Bioavailability of Heavy Metals in Soil: Impact on Microbial Biodegradation of Organic Compounds and Possible Improvement Strategies
Abstract
:1. Introduction
2. Metal Toxicity and Microbial Resistance Mechanisms
3. Metal Speciation and Bioavailability
3.1. Binding Components and Physicochemical Characteristics in Medium and Soil
3.2. pH and Redox Potential
4. Measurement of Bioavailable Metal Concentration
4.1. Bacterial Biosensors
4.2. Immunoassays and Bioreporters
4.3. Geochemical Modelling Software
4.4. Diffusion-Based in Situ Techniques
5. Effect of Heavy Metals on Microbiological Processes Involved in the Biodegradation of Chlorinated Organic Compounds
6. Improvement Strategies for Increasing Biodegradation in Co-Contaminated Environments
6.1. Metal-Resistant Bacteria
6.2. Treatment Amendments
6.3. Clay Minerals
6.4. Chelating Agents
6.5. Biosurfactants
6.6. Phytoremediation
7. Conclusions
Acknowledgments
Conflict of Interest
References and Notes
- An, E.L.; Zhao, H.; Obbard, J.P. Recent advances in the bioremediation of persistant organic pollutants via biomolecular engineering. Enzyme Microb. Technol 2005, 37, 487–496. [Google Scholar]
- Cerniglia, C.E.; Heitkamp, M.A. Microbial degradation of Polycyclic Aromatic Hydrocarbons (PAH) in the aquatic environment. In Metabolosm of Polycyclic Aromatic Hydrocarbons in the Aquatic Environment; Varanasi, U., Ed.; CRC Press: Boca Raton, FL, USA, 1989; pp. 41–68. [Google Scholar]
- Cerniglia, C.E. Microbial transformation of aromatic hydrocarbons. In Petroleum Microbiology; Atlas, R.M., Ed.; Macmillan Publishing Company: New York, NY, USA, 1984; pp. 99–128. [Google Scholar]
- Yoshida, N.; Takahashi, N.; Hiraishi, A. Phylogenetic characterization of a polychlorinated-dioxin-dechlorinating microbial community by use of microcosm studies. Appl. Environ. Microbiol 2005, 71, 4325–4334. [Google Scholar]
- Timmis, K.N.; Pieper, D.H. Bacteria designed for bioremediation. Trends Biotechnol 1999, 17, 201–204. [Google Scholar]
- National Research Council, Alternatives for Groundwater Cleanup; National Academy Press: Washington, DC, USA, 1994.
- Kovalick, W.W., Jr. Trends in innovative treatment technologies at contaminated sites. Water Sci. Technol 1992, 26, 99–106. [Google Scholar]
- Lin, Q.; Zhaowei, W.; Ma, S.; Chen, Y. Evaluation of dissipation mechanisms by Lolium. perenne L, and Raphanus. sativus for pentachlorophenol (PCP) in copper co-contaminated soil. Sci. Total Environ 2006, 36, 814–822. [Google Scholar]
- Hoffman, D.R.; Okan, J.L.; Sandrin, T.R. Medium composition affects the degree and pattern of cadmium inhibition of naphthalene biodegradation. Chemosphere 2005, 59, 919–927. [Google Scholar]
- Sandrin, T.R.; Maier, R.M. Impact of metals on the biodegradation of organic pollutants. Environ. Health Perspect 2003, 111, 1093–1101. [Google Scholar]
- Sandrin, T.R.; Chech, A.M.; Maier, R.M. A rhamnolipid biosurfactant reduces cadmium toxicity during biodegradation of naphthalene. Appl. Environ. Microbiol 2000, 66, 4585–4588. [Google Scholar]
- Duran, N.; Esposito, E. Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatments: A review. Appl. Catal 2002, 28, 83–99. [Google Scholar]
- Natural Resources Conservation Services (NRCS), Heavy metal soil contamination, United States Department of Agriculture. In Soil Quality—Urban Technical Note No.3; September 2000; Soil Quality Institute: 411 S. Donalune Dr. Auburn, AL 36832, USA.
