumor cell invasion and metastasis by downregulating ROCK1 in gastric cancer. Clin. Cancer Res 2011, 17, 7574–7583. [Google Scholar]
- Sharma, A.; Kumar, M.; Aich, J.; Hariharan, M.; Brahmachari, S.K.; Agrawal, A.; Ghosh, B. Posttranscriptional regulation of interleukin-10 expression by hsa-miR-106a. Proc. Natl. Acad. Sci. USA 2009, 106, 5761–5766. [Google Scholar]
- Yang, G.; Zhang, R.; Chen, X.; Mu, Y.; Ai, J.; Shi, C.; Liu, Y.; Shi, C.; Sun, L.; Rainov, N.G.; et al. MiR-106a inhibits glioma cell growth by targeting E2F1 independent of p53 status. J. Mol. Med 2011, 89, 1037–1050. [Google Scholar]
- Wang, Y.; Lu, Y.; Toh, S.T.; Sung, W.K.; Tan, P.; Chow, P.; Chung, A.Y.; Jooi, L.L.; Lee, C.G. Lethal-7 is down-regulated by the hepatitis B virus x protein and targets signal transducer and activator of transcription 3. J. Hepatol 2010, 53, 57–66. [Google Scholar]
- Zhang, M.; Liu, Q.; Mi, S.; Liang, X.; Zhang, Z.; Su, X.; Liu, J.; Chen, Y.; Wang, M.; Zhang, Y.; et al. Both miR-17–5p and miR-20a alleviate suppressive potential of myeloid-derived suppressor cells by modulating STAT3 expression. J. Immunol 2011, 186, 4716–4724. [Google Scholar]
- Liu, S.; Patel, S.H.; Ginestier, C.; Ibarra, I.; Martin-Trevino, R.; Bai, S.; McDermott, S.P.; Shang, L.; Ke, J.; Ou, S.J.; et al. MicroRNA93 regulates proliferation and differentiation of normal and malignant breast stem cells. PLoS Genet 2012, 8, e1002751. [Google Scholar]
- Berx, G.; van Roy, F. Involvement of members of the cadherin superfamily in cancer. CSH Perspect. Biol 2009, 1, a003129. [Google Scholar]
- Cavallaro, U.; Christofori, G. Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat. Rev. Cancer 2004, 4, 118–132. [Google Scholar]
- Micalizzi, D.S.; Farabaugh, S.M.; Ford, H.L. Epithelial-mesenchymal transition in cancer: Parallels between normal development and tumor progression. J. Mammary Gland Biol. Neopl 2010, 15, 117–134. [Google Scholar]
- Kerrigan, J.J.; Mansell, J.P.; Sandy, J.R. Matrix turnover. J. Orthodont 2000, 27, 227–233. [Google Scholar]
- Sennino, B.; Ishiguro-Oonuma, T.; Wei, Y.; Naylor, R.M.; Williamson, C.W.; Bhagwandin, V.; Tabruyn, S.P.; You, W.K.; Chapman, H.A.; Christensen, J.G.; et al. Suppression of tumor invasion and metastasis by concurrent inhibition of c-Met and VEGF signaling in pancreatic neuroendocrine tumors. Cancer Discov 2012, 2, 270–287. [Google Scholar]
- Belton, A.; Gabrovsky, A.; Bae, Y.K.; Reeves, R.; Iacobuzio-Donahue, C.; Huso, D.L.; Resar, L.M. HMGA1 induces intestinal polyposis in transgenic mice and drives tumor progression and stem cell properties in colon cancer cells. PLoS One 2012, 7, e30034. [Google Scholar]
- Choi, J.; Choi, K.; Benveniste, E.N.; Rho, S.B.; Hong, Y.S.; Lee, J.H.; Kim, J.; Park, K. Bcl-2 promotes invasion and lung metastasis by inducing matrix metalloproteinase-2. Cancer Res 2005, 65, 5554–5560. [Google Scholar]
- Zhang, Y.; Zhang, M.; Dong, H.; Yong, S.; Li, X.; Olashaw, N.; Kruk, P.A.; Cheng, J.Q.; Bai, W.; Chen, J.; et al. Deacetylation of cortactin by SIRT1 promotes cell migration. Oncogene 2009, 28, 445–460. [Google Scholar]
- Moon, A.; Kim, M.S.; Kim, T.G.; Kim, S.H.; Kim, H.E.; Chen, Y.Q.; Kim, H.R. H-ras, but not N-ras, induces an invasive phenotype in human breast epithelial cells: A role for MMP-2 in the H-ras-induced invasive phenotype. Int. Cancer J 2000, 85, 176–181. [Google Scholar]
