Maternal Embryonic Leucine Zipper Kinase (MELK): A Novel Regulator in Cell Cycle Control, Embryonic Development, and Cancer
Abstract
:1. Introduction
2. MELK as a Regulator of Cell Fate
3. MELK Is Involved in Embryonic Development
4. MELK in Cancer
5. Proteins Interacting with MELK
6. Conclusions and Perspectives
Cancer types | Function | References |
---|---|---|
Pediatric brain tumor | ND | [41] |
Colon tumor | Therapeutic target | [40] |
Glioblastomas | ND | [37] |
Astrocytomas | Therapeutic target to treat human glioblastomas | [39] |
Breast cancer | Interacting with Bcl-G and associated with poor prognosis | [11,19] |
Melanoma | Mitosis and protein phosphorylation | [38] |
Rectal cancer | Contributed to radioresistance and chemoresistance of SNU-503 | [42] |
Protein | Description | Interaction Effect | References |
---|---|---|---|
ZPR9 | A physiological substrate of MELK kinase in vivo | Resulting in the nuclear accumulation of ZPR9 | [51,52] |
NIPP1 | Transcription and splicing factor, inhibitor of protein Ser/Thr phosphatase-1 | Regulating cell cycle progression through pre-mRNA processing | [13] |
Cdc25B | Protein-tyrosine phosphatase | Inducing cell accumulation in G2 | [4] |
PDK1 | An enzyme responsible for the phosphorylation of the activation loop of Akt/PKB | Inhibiting activity and function of PDK1 | [53,54] |
P53 | Tumor suppressor | Enhancing p53-dependent apoptosis and cell cycle arrest by modulating the stability of p53 | [32] |
Smad proteins (Smad2, -3, -4, and -7) | Intracellular signaling mediators of the TGF-β signaling pathway | Regulating Smad activities involved in TGF-β signaling | [50] |
ASK1 | Mitogen-activated protein kinase kinase kinase | Enhancing of JNK-mediated transactivation and H2O2-induced apoptosis | [12] |
Bcl-G | A pro-apoptotic factor | Resistance to apoptosis | [11] |
MPF | Mitosis-promoting factor | Phosphorylating MELK and enhancing its kinase activity | [55] |
MAPK | Mitogen-activated protein kinase | Phosphorylating MELK and enhancing its kinase activity | [55] |
Acknowledgments
Conflicts of Interest
References
- Gil, M.; Yang, Y.; Lee, Y.; Choi, I.; Ha, H. Cloning and expression of a cdna encoding a novel protein serine/threonine kinase predominantly expressed in hematopoietic cells. Gene 1997, 195, 295–301. [Google Scholar]
- Blot, J.; Chartrain, I.; Roghi, C.; Philippe, M.; Tassan, J.P. Cell cycle regulation of peg3, a new xenopus protein kinase of the KIN1/PAR-1/MARK family. Dev. Biol 2002, 241, 327–338. [Google Scholar]
- Heyer, B.S.; Warsowe, J.; Solter, D.; Knowles, B.B.; Ackerman, S.L. New member of the SNF1/AMPK kinase family, melk, is expressed in the mouse egg and preimplantation embryo. Mol. Reprod. Dev 1997, 47, 148–156. [Google Scholar]
- Davezac, N.; Baldin, V.; Blot, J.; Ducommun, B.; Tassan, J.P. Human pEg3 kinase associates with and phosphorylates CDC25B phosphatase: A potential role for pEg3 in cell cycle regulation. Oncogene 2002, 21, 7630–7641. [Google Scholar]
- Tassan, J.P.; le Goff, X. An overview of the KIN1/PAR-1/MARK kinase family. Biol. Cell 2004, 96, 193–199. [Google Scholar]