- Amor, L.; Kennes, C.; Veiga, M.C. Kinetics of inhibition in the biodegradation of monoaromatic hydrocarbons in presence of heavy metals. Bioresour. Technol 2001, 78, 181–185. [Google Scholar]
- Kuo, C.W.; Genthner, B.R.S. Effect of added heavy metal ions on biotransformation and biodegradation of 2-chlorophenol and 3-chlorobenzoate in anaerobic bacteria consortia. Appl. Environ. Microbiol 1996, 62, 2317–2323. [Google Scholar]
- Said, W.A.; Lewis, D.L. Quantitative assessment of the effects of metals on microbial degradation of organic chemicals. Appl. Environ. Microbiol 1991, 57, 1498–1503. [Google Scholar]
- Bruins, M.R.; Kapil, S.; Oehme, F.W. Microbial resistance to metals in the environment. Ecotoxicol. Environ. Saf 2000, 45, 198–207. [Google Scholar]
- Nies, D.H. Microbial heavy metal resistance. Appl. Environ. Microbiol 1999, 51, 730–750. [Google Scholar]
- Ji, G.; Silver, S. Bacterial resistance mechanisms for heavy metals of environmental concern. Ind. Microbiol 1995, 14, 61–75. [Google Scholar]
- Kachur, A.V.; Koch, C.J.; Biaglow, J.E. Mechanism of copper catalyzed oxidation of glutathione. Free Radic. Res 1998, 28, 259–269. [Google Scholar]
- Carine, F.; Enrique, A.G.; Stéven, C. Metal effects on phenol oxidase activities of soil. Ecotoxicol. Environ. Saf 2009, 72, 108–114. [Google Scholar]
- Rensing, C.; Ghosh, M.; Rosen, B. Families of soft-metal-ion-transporting ATPases. Bacteriology 1999, 181, 5891–5897. [Google Scholar]
- Silver, S.; Misra, T.K. Plasmid-mediated metal resistances. Annu. Rev. Microbiol 1988, 42, 717–743. [Google Scholar]
- Angle, J.S.; Chaney, R.L. Cadmium resistance screening in nitrilotriacetate-buffered minimal media. Appl. Environ. Microbiol 1989, 55, 2101–2104. [Google Scholar]
- Knotek-Smith, H.M.; Deobald, L.A.; Ederer, M.; Crawford, D.L. Cadmium stress studies: Media development, enrichment, consortia analysis, and environmental relevance. BioMetals 2003, 16, 251–261. [Google Scholar]
- Roane, T.M.; Josephson, K.L.; Pepper, I.L. Dual-bioaugmentation strategy to enhance remediation of co-contaminated soil. Appl. Environ. Microbiol 2001, 67, 3208–3215. [Google Scholar]
- Traina, S.J.; Laperche, V. Contaminant bioavailability in soils, sediments, and aquatic environments. Proc. Natl. Acad. Sci. USA 1999, 96, 3365–3371. [Google Scholar]
- Huges, M.N.; Poole, R.K. Metal speciation and microbial growth-the hard (and soft) facts. Gen. Microbiol 1991, 137, 725–734. [Google Scholar]
- Tack, F.M.; Verloo, M.G. Chemical speciation and fractionation in soil and sediment heavy metal analysis: A review. Int. J. Environ. Anal. Chem 1995, 59, 225–238. [Google Scholar]
- Morrison, G.M.; Batley, G.E.; Florence, T.M. Metal speciation and toxicity. Chem. Br 1989, 8, 791–795. [Google Scholar]
- Vanhala, P.T.; Ahtiainen, J.H. Soil respiration, ATP content, and photobacterium toxicity test as indicators of metal pollution in soil. Environ. Toxicol. Water Qual 1994, 9, 115–121. [Google Scholar]
- Vasconcelos, M.T.S.D.; Azenha, M.; Almeida, C.M.R. Copper(II) complexation properties and surfactant activity of 3-[N,N-bis(2-hydroxyethyl)amino]-2-hydroxypropanesulfonic acid and N-(2-hydroxyethyl)piperazine-N0–2-hydroxypropanesulfonic acid pH buffers which may affect trace metal speciation in in vitro studies. Anal. Biochem 1998, 265, 193–201. [Google Scholar]