- Meng, Y.; Lu, Z.; Yu, S.; Zhang, Q.; Ma, Y.; Chen, J. Ezrin promotes invasion and metastasis of pancreatic cancer cells. J. Transl. Med 2010, 8, 61. [Google Scholar]
- Campbell, P.M.; Groehler, A.L.; Lee, K.M.; Ouellette, M.M.; Khazak, V.; Der, C.J. K-Ras promotes growth transformation and invasion of immortalized human pancreatic cells by Raf and phosphatidylinositol 3-kinase signaling. Cancer Res 2007, 67, 2098–2106. [Google Scholar]
- Singh, A.P.; Chaturvedi, P.; Batra, S.K. Emerging roles of MUC4 in cancer: A novel target for diagnosis and therapy. Cancer Res 2007, 67, 433–436. [Google Scholar]
- Yoon, S.O.; Shin, S.; Mercurio, A.M. Ras stimulation of E2F activity and a consequent E2F regulation of integrin alpha6beta4 promote the invasion of breast carcinoma cells. Cancer Res 2006, 66, 6288–6295. [Google Scholar]
- Mahoney, M.G.; Simpson, A.; Jost, M.; Noe, M.; Kari, C.; Pepe, D.; Choi, Y.W.; Uitto, J.; Rodeck, U. Metastasis-associated protein (MTA)1 enhances migration, invasion and anchorage-independent survival of immortalized human keratinocytes. Oncogene 2002, 21, 2161–2170. [Google Scholar]
- Liu, S.J.; Kumar, S.M.; Lu, H.Z.; Liu, A.H.; Yang, R.F.; Pushparajan, A.; Guo, W.; Xu, X.W. MicroRNA-9 up-regulates E-cadherin through inhibition of NF-κB1-Snail1 pathway in melanoma. J. Pathol 2012, 226, 61–72. [Google Scholar]
- Schmalhofer, O.; Brabletz, S.; Brabletz, T. E-cadherin, beta-catenin and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev 2009, 28, 151–166. [Google Scholar]
- Yan, D.S.; Zhou, X.T.; Chen, X.Y.; Hu, D.N.; Da Dong, X.; Wang, J.; Lu, F.; Tu, L.L.; Qu, J. MicroRNA-34a inhibits uveal melanoma cell proliferation and migration through downregulation of c-Met. Invest. Ophth. Vis. Sci 2009, 50, 1559–1565. [Google Scholar]
- Lowery, A.J.; Miller, N.; Dwyer, R.M.; Kerin, M.J. Dysregulated miR-183 inhibits migration in breast cancer cells. BMC Cancer 2010, 10, 502. [Google Scholar]
- Yu, S.N.; Lu, Z.H.; Liu, C.Z.; Meng, Y.X.; Ma, Y.H.; Zhao, W.G.; Liu, J.P.; Yu, J.; Chen, J. MiRNA-96 suppresses KRAS and functions as a tumor suppressor gene in pancreatic cancer. Cancer Res 2010, 70, 6015–6025. [Google Scholar]
- Zhang, Q.Q.; Xu, H.; Huang, M.B.; Ma, L.M.; Huang, Q.J.; Yao, Q.; Zhou, H.; Qu, L.H. MicroRNA-195 plays a tumor-suppressor role in human glioblastoma cells by targeting signaling pathways involved in cellular proliferation and invasion. Neuro-Oncology 2012, 14, 278–287. [Google Scholar]
- Zhou, H.J.; Xu, X.F.; Xun, Q.Y.; Yu, D.Q.; Ling, J.X.; Guo, F.F.; Yan, Y.H.; Shi, J.Y.; Hu, Y.L. MicroRNA-30c negatively regulates endometrial cancer cells by targeting metastasis-associated gene-1. Oncol. Rep 2012, 27, 807–812. [Google Scholar]
- Srivastava, S.K.; Bhardwaj, A.; Singh, S.; Arora, S.; Wang, B.; Grizzle, W.E.; Singh, A.P. MicroRNA-150 directly targets MUC4 and suppresses growth and malignant behavior of pancreatic cancer cells. Carcinogenesis 2011, 32, 1832–1839. [Google Scholar]