- Kato, K.; Ogura, T.; Kishimoto, A.; Minegishi, Y.; Nakajima, N.; Miyazaki, M.; Esumi, H. Critical roles of amp-activated protein kinase in constitutive tolerance of cancer cells to nutrient deprivation and tumor formation. Oncogene 2002, 21, 6082–6090. [Google Scholar]
- Inoki, K.; Zhu, T.; Guan, K.L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003, 115, 577–590. [Google Scholar]
- Suzuki, A.; Kusakai, G.; Kishimoto, A.; Lu, J.; Ogura, T.; Esumi, H. ARK5 suppresses the cell death induced by nutrient starvation and death receptors via inhibition of caspase 8 activation, but not by chemotherapeutic agents or uv irradiation. Oncogene 2003, 22, 6177–6182. [Google Scholar]
- Suzuki, A.; Kusakai, G.; Kishimoto, A.; Lu, J.; Ogura, T.; Lavin, M.F.; Esumi, H. Identification of a novel protein kinase mediating Akt survival signaling to the atm protein. J. Biol. Chem 2003, 278, 48–53. [Google Scholar]
- Nakano, I.; Paucar, A.A.; Bajpai, R.; Dougherty, J.D.; Zewail, A.; Kelly, T.K.; Kim, K.J.; Ou, J.; Groszer, M.; Imura, T.; et al. Maternal embryonic leucine zipper kinase (MELK) regulates multipotent neural progenitor proliferation. J. Cell Biol 2005, 170, 413–427. [Google Scholar]
- Lin, M.L.; Park, J.H.; Nishidate, T.; Nakamura, Y.; Katagiri, T. Involvement of maternal embryonic leucine zipper kinase (MELK) in mammary carcinogenesis through interaction with Bcl-g, a pro-apoptotic member of the Bcl-2 family. Breast Cancer Res 2007, 9, R17. [Google Scholar]
- Jung, H.; Seong, H.A.; Ha, H. Murine protein serine/threonine kinase 38 activates apoptosis signal-regulating kinase 1 via Thr 838 phosphorylation. J. Biol. Chem 2008, 283, 34541–34553. [Google Scholar]
- Vulsteke, V.; Beullens, M.; Boudrez, A.; Keppens, S.; van Eynde, A.; Rider, M.H.; Stalmans, W.; Bollen, M. Inhibition of spliceosome assembly by the cell cycle-regulated protein kinase MELK and involvement of splicing factor NIPP1. J. Biol. Chem 2004, 279, 8642–8647. [Google Scholar]
- Kidder, G.M. The genetic program for preimplantation development. Dev. Genet 1992, 13, 319–325. [Google Scholar]
- Heyer, B.S.; Kochanowski, H.; Solter, D. Expression of MELK, a new protein kinase, during early mouse development. Dev. Dyn 1999, 215, 344–351. [Google Scholar]
- Le Page, Y.; Chartrain, I.; Badouel, C.; Tassan, J.P. A functional analysis of MELK in cell division reveals a transition in the mode of cytokinesis during xenopus development. J. Cell Sci 2011, 124, 958–968. [Google Scholar]
- Chung, S.; Suzuki, H.; Miyamoto, T.; Takamatsu, N.; Tatsuguchi, A.; Ueda, K.; Kijima, K.; Nakamura, Y.; Matsuo, Y. Development of an orally-administrative MELK-targeting inhibitor that suppresses the growth of various types of human cancer. Oncotarget 2012, 3, 1629–1640. [Google Scholar]
- Niesler, C.U.; Myburgh, K.H.; Moore, F. The changing AMPK expression profile in differentiating mouse skeletal muscle myoblast cells helps confer increasing resistance to apoptosis. Exp. Physiol 2007, 92, 207–217. [Google Scholar]
- Pickard, M.R.; Green, A.R.; Ellis, I.O.; Caldas, C.; Hedge, V.L.; Mourtada-Maarabouni, M.; Williams, G.T. Dysregulated expression of fau and MELK is associated with poor prognosis in breast cancer. Breast Cancer Res 2009, 11, R60. [Google Scholar]