- Lage, O.M.; Soares, H.M.V.M.; Vasconcelos, M.T.S.D.; Parente, A.M.; Salema, R. Toxicity effects of Cu (II) on the marine dinoflagellate Amphidinium. carterae: Influence of metal speciation. Eur. J. Phycol 1996, 31, 341–348. [Google Scholar]
- De Rore, H.; Tup, E.; Houwen, F.; Mergeay, F.; Verstraete, W. Evolution of heavy metal resistant transconjugants in a soil environment with a concomitant selective pressure. FEMS Microbiol. Ecol 1994, 14, 263–273. [Google Scholar]
- Goblenz, A.; Wolf, K.; Banda, P. The role of gluthathione biosynthesis in heavy metal resistance in the fission yeast Schizosaccharomyces. pombe. Metals and microorganisms: Relationships and applications. FEMS Microbiol. Rev 1994, 14, 303–308. [Google Scholar]
- Hashemi, F.; Leppard, G.G.; Kushner, D.J. Copper resistance in Anabaena variabilis: Effects of phosphate nutrition and polyphosphate bodies. Microb. Ecol 1994, 27, 159–176. [Google Scholar]
- Tomioka, N.A.; Uchiyama, H.; Yagi, O. Cesium accumulation and growth characteristics of Rhodoccus. erythropolis CS98 and Rhodoccus. sp. strain CS402. Appl. Environ. Microbiol 1994, 60, 2227–2231. [Google Scholar]
- Olasupo, N.A.; Scott-Emuakpor, M.B.; Ogunshola, R.A. Resistance to heavy metals by some Nigerian yeast strains. Folia Microbiol 1993, 38, 285–287. [Google Scholar]
- Vasconcelos, M.T.S.D.; Leal, M.F.C. Influence of N-2-hydroxyethylpiperazine-N0–2-ethanesulfonic acid pH buffer on the biological response of marine algae. Environ. Toxicol. Chem 2002, 21, 404–412. [Google Scholar]
- Teresa, M.; Vasconcelos, S.D.; Almeida, C.M.R.; Lage, O.M.; Sansonetty, F. Influence of zwitterionic pH buffers on the bioavailability and toxicity of copper to the alga Amphidinium. carterae. Environ. Toxicol. Chem 2000, 19, 2542–2550. [Google Scholar]
- Nakamura, Y.; Sawada, T. Biodegradation of phenol in the presence of heavy metals. Chem. Technol. Biotechnol 2000, 75, 137–142. [Google Scholar]
- Benka-Coker, M.O.; Ekundayo, J.A. Effects of heavy metals on growth of species of Micrococcus and Pseudomonas in Crude Oil/Mineral Salts Medium. Bioresour. Technol 1998, 66, 241–245. [Google Scholar]
- Birch, L.; Brandl, H. A rapid method for the determination of metal toxicity to the biodegradation of water insoluble polymers. Anal. Chem 1996, 354, 760–762. [Google Scholar]
- Sandrin, T.R.; Hoffman, D.R. Bioremediation of organic and metal co-contaminated environments: Effects of metal toxicity, speciation, and bioavailability on biodegradation. Environ. Bioremed. Technol 2007, 1–34. [Google Scholar]
- Mash, H.E.; Chin, Y.P.; Sigg, L.; Hari, R.; Xue, H.B. Complexation of copper by zwitterionic aminosulfonic (good) buffers. Anal. Chem 2003, 75, 671–677. [Google Scholar]
- Soares, H.M.V.M.; Conde, P.C.F.L. Electrochemical investigations of the effect of N-substituted aminosulfonic acids with a piperazinic ring pH buffers on heavy metal processes which may have implications on speciation studies. Anal. Chim. Acta 2000, 421, 103–111. [Google Scholar]
- Twiss, M.R.; Errecalde, O.; Fortin, C.; Campbell, P.G.C.; Jumarie, C.; Denizeau, F.; Berkelaar, E.; Hale, B.; Van Rees, K. Coupling the use of computer chemical speciation models and culture techniques in laboratory investigations of trace metal toxicity. Chem. Spec. Bioavailab 2001, 13, 9–24. [Google Scholar]
