Advances in the Techniques for the Prediction of microRNA Targets
Abstract
:1. Introduction
2. Methods for miRNA Target Recognition
3. Resources for miRNA Target Prediction
4. Next-Generation Sequencing for miRNA Target Identification
5. Future Work
Acknowledgments
Conflict of Interest
References
- Chuang, J.; Jones, P. Epigenetics and MicroRNAs. Pediatr. Res 2007, 61, 24R–29R. [Google Scholar]
- Yue, D.; Liu, H.; Huang, Y. Survey of computational algorithms for microRNA target prediction. Curr. Genomics 2009, 10, 478–492. [Google Scholar]
- Bartel, D. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [Google Scholar]
- Yue, D.; Meng, J.; Lu, M.; Chen, C.; Guo, M.; Huang, Y. Understanding microRNA regulation: A computational perspective. Signal Proc. Mag. IEEE 2012, 29, 77–88. [Google Scholar]
- Nielsen, C.; Shomron, N.; Sandberg, R.; Hornstein, E.; Kitzman, J.; Burge, C. Determinants of targeting by endogenous and exogenous microRNAs and siRNAs. RNA 2007, 13, 1894–1910. [Google Scholar]
- Ohler, U.; Yekta, S.; Lim, L.; Bartel, D.; Burge, C. Patterns of flanking sequence conservation and a characteristic upstream motif for microRNA gene identification. RNA 2004, 10, 1309–1322. [Google Scholar]
- Lewis, B.; Shih, I.; Jones-Rhoades, M.; Bartel, D.; Burge, C. Prediction of mammalian microRNA targets. Cell 2003, 115, 787–798. [Google Scholar]
- Rehmsmeier, M.; Steffen, P.; Hochsmann, M.; Giegerich, R. Fast and effective prediction of microRNA/target duplexes. RNA 2004, 10, 1507–1517. [Google Scholar]
- Friedman, R.; Farh, K.; Burge, C.; Bartel, D. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009, 19, 92–105. [Google Scholar]
- Grimson, A.; Farh, K.; Johnston, W.; Garrett-Engele, P.; Lim, L.; Bartel, D. MicroRNA targeting specificity in mammals: Determinants beyond seed pairing. Mol. Cell 2007, 27, 91–105. [Google Scholar]
- Kertesz, M.; Iovino, N.; Unnerstall, U.; Gaul, U.; Segal, E. The role of site accessibility in microrna target recognition. Nat. Genet 2007, 39, 1278–1284. [Google Scholar]
- Radfar, M.; Wong, W.; Morris, Q. Computational prediction of intronic microRNA targets using host gene expression reveals novel regulatory mechanisms. PLoS One 2011, 6, e19312. [Google Scholar]
- Grun, D.; Wang, Y.; Langenberger, D.; Gunsalus, K.; Rajewsky, N. microRNA target predictions across seven drosophila species and comparison to mammalian targets. PLoS Comput. Biol 2005, 1, e13. [Google Scholar]
- Krek, A.; Grun, D.; Poy, M.; Wolf, R.; Rosenberg, L.; Epstein, E.; MacMenamin, P.; Piedade, I.; Gunsalus, K.; Stoffel, M.; et al. Combinatorial microrna target predictions. Nat. Genet 2005, 37, 495–500. [Google Scholar]
- Lall, S.; Grun, D.; Krek, A.; Chen, K.; Wang, Y.; Dewey, C.; Sood, P.; Colombo, T.; Bray, N.; Macmenamin, P.; et al. A genome-wide map of conserved microrna targets in C. elegans. Curr. Biol 2006, 16, 460–471. [Google Scholar]
- Chen, K.; Rajewsky, N. Natural selection on human microRNA binding sites inferred from SNP data. Nat. Genet 2006, 38, 1452–1456. [Google Scholar]
- Anders, G.; Mackowiak, S.; Jens, M.; Maaskola, J.; Kuntzagk, A.; Rajewsky, N.; Landthaler, M.; Dieterich, C. doRiNa: A database of RNA interactions in post-transcriptional regulation. Nucleic Acids Res 2012, 40, D180–D186. [Google Scholar]
- Liu, B.; Li, J.; Cairns, M.J. Identifying miRNAs, targets and functions. Brief Bioinforma. 2012. [Google Scholar] [CrossRef]
- Lewis, B.; Burge, C.; Bartel, D. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005, 120, 15–20. [Google Scholar]
- Stark, A.; Brennecke, J.; Bushati, N.; Russell, R.; Cohen, S. Animal microRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution. Cell 2005, 123, 1133–1146. [Google Scholar]
- Johnson, S.M.; Grosshans, H.; Shingara, J.; Byrom, M.; Jarvis, R.; Cheng, A.; Labourier, E.; Reinert, K.L.; Brown, D.; Slack, F.J. RAS is regulated by the let-7 microRNA family. Cell 2005, 120, 635–647. [Google Scholar]