- Saito, R.; Nakauchi, H.; Watanabe, S. Serine/threonine kinase, MELK, regulates proliferation and glial differentiation of retinal progenitor cells. Cancer Sci 2012, 103, 42–49. [Google Scholar]
- Cordes, S.; Frank, C.A.; Garriga, G. The C. elegans MELK ortholog pig-1 regulates cell size asymmetry and daughter cell fate in asymmetric neuroblast divisions. Development 2006, 133, 2747–2756. [Google Scholar]
- Nishitoh, H.; Saitoh, M.; Mochida, Y.; Takeda, K.; Nakano, H.; Rothe, M.; Miyazono, K.; Ichijo, H. ASK1 is essential for JNK/SAPK activation by TRAF2. Mol. Cell 1998, 2, 389–395. [Google Scholar]
- Chang, H.Y.; Nishitoh, H.; Yang, X.; Ichijo, H.; Baltimore, D. Activation of apoptosis signal-regulating kinase 1 (ASK1) by the adapter protein daxx. Science 1998, 281, 1860–1863. [Google Scholar]
- Matsuura, H.; Nishitoh, H.; Takeda, K.; Matsuzawa, A.; Amagasa, T.; Ito, M.; Yoshioka, K.; Ichijo, H. Phosphorylation-dependent scaffolding role of JSAP1/JIP3 in the ASK1-JNK signaling pathway. A new mode of regulation of the map kinase cascade. J. Biol. Chem 2002, 277, 40703–40709. [Google Scholar]
- Saitoh, M.; Nishitoh, H.; Fujii, M.; Takeda, K.; Tobiume, K.; Sawada, Y.; Kawabata, M.; Miyazono, K.; Ichijo, H. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J 1998, 17, 2596–2606. [Google Scholar]
- Liu, H.; Nishitoh, H.; Ichijo, H.; Kyriakis, J.M. Activation of apoptosis signal-regulating kinase 1 (ASK1) by tumor necrosis factor receptor-associated factor 2 requires prior dissociation of the Ask1 inhibitor thioredoxin. Mol. Cell Biol 2000, 20, 2198–2208. [Google Scholar]
- Song, J.J.; Rhee, J.G.; Suntharalingam, M.; Walsh, S.A.; Spitz, D.R.; Lee, Y.J. Role of glutaredoxin in metabolic oxidative stress. Glutaredoxin as a sensor of oxidative stress mediated by H2O2. J. Biol. Chem 2002, 277, 46566–46575. [Google Scholar]
- Park, H.S.; Cho, S.G.; Kim, C.K.; Hwang, H.S.; Noh, K.T.; Kim, M.S.; Huh, S.H.; Kim, M.J.; Ryoo, K.; Kim, E.K.; et al. Heat shock protein hsp72 is a negative regulator of apoptosis signal-regulating kinase 1. Mol. Cell Biol 2002, 22, 7721–7730. [Google Scholar]
- Kim, A.H.; Khursigara, G.; Sun, X.; Franke, T.F.; Chao, M.V. Akt phosphorylates and negatively regulates apoptosis signal-regulating kinase 1. Mol. Cell Biol 2001, 21, 893–901. [Google Scholar]
- Morita, K.; Saitoh, M.; Tobiume, K.; Matsuura, H.; Enomoto, S.; Nishitoh, H.; Ichijo, H. Negative feedback regulation of ASK1 by protein phosphatase 5 (pp5) in response to oxidative stress. EMBO J 2001, 20, 6028–6036. [Google Scholar]
- Zhang, L.; Chen, J.; Fu, H. Suppression of apoptosis signal-regulating kinase 1-induced cell death by 14-3-3 proteins. Proc. Natl. Acad. Sci. USA 1999, 96, 8511–8515. [Google Scholar]
- Seong, H.A.; Ha, H. Murine protein serine-threonine kinase 38 activates p53 function through ser15 phosphorylation. J. Biol. Chem 2012, 287, 20797–20810. [Google Scholar]
- Ohsugi, M.; Hwang, S.Y.; Butz, S.; Knowles, B.B.; Solter, D.; Kemler, R. Expression and cell membrane localization of catenins during mouse preimplantation development. Dev. Dyn 1996, 206, 391–402. [Google Scholar]