- Chang, I.S.; Groh, J.L.; Ramsey, M.M.; Ballard, J.D.; Krumholz, L.R. Differential expression of Desulfovibrio. vulgaris genes in response to Cu (II) and Hg (II) toxicity. Appl. Environ. Microbiol 2004, 70, 1847–1851. [Google Scholar]
- Gonzalez-Gil, G.; Kleerebezem, R.; Lettinga, G. Effects of nickel and cobalt on kinetics of methanol conversion by methanogenic sludge as assessed by on-line CH4 monitoring. Appl. Environ. Microbiol 1999, 65, 1789–1793. [Google Scholar]
- Irha, N.; Slet, J.; Petersell, V. Effect of heavy metals and PAH on soil assessed via dehydrogenase assay. Environ. Int 2003, 28, 779–782. [Google Scholar]
- McLean, J.E.; Bledsoe, B.E. Behaviour of metals in soils. In Technical research document, EPA/540/S-92018; Environmental Research Laboratory: Ada, Oklahoma, USA, 1992. [Google Scholar]
- Alexander, R.R.; Alexander, M. Bioavailability of genotoxic compounds in soil. Environ. Sci. Technol 2000, 34, 1589–1593. [Google Scholar]
- Sauve, S.; Hendershot, W.; Allen, H.E. Solid-solution partitioning of metals in contaminated soils: Dependence on pH, total metal burden, and organic matter. Environ. Sci. Technol 2000, 34, 1125–1131. [Google Scholar]
- Bååth, E. Effects of heavy metals in soil on microbial processes and populations (a review). Water Air Soil Pollut 1989, 47, 335–379. [Google Scholar]
- Eriksson, J.E. The effects of clay, organic matter and time on adsorption and plant uptake of cadmium added to the soil. Water Air Soil Pollut 1988, 40, 359–373. [Google Scholar]
- Balasoiu, C.F.; Zagury, G.J.; Deschênes, L. Partitioning and speciation of chromium, copper, and arsenic in CCA-contaminated soils: Influence of soil composition. Sci. Total Environ 2001, 280, 239–255. [Google Scholar]
- Tom-Petersen, A.; Hansen, H.C.B.; Nybroe, O. Time and moisture effects on total and bioavailable copper in soil water extracts. J. Environ. Qual 2004, 33, 505–512. [Google Scholar]
- Rensing, C.; Maier, R.M. Issues underlying use of biosensors to measure metal bioavailability. Ecotoxicol. Environ. Saf 2003, 56, 140–147. [Google Scholar]
- Naidu, R.; Kookana, R.S.; Sumner, M.E.; Harter, R.D.; Tiller, K.G. Cadmium sorption and transport in variable charge soils: A review. Environ. Qual 1997, 26, 602–617. [Google Scholar]
- Franklin, N.M.; Stauber, J.L.; Markich, S.J.; Lim, R.P. pH-dependent toxicity of copper and uranium to a tropical freshwater alga (Chlorella sp.). Aquat. Toxicol 2000, 48, 275–289. [Google Scholar]
- Babich, H.; Devanas, M.A.; Stotzky, G. The mediation of mutagenicity and clastogenicity of heavy metals by physicochemical factors. Environ. Res 1985, 37, 253–286. [Google Scholar]
- Korkeala, H.; Pekkanen, T.J. The effect of pH and potassium phosphate buffer on the toxicity of cadmium for bacteria. Acta Vet. Scand 1978, 19, 93–101. [Google Scholar]
- Babich, H.; Stotzky, G. Temperature, pH, salinity, hardness, and particulates mediate nickel toxicity to eubacteria, an actinomycete, and yeasts in lake, simulated estuarine, and sea waters. Aquat. Toxicol 1983, 3, 195–208. [Google Scholar]
- Babich, H.; Stotzky, G. Nickel toxicity to microbes: Influence of pH and implications for acid rain. Environ. Res 1982, 29, 335–350. [Google Scholar]