- Gaidatzis, D.; Nimwegen, E.; Hausser, J.; Zavolan, M. Inference of miRNA targets using evolutionary conservation and pathway analysis. BMC Bioinforma 2007, 8, 69, :1–69:22.. [Google Scholar]
- John, B.; Enright, A.; Aravin, A.; Tuschl, T.; Sander, C.; Marks, D. Human microRNA targets. PLoS Biol 2004, 2, e363. [Google Scholar]
- Hammell, M. Computational methods to identify miRNA targets. Semin. Cell Dev. Biol 2010, 21, 738–744. [Google Scholar]
- Lekprasert, P.; Mayhew, M.; Ohler, U. Assessing the utility of thermodynamic features for microRNA target prediction under relaxed seed and no conservation requirements. PLoS One 2011, 6, e20622. [Google Scholar]
- Stark, A.; Brennecke, J.; Russell, R.; Cohen, S. Identification of drosophila microRNA targets. PLoS Biol 2003, 1, e60. [Google Scholar]
- Maragkakis, M.; Alexiou, P.; Papadopoulos, G.L.; Reczko, M.; Dalamagas, T.; Giannopoulos, G.; Goumas, G.; Koukis, E.; Kourtis, K.; Simossis, V.A.; et al. Accurate microRNA target prediction correlates with protein repression levels. BMC Bioinforma 2009, 10, 295, :1–295:10.. [Google Scholar]
- Long, D.; Lee, R.; Williams, P.; Chan, C.; Ambros, V. Potent effect of target structure on microRNA function. Nat. Struct. Mol. Biol 2007, 14, 287–294. [Google Scholar]
- Hammell, M.; Long, D.; Zhang, L.; Lee, A.; Carmack, C. mir-WIP: MicroRNA target prediction based on microrna-containing ribonucleoprotein-enriched transcripts. Nat. Methods 2008, 5, 813–819. [Google Scholar]
- Engelmann, J.; Spang, R. A least angle regression model for the prediction of canonical and non-canonical miRNA-mRNA interactions. PLoS One 2012, 7, e40634. [Google Scholar]
- Saetrom, O.; Snove, O.; Saetrom, P. Weighted sequence motifs as an improved seeding step in microRNA target prediction algorithms. Cell 2005, 1, 995–1003. [Google Scholar]
- Betel, D.; Wilson, M.; Gabow, A.; Marks, D.; Sander, C. The microrna.org resource: Targets and expression. Nucleic Acids Res 2008, 36, D149–D153. [Google Scholar]
- Griffiths-Jones, S.; Saini, H.; Dongen, S.; Enright, A. Mirbase: Tools for microRNA genomics. Nucleic Acids Res 2008, 36, D154–D158. [Google Scholar]
- Maragkakis, M.; Reczko, M.; Simossis, V.; Alexiou, P.; Papadopoulos, G. Diana-microt web server: Elucidating microRNA functions through target prediction. Nucleic Acids Res 2009, 37, W273–W276. [Google Scholar]
- Ryland, G.; Bearfoot, J.; Doyle, M.; Boyle, S.; Choong, D.; Rowley, S. MicroRNA genes and their target 3′ untranslated regions are infrequently somatically mutated in ovarian cancers. PLoS One 2012, 7, e35805. [Google Scholar]
- Yang, J.; Li, J.; Shao, P.; Zhou, H.; Chen, Y.; Qu, L. starBase: A database for exploring microRNAcmRNA interaction maps from Argonaute CLIP-seq and Degradome-Seq data. Nucleic Acids Res 2011, 39, D202–D209. [Google Scholar]
- Miranda, K.; Huynh, T.; Tay, Y.; Ang, Y.; Tam, W.; Thomson, A.; Lim, B.; Rigoutsos, I. A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 2006, 126, 1203–1217. [Google Scholar]
- Hsu, J.B.; Chiu, C.M.; Hsu, S.D.; Huang, W.Y.; Chien, C.H.; Lee, T.Y.; Huang, H.D. miRTar: An integrated system for identifying miRNA-target interactions in human. BMC Bioinforma 2011, 12, 300, :1–300:12.. [Google Scholar]
- Enright, A.; John, B.; Gaul, U.; Tuschl, T.; Sander, C.; Marks, D. MicroRNA targets in drosophila. Genome Biol 2003, 5, R1–R14. [Google Scholar]
- Kruger, J.; Rehmsmeier, M. RNAhybrid: MicroRNA target prediction easy, fast and flexible. Nat. Genet 2005, 37, 495–500. [Google Scholar]
- Singh, J.; Nagaraju, J. In silico prediction and characterization of microRNAs from red flour beetle (Tribolium castaneum). Insect Mol. Biol 2008, 17, 427–436. [Google Scholar]