- Geschwind, D.H.; Ou, J.; Easterday, M.C.; Dougherty, J.D.; Jackson, R.L.; Chen, Z.; Antoine, H.; Terskikh, A.; Weissman, I.L.; Nelson, S.F.; et al. A genetic analysis of neural progenitor differentiation. Neuron 2001, 29, 325–339. [Google Scholar]
- Terskikh, A.V.; Easterday, M.C.; Li, L.; Hood, L.; Kornblum, H.I.; Geschwind, D.H.; Weissman, I.L. From hematopoiesis to neuropoiesis: Evidence of overlapping genetic programs. Proc. Natl. Acad. Sci. USA 2001, 98, 7934–7939. [Google Scholar]
- Saito, R.; Tabata, Y.; Muto, A.; Arai, K.; Watanabe, S. MELK-like kinase plays a role in hematopoiesis in the zebra fish. Mol. Cell Biol 2005, 25, 6682–6693. [Google Scholar]
- Liu, G.; Yuan, X.; Zeng, Z.; Tunici, P.; Ng, H.; Abdulkadir, I.R.; Lu, L.; Irvin, D.; Black, K.L.; Yu, J.S. Analysis of gene expression and chemoresistance of cd133+ cancer stem cells in glioblastoma. Mol. Cancer 2006, 5, 67. [Google Scholar]
- Ryu, B.; Kim, D.S.; Deluca, A.M.; Alani, R.M. Comprehensive expression profiling of tumor cell lines identifies molecular signatures of melanoma progression. PLoS One 2007, 2, e594. [Google Scholar]
- Marie, S.K.; Okamoto, O.K.; Uno, M.; Hasegawa, A.P.; Oba-Shinjo, S.M.; Cohen, T.; Camargo, A.A.; Kosoy, A.; Carlotti, C.G., Jr.; Toledo, S.; et al. Maternal embryonic leucine zipper kinase transcript abundance correlates with malignancy grade in human astrocytomas. Int. J. Cancer 2008, 122, 807–815. [Google Scholar]
- Gray, D.; Jubb, A.M.; Hogue, D.; Dowd, P.; Kljavin, N.; Yi, S.; Bai, W.; Frantz, G.; Zhang, Z.; Koeppen, H.; et al. Maternal embryonic leucine zipper kinase/murine protein serine-threonine kinase 38 is a promising therapeutic target for multiple cancers. Cancer Res 2005, 65, 9751–9761. [Google Scholar]
- Hemmati, H.D.; Nakano, I.; Lazareff, J.A.; Masterman-Smith, M.; Geschwind, D.H.; Bronner-Fraser, M.; Kornblum, H.I. Cancerous stem cells can arise from pediatric brain tumors. Proc. Natl. Acad. Sci. USA 2003, 100, 15178–15183. [Google Scholar]
- Choi, S.; Ku, J.L. Resistance of colorectal cancer cells to radiation and 5-fu is associated with MELK expression. Biochem. Biophys. Res. Commun 2011, 412, 207–213. [Google Scholar]
- Rhodes, D.R.; Yu, J.; Shanker, K.; Deshpande, N.; Varambally, R.; Ghosh, D.; Barrette, T.; Pandey, A.; Chinnaiyan, A.M. Large-Scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proc. Natl. Acad. Sci. USA 2004, 101, 9309–9314. [Google Scholar]
- Hebbard, L.W.; Maurer, J.; Miller, A.; Lesperance, J.; Hassell, J.; Oshima, R.G.; Terskikh, A.V. Maternal embryonic leucine zipper kinase is upregulated and required in mammary tumor-initiating cells in vivo. Cancer Res. 2010, 70, 8863–8873. [Google Scholar]
- Ku, J.L.; Shin, Y.K.; Kim, D.W.; Kim, K.H.; Choi, J.S.; Hong, S.H.; Jeon, Y.K.; Kim, S.H.; Kim, H.S.; Park, J.H.; et al. Establishment and characterization of 13 human colorectal carcinoma cell lines: Mutations of genes and expressions of drug-sensitivity genes and cancer stem cell markers. Carcinogenesis 2010, 31, 1003–1009. [Google Scholar]
- Guo, B.; Godzik, A.; Reed, J.C. Bcl-g, a novel pro-apoptotic member of the Bcl-2 family. J. Biol. Chem 2001, 276, 2780–2785. [Google Scholar]