- Hargreaves, J.W.; Whitton, B.A. Effect of pH on tolerance of Hormidium. rivulare to zinc and copper. Oecologia 1976, 26, 235–243. [Google Scholar]
- Babich, H.; Stotzky, G. Sensitivity of various bacteria, including actinomycetes, and fungi to cadmium and the influence of pH on sensitivity. Appl. Environ. Microbiol 1977, 33, 681–695. [Google Scholar]
- Sandrin, T.; Maier, R.M. Effect of pH on cadmium toxicity, speciation, and accumulation during naphthalene biodegradation. Environ. Toxicol. Chem 2002, 21, 2075–2079. [Google Scholar]
- Rudd, T.; Sterritt, R.M.; Lester, J.N. Mass balance of heavy metal uptake by encapsulated cultures of Klebsiella. aerogenes. Microb. Ecol 1983, 9, 261–272. [Google Scholar]
- Ivanov, A.Y.; Fomchenkov, V.M.; Khasanova, L.A.; Gavryushkin, A.V. Toxic effect of hydroxylated heavy metal ions on the plasma membrane of bacterial cells. Microbiology 1997, 66, 490–495. [Google Scholar]
- Collins, Y.E.; Stotzky, G. Heavy metals alter the electrokinetic properties of bacteria, yeasts, and clay minerals. Appl. Environ. Microbiol 1992, 58, 1592–1600. [Google Scholar]
- Babich, H.; Stotzky, G. Heavy-metal toxicity to microbe-mediated ecologic processes—A review and potential application to regulatory policies. Environ. Res 1985, 26, 111–137. [Google Scholar]
- Majumdar, P.; Bandyopadhyay, S.; Bhattacharya, S.K. Effects of Heavy Metals on the Biodegradation of Organic Compounds. In Applied Biotechnology for Site Remediation; Hinchee, R.E., Ed.; Lewis Publishers: Boca Raton, FL, USA, 1999; pp. 354–359. [Google Scholar]
- Kong, I.C. Metal toxicity on the dechlorination of monochlorophenols in fresh and acclimated anaerobic sediment slurries. Water Sci. Technol 1998, l38, 143–150. [Google Scholar]
- Liao, V.H.C.; Chien, M.T.; Tseng, Y.Y.; Ou, K.I. Assessment of heavy metal bioavilability in contaminated sediments and soils using green florescent protein-based bacterial biosensors. Environ. Pollut 2006, 142, 17–23. [Google Scholar]
- Durrieu, C.; Tran-Minh, C. Optical algal biosensor using alkaline phosphatase for determination of heavy metals. Ecotoxicol. Environ. Saf 2002, 51, 206–209. [Google Scholar]
- Rasmussen, L.D.; Sorensen, S.J.; Turner, R.R.; Barkay, T. Application of a mer-lux biosensor for estimating bioavailable mercury in soil. Soil Biol. Biochem 2000, 32, 639–646. [Google Scholar]
- Žemberyová, M.; Barteková, J.; Závadská, M.; Šišoláková, M. Determination of bioavailable fractions of Zn, Cu, Ni, Pb, and Cd in soils and sludges by atomic absorption spectrometry. Talanta 2007, 71, 1661–1668. [Google Scholar]
- Rodriguez-Mozaz, S.; Marco, M.P.; Lopez de Alda, M.J.; Barceló, D. Biosensors for environmental applications: Future development trends. Pure Appl. Chem 2004, 76, 723–752. [Google Scholar]
- Peijnenburg, W.J.G.M.; Jager, T. Monitoring approaches to assess bioaccessibility and bioavailability of metals: Matrix issues. Ecotoxicol. Environ. Saf 2003, 56, 63–77. [Google Scholar]
- Ivask, A.; Virta, M.; Kahru, A. Construction and use of specific luminescent recombinant bacterial sensors for the assessment of bioavailable fraction of cadmium, zinc, mercury and chromium in the soil. Soil Biol. Biochem 2002, 34, 1439–1447. [Google Scholar]