- Kojima, S.; Chiyomaru, T.; Kawakami, K.; Yoshino, H.; Enokida, H.; Nohata, N.; Fuse, M.; Ichikawa, T.; Naya, Y.; Nakagawa, M.; Seki, N. Tumour suppressors miR-1 and miR-133a target the oncogenic function of purine nucleoside phosphorylase (PNP) in prostate cancer. Br. J. Cancer 2012, 106, 405–413. [Google Scholar]
- Bader, A.G.; Brown, D.; Stoudemire, J.; Lammers, P. Developing therapeutic microRNAs for cancer. Gene Ther 2011, 18, 1121–1126. [Google Scholar]
- Bader, A.G.; Brown, D.; Winkler, M. The promise of microRNA replacement therapy. Cancer Res 2010, 70, 7027–7030. [Google Scholar]
- Di Martino, M.T.; Leone, E.; Amodio, N.; Foresta, U.; Lionetti, M.; Pitari, M.R.; Cantafio, M.E.G.; Gulla, A.; Conforti, F.; Morelli, E.; et al. Synthetic miR-34a mimics as a novel therapeutic agent for Multiple Myeloma: In vitro and in vivo evidence. Clin. Cancer Res 2012, 18, 6260–6270. [Google Scholar]
- Takahashi, M.; Cuatrecasas, M.; Balaguer, F.; Hur, K.; Toiyama, Y.; Castells, A.; Boland, C.R.; Goel, A. The clinical significance of miR-148a as a predictive biomarker in patients with advanced colorectal cancer. PLoS One 2012, 7, e46684. [Google Scholar]
- Wahid, F.; Shehzad, A.; Khan, T.; Kim, Y.Y. MicroRNAs: Synthesis, mechanism, function and recent clinical trials. Biochim. Biophys. Acta 2010, 1803, 1231–1243. [Google Scholar]
- Ryu, S.; Joshi, N.; McDonnell, K.; Woo, J.; Choi, H.; Gao, D.; McCombie, W.R.; Mittal, V. Discovery of novel human breast cancer microRNAs from deep sequencing data by analysis of pri-microRNA secondary structures. PLoS One 2011, 6, e16403. [Google Scholar]
- Friedlander, M.R.; Mackowiak, S.D.; Li, N.; Chen, W.; Rajewsky, N. MiRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res 2012, 40, 37–52. [Google Scholar]
- Dhahbi, J.M.; Atamna, H.; Boffelli, D.; Magis, W.; Spindler, S.R.; Martin, D.I.K. Deep sequencing reveals novel microRNAs and regulation of microRNA expression during cell senescence. PLoS One 2011, 6, e20509. [Google Scholar]
- Giovannetti, E.; Erozenci, A.; Smit, J.; Danesi, R.; Peters, G.J. Molecular mechanisms underlying the role of microRNAs (miRNAs) in anticancer drug resistance and implications for clinical practice. Crit. Rev. Oncol. Hematol 2012, 81, 103–122. [Google Scholar]
- Duttagupta, R.; Jiang, R.; Gollub, J.; Getts, R.C.; Jones, K.W. Impact of Cellular miRNAs on Circulating miRNA Biomarker Signatures. PLoS One 2011, 6, e20769. [Google Scholar]
- Kosaka, N.; Iguchi, H.; Ochiya, T. Circulating microRNA in body fluid: A new potential biomarker for cancer diagnosis and prognosis. Cancer Sci 2010, 101, 2087–2092. [Google Scholar]
- Zhou, H.; Xiao, B.X.; Zhou, F.; Deng, H.X.; Zhang, X.J.; Lou, Y.R.; Gong, Z.H.; Du, C.G.; Guo, J.M. MiR-421 is a functional marker of circulating tumor cells in gastric cancer patients. Biomarkers 2012, 17, 104–110. [Google Scholar]
- Wang, Y.; Zheng, D.L.; Tan, Q.L.; Wang, M.X.; Gu, L.Q. Nanopore-based detection of circulating microRNAs in lung cancer patients. Nat. Nanotechnol 2011, 6, 668–674. [Google Scholar]
- Brase, J.C.; Johannes, M.; Schlomm, T.; Falth, M.; Haese, A.; Steuber, T.; Beissbarth, T.; Kuner, R.; Sultmann, H. Circulating miRNAs are correlated with tumor progression in prostate cancer. Int. J. Cancer 2011, 128, 608–616. [Google Scholar]
- ClinicalTrials.gov. Available online: http://www.clinicaltrials.gov/ accessed on 28 December 2012.