- Uren, P.J.; Bahrami-Samani, E.; Burns, S.C.; Qiao, M.; Karginov, F.V.; Hodges, E.; Hannon, G.J.; Sanford, J.R.; Penalva, L.O.; Smith, A.D. Site identification in high-throughput RNA–protein interaction data. Bioinformatics 2012, 1, 3013–3020. [Google Scholar]
- Khorshid, M.; Rodak, C.; Zavolan, M. CLIPZ: A database and analysis environment for experimentally determined binding sites of RNA-binding proteins. Nucleic Acids Res 2011, 39, D245–D252. [Google Scholar]
Method | Feature | References | Availability |
---|---|---|---|
TargetScan(S) | Database of microRNA targets conserved in 5 vertebrates. | [7,19] | http://genes.mit.edu/tscan/targetscanS2005.html |
miRanda | Optimizes sequence complementarity based on position-specific rules and interspecies conservation. | [23,32,39] | http://www.microrna.org |
RNA-hybrid | Determines the most favourable hybridization site between two sequences. | [8,40] | http://bibiserv.techfak.uni-bielefeld.de/rnahybrid |
PicTar (including doRiNA) | Provides details about 3′ UTR alignments with predicted sites, and links to various public databases. | [13–17] | http://pictar.mdc-berlin.de |
TargetBoost | Learns the hidden rules of miRNA-target site hybridization based on machine learning. | [31] | http://www.interagon.com/demo |
PITA | Investigates the role of target-site accessibility, as determined by base-pairing interactions within the mRNA. | [11] | http://genie.weizmann.ac.il/pubs/mir07/index.html |
ElMMo | Infers miRNA targets using evolutionary conservation and pathway analysis. | [22] | http://www.mirz.unibas.ch/ElMMo2/ |
Singh’s | Predicts and characterizes 45 miRNAs by genome-wide homology search against all the reported miRNAs. | [41] | http://www.cdfd.org.in/lmg/PDF/imb816.pdf |
mirWIP | Employs structural accessibility of target sequences, the total free energy of microRNA:target hybridization, and the topology of base-pairing to the 5 seed region of the microRNA. | [29] | http://ambroslab.org |
microCOSM Targets | Web resource containing computationally predicted targets for microRNAs across many species. | [33] | http://www.ebi.ac.uk/enright-srv/microcosm/htdocs/targets/v5/ |
DIANA-microT 3.0 | Individually calculate several parameters for each microRNA and combines conserved and non-conserved microRNA recognition elements into a final prediction score. | [27,34] | http://www.microrna.gr/microT |
starBase | Database with intersections among targets by five predictive softwares. | [36] | http://starbase.sysu.edu.cn/clipSeqIntersection.php |
InMiR | Uses a linear-Gaussian model, and provides a dataset of 1,935 predicted mRNA targets for 22 intronic miRNAs. | [12] | http://www.plosone.org |
miRTar | Identifies the biological functions and regulatory relationships between a group of known/putative miRNAs and protein coding genes. | [38] | http://mirtar.mbc.nctu.edu.tw/human/ |
© 2013 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Zheng, H.; Fu, R.; Wang, J.-T.; Liu, Q.; Chen, H.; Jiang, S.-W. Advances in the Techniques for the Prediction of microRNA Targets. Int. J. Mol. Sci. 2013, 14, 8179-8187. https://doi.org/10.3390/ijms14048179
Zheng H, Fu R, Wang J-T, Liu Q, Chen H, Jiang S-W. Advances in the Techniques for the Prediction of microRNA Targets. International Journal of Molecular Sciences. 2013; 14(4):8179-8187. https://doi.org/10.3390/ijms14048179
Chicago/Turabian StyleZheng, Hao, Rongguo Fu, Jin-Tao Wang, Qinyou Liu, Haibin Chen, and Shi-Wen Jiang. 2013. "Advances in the Techniques for the Prediction of microRNA Targets" International Journal of Molecular Sciences 14, no. 4: 8179-8187. https://doi.org/10.3390/ijms14048179
APA StyleZheng, H., Fu, R., Wang, J.-T., Liu, Q., Chen, H., & Jiang, S.-W. (2013). Advances in the Techniques for the Prediction of microRNA Targets. International Journal of Molecular Sciences, 14(4), 8179-8187. https://doi.org/10.3390/ijms14048179