- Petanen, T.; Romantschuk, M. Use of bioluminescent bacterial sensors as an alternative method for measuring heavy metals in soil extracts. Anal. Chim. Acta 2002, 456, 55–61. [Google Scholar]
- Ziegler, C.; Göpel, W. Biosensor development. Curr. Opin. Chem. Biol 1998, 2, 585–591. [Google Scholar]
- Bontidean, I.; Ahlqvist, J.; Mulchandani, A.; Chen, W.; Bae, W.; Mehra, R.K.; Mortari, A.; Csöregi, E. Novel synthetic phytochelatin-based capacitive biosensor for heavy metal ion detection. Biosens. Bioelectron 2003, 18, 547–553. [Google Scholar]
- Raja, C.E.; Selvam, G.S. Construction of green fluorescent protein based bacterial biosensor for heavy metal remediation. Int. J. Environ. Sci. Technol 2011, 8, 793–798. [Google Scholar]
- Turdean, G.L. Design and development of biosensors for the detection of heavy metal toxicity. Int. J. Electrochem 2011. [Google Scholar] [CrossRef]
- Blake, D.A.; Blake, R.C.; Khosraviani, M.; Pavlov, A.R. Immunoassays for metal Ions. Anal. Chim. Acta 1998, 376, 13–19. [Google Scholar]
- Khosraviani, M.; Pavlov, A.R.; Flowers, G.C.; Blake, D.A. Detection of heavy metals by immunoassay: Optimization and validation of a rapid, portable assay for ionic cadmium. Environ. Sci. Technol 1998, 32, 137–142. [Google Scholar]
- Zhang, Y.; Li, X.; Guowen, L.; Wang, Z.; Kong, T.; Tang, J.; Zhag, P.; Yang, W.; Li, D.; Liu, L.; et al. Development of ELISA for detection of mercury based on specific monoclonal antibodies against mercury-chelate. Biol. Trace Elem. Res 2011, 144, 854–864. [Google Scholar]
- Xi, T.; Xing, H.; Shi, W.; Wu, Y.; Zhou, P. Preparation and characterization of artificial antigens for cadmium and lead. Biol. Trace Elem. Res 2012, 150, 411–417. [Google Scholar]
- Date, Y.; Terakado, S.; Sasaki, K.; Aota, A.; Matsumoto, N.; Shiku, H.; Inoa, K.; Watanabe, Y.; Matsue, T.; Ohmura, N. Microfluidic heavy metal immunoassay based on absorbance measurement. Biosens. Bioelectron 2012, 33, 106–112. [Google Scholar]
- Rouch, D.A.; Lee, B.T.O.; Morby, A.P. Understanding cellular-responses to toxic agents—A model for mechanism-choice in bacterial metal resistance. Ind. Microbiol 1995, 14, 132–141. [Google Scholar]
- Corbisier, P.; van Der Lelie, D.; Borremans, B.; Provoost, A.; De Lorenzo, V.; Brown, N.L.; Lloyd, J.R.; Hobman, J.L.; Csoregi, E.; Johansson, G.; et al. Whole cell and protein-based biosensors for the detection of bioavailable heavy metals in environmental samples. Anal. Chim. Acta 1999, 387, 235–244. [Google Scholar]
- Selifonova, O.; Burlage, R.; Barkay, T. Bioluminescent sensors for detection of bioavailable Hg (II) in the environment. Appl. Environ. Microbiol 1993, 59, 3083–3090. [Google Scholar]
- Neilson, J.W.; Maier, R.M. Biological Techniques for Measuring Organic and Metal Contaminants in Environmental Samples. In Humic Substances and Chemical Contaminants; Clapp, C.E., Hayes, M.H.B., Senesi, N., Bloom, P.R., Jardine, P.M., Eds.; Soil Science Society of America: Madison, WI, USA, 2001; pp. 255–273. [Google Scholar]
- Pardue, J.H.; Kongara, S.; Jones, W.J. Effect of cadmium on reductive dechlorination of trichloroaniline. Environ. Toxicol. Chem 1996, 15, 1083–1088. [Google Scholar]
- Jin, P.K.; Bhattacharya, S.K. Anaerobic removal of pentachlorophenol in presence of zinc. Environ. Eng 1996, 122, 590–598. [Google Scholar]