TS-miRNAs | Cancer-related proteins encoded by mRNAs that are TS-miRNA targets | Cancer models implicating TS-miRNAs | References |
---|---|---|---|
Cell growth and proliferation | |||
miR-34a | Bcl-2, SirT1 | breast cancer, glioma stem cells (GSCs) | [20] |
miR-17-5p | AIB1 | breast cancer | [24] |
miR-125a | HuR | breast carcinoma cell lines | [27,28] |
miR-519 | HuR | cervical, colon, ovarian, lung, kidney cancer | [29,30] |
miR-125b | Ets1, Bcl-2 | breast cancer, hepatocellular carcinoma | [31,32] |
miR-28 | Cyclin D1 | colorectal cancer | [39] |
miR-296 | HMGA1 | prostate cancer | [41] |
miR-148b | CCKBR | gastric cancer | [42] |
miR-135a | JAK2 | gastric cancer | [43] |
miR-146a | FADD, EGFR, ROCK1, NOTCH1, CXCR4, TRAF6 | glioblastoma and breast, pancreatic, gastric, prostate cancer glioblastoma | [44,45] |
miR-145 | VEGF-A, N-Ras, 70S6K1, FSCN1 | Kaposi’s sarcoma, T lymphocyte Jurkat cells, leukemia, extranodal NK/T cell lymphoma | [46,47] |
miR-128 | EGFR, PDGFRα | colon and breast cancer, esophageal squamous cell carcinoma | [48] |
miR-101 | EZH2 | glioma | [49] |
miR-143, miR-145 | Bcl-2, Top2A, PRC1, Plk1 | bladder transitional cell carcinoma | [50] |
miR-24 | S100A8 | liposarcoma | [51] |
miR-216b | K-Ras | laryngeal squamous cell carcinoma | [52] |
Cell survival | |||
miR-34a | Bcl2, SirT1, BIRC3, DcR3, c-Met, Notch-1, Notch-2, Cyclin D1, Cyclin E2, Cdk4, Cdk6, E2F | brain tumors, glioma stem cell lines, breast, colon, pancreatic cancer | [20,61,62, 65–67] |
miR-181d | K-Ras, Bcl-2 | glioma | [68] |
miR-451 | Cyclin D1, Bcl-2, Akt1, MMP-2, MMP-9 | glioblastoma | [69] |
Angiogenesis | |||
miR-145 | VEGF-A, N-Ras, p70S6K1 | colon and breast cancer | [46,47] |
miR-128 | p70S6K1 | glioma | [77] |
miR-205 | VEGF-A | glioma | [78] |
miR-519c | HIF-1α, HuR | lung, breast, cervical, colon, ovarian cancer | [27,29,30, 70,71,80] |
miR-340 | c-Met | breast cancer | [81] |
miR-29b | MMP-2 | hepatocellular carcinoma | [82] |
miR-9 | MMP-14 | neuroblastoma | [83] |
Suppressors of immune recognition | |||
miR-322 | galectin-3 | breast, lung, prostate, kidney cancer | [94] |
miR-181a | TGFBR1, TGFBRAP1 | mesenchymal stem cells | [95] |
miR-335 | MAPK1, ROCK1 | neuroblastoma | [96] |
miR-148a | ROCK1 | gastric cancer | [97] |
miR-106a | IL-10, E2F1 | T lymphocyte Jurkat cells, glioma | [98,99] |
let-7a | STAT3 | hepatocellular carcinoma | [100] |
miR-17-5p | STAT3 | MDSCs | [101] |
miR-20a | STAT3 | MDSCs | [101] |
miR-93 | Genes of the TGF-β and/or STAT3 pathway | breast cancer | [102] |
Invasion and metastasis | |||
miR-9 | PNP | Melanoma | [117,125] |
miR-1 | NF-κB | prostate cancer | |
miR-200 | ZEB1 | colorectal cancer | [118] |
miR-340 | c-Met | breast cancer | [81] |
miR-34a | c-Met | breast cancer, melanoma | [119] |
miR-29b | MMP-2 | hepatocellular carcinoma | [82] |
miR-145 | VEGF, N-Ras | breast cancer | [46] |
miR-205 | VEGF-A | glioblastoma | [78] |
miR-183 | villin 2 (Ezrin), | breast cancer | [120] |
miR-296 | HMGA1 | prostate cancer | [41] |
miR-96 | KRAS | pancreatic cancer | [121] |
miR-216b | KRAS | nasopharyngeal carcinoma | [52] |
miR-195 | E2F3, CCND3 | glioblastoma | [122] |
miR-150 | MUC4 | pancreatic cancer | [124] |
miR-30c | MTA1 | endometrial cancer | [123] |
© 2013 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Grammatikakis, I.; Gorospe, M.; Abdelmohsen, K. Modulation of Cancer Traits by Tumor Suppressor microRNAs. Int. J. Mol. Sci. 2013, 14, 1822-1842. https://doi.org/10.3390/ijms14011822
Grammatikakis I, Gorospe M, Abdelmohsen K. Modulation of Cancer Traits by Tumor Suppressor microRNAs. International Journal of Molecular Sciences. 2013; 14(1):1822-1842. https://doi.org/10.3390/ijms14011822
Chicago/Turabian StyleGrammatikakis, Ioannis, Myriam Gorospe, and Kotb Abdelmohsen. 2013. "Modulation of Cancer Traits by Tumor Suppressor microRNAs" International Journal of Molecular Sciences 14, no. 1: 1822-1842. https://doi.org/10.3390/ijms14011822
APA StyleGrammatikakis, I., Gorospe, M., & Abdelmohsen, K. (2013). Modulation of Cancer Traits by Tumor Suppressor microRNAs. International Journal of Molecular Sciences, 14(1), 1822-1842. https://doi.org/10.3390/ijms14011822