- Nakano, I.; Masterman-Smith, M.; Saigusa, K.; Paucar, A.A.; Horvath, S.; Shoemaker, L.; Watanabe, M.; Negro, A.; Bajpai, R.; Howes, A.; et al. Maternal embryonic leucine zipper kinase is a key regulator of the proliferation of malignant brain tumors, including brain tumor stem cells. J. Neurosci. Res 2008, 86, 48–60. [Google Scholar]
- Nakano, I.; Joshi, K.; Visnyei, K.; Hu, B.; Watanabe, M.; Lam, D.; Wexler, E.; Saigusa, K.; Nakamura, Y.; Laks, D.R.; et al. Siomycin a targets brain tumor stem cells partially through a MELK-mediated pathway. Neuro Oncol 2011, 13, 622–634. [Google Scholar]
- Beullens, M.; Vancauwenbergh, S.; Morrice, N.; Derua, R.; Ceulemans, H.; Waelkens, E.; Bollen, M. Substrate specificity and activity regulation of protein kinase MELK. J. Biol. Chem 2005, 280, 40003–40011. [Google Scholar]
- Seong, H.A.; Jung, H.; Ha, H. Murine protein serine/threonine kinase 38 stimulates TGF-beta signaling in a kinase-dependent manner via direct phosphorylation of smad proteins. J. Biol. Chem 2010, 285, 30959–30970. [Google Scholar]
- Seong, H.A.; Gil, M.; Kim, K.T.; Kim, S.J.; Ha, H. Phosphorylation of a novel zinc-finger-like protein, ZPR9, by murine protein serine/threonine kinase 38 (MPK38). Biochem. J 2002, 361, 597–604. [Google Scholar]
- Seong, H.A.; Kim, K.T.; Ha, H. Enhancement of B-MYB transcriptional activity by ZPR9, a novel zinc finger protein. J. Biol. Chem 2003, 278, 9655–9662. [Google Scholar]
- Wang, C.; Liu, M.; Riojas, R.A.; Xin, X.; Gao, Z.; Zeng, R.; Wu, J.; Dong, L.Q.; Liu, F. Protein kinase c theta (PKCtheta)-dependent phosphorylation of PDK1 at Ser504 and Ser532 contributes to palmitate-induced insulin resistance. J. Biol. Chem 2009, 284, 2038–2044. [Google Scholar]
- Seong, H.A.; Jung, H.; Ichijo, H.; Ha, H. Reciprocal negative regulation of PDK1 and ASK1 signaling by direct interaction and phosphorylation. J. Biol. Chem 2010, 285, 2397–2414. [Google Scholar]
- Badouel, C.; Korner, R.; Frank-Vaillant, M.; Couturier, A.; Nigg, E.A.; Tassan, J.P. M-Phase MELK activity is regulated by MPF and MAPK. Cell Cycle 2006, 5, 883–889. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Jiang, P.; Zhang, D. Maternal Embryonic Leucine Zipper Kinase (MELK): A Novel Regulator in Cell Cycle Control, Embryonic Development, and Cancer. Int. J. Mol. Sci. 2013, 14, 21551-21560. https://doi.org/10.3390/ijms141121551
Jiang P, Zhang D. Maternal Embryonic Leucine Zipper Kinase (MELK): A Novel Regulator in Cell Cycle Control, Embryonic Development, and Cancer. International Journal of Molecular Sciences. 2013; 14(11):21551-21560. https://doi.org/10.3390/ijms141121551
Chicago/Turabian StyleJiang, Pengfei, and Deli Zhang. 2013. "Maternal Embryonic Leucine Zipper Kinase (MELK): A Novel Regulator in Cell Cycle Control, Embryonic Development, and Cancer" International Journal of Molecular Sciences 14, no. 11: 21551-21560. https://doi.org/10.3390/ijms141121551
APA StyleJiang, P., & Zhang, D. (2013). Maternal Embryonic Leucine Zipper Kinase (MELK): A Novel Regulator in Cell Cycle Control, Embryonic Development, and Cancer. International Journal of Molecular Sciences, 14(11), 21551-21560. https://doi.org/10.3390/ijms141121551