- Hooda, P.S.; Zhang, H.; Davison, W.; Edwards, A.C. DGT—A new in situ procedure for measuring bioavailable trace metals in soils. Eur. J. Soil Sci 1999, 50, 285–294. [Google Scholar]
- Zhang, H.; Zhao, F.J.; Sun, B.; Davison, W.; McGrath, S.P. A new method to measure effective soil solution concentration predicts copper availability to plants. Environ. Sci. Technol 2001, 35, 2602–2607. [Google Scholar]
- Hooda, P.S. A special issue on heavy metals in soils: Editorial foreword. Adv. Environ. Res 2003, 8, 1–3. [Google Scholar]
- Codina, J.C.; Cazorla, F.M.; Pérez-García, A.; de Vicente, A. Heavy metal toxicity and genotoxicity in water and sewage determined by microbiological methods. Environ. Toxicol. Chem 2000, 19, 1552–1558. [Google Scholar]
- Witter, E.; Gong, P.; Baath, E.; Marstorp, H. A study of the structure and metal tolerance of the soil microbial community six years after cessation of sewage sludge applications. Environ. Toxicol. Chem 2000, 19, 1983–1991. [Google Scholar]
- Khan, M.; Scullion, J. Microbial activity in grassland soil amended with sewage sludge containing varying rates and combinations of Cu, Ni and Zn. Biol. Fertile Soils 1999, 30, 202–209. [Google Scholar]
- Insam, H.; Hutchinson, T.C.; Reber, H.H. Effects of heavy metals stress on the metabolic quotient of the soil microflora. Soil Biol. Biochem 1996, 28, 691–694. [Google Scholar]
- Fliessbach, A.; Martens, R.; Reber, H.H. Soil microbial biomass and microbial activity in soils treated with heavy metal contaminated sewage sludge. Soil Biol. Biochem 1994, 26, 1201–1205. [Google Scholar]
- Hattori, H. Influence of heavy metals on soil microbial activities. Soil Sci. Plant. Nutrit 1992, 38, 93–100. [Google Scholar]
- Campbell, C.D.; Hird, M.; Lumsdon, D.G.; Meeussen, J.C.L. The effect of EDTA and fulvic acid on Cd, Zn, and Cu toxicity to a bioluminescent construct (pUCD607) of Escherichia coli. Chemosphere 2000, 40, 319–325. [Google Scholar]
- Chaudri, A.M.; Lawlor, K.; Preston, S.; Paton, G.I.; Killham, K.; McGrath, S.P. Response of a Rhizobium based luminescence biosensor to Zn and Cu in soil solutions from sewage sludge treated soils. Soil Biol. Biochem 2000, 32, 383–388. [Google Scholar]
- Lappalainen, J.O.; Karp, M.T.; Nurmi, J.; Juvonen, R.; Virta, M.P.J. Comparison of the total mercury content in sediment samples with a mercury sensor bacteria test and Vibrio. fischeri toxicity test. Environ. Toxicol 2000, 15, 443–448. [Google Scholar]
- Villaescusa, I.; Casas, I.; Martinez, M.; Murat, J.C. Effect of zinc chloro complexes to photoluminescent bacteria: Dependence of toxicity on metal speciation. Bull. Environ. Contam. Toxicol 2000, 64, 729–734. [Google Scholar]
- Ibekwe, A.M.; Angle, J.S.; Chaney, R.L.; van Berkum, P. Sewage sludge and heavy metal effects on nodulation and nitrogen fixation in legumes. Environ. Qual 1995, 24, 1199–1204. [Google Scholar]
- Obbard, J.P.; Jones, K.C. The effects of heavy metals on dinitrogen fixation by Rhizobium-white clover in a range of long-term sewage sludge amended and metal contaminated soils. Environ. Pollut 1993, 79, 105–112. [Google Scholar]
- Wright, D.A.; Mason, R.P. Biological and chemical influence on trace metal toxicity and bioaccumulation in the marine and estuarine environment. Int. J. Environ. Pollut 2000, 13, 226–248. [Google Scholar]
- Weiner, R.M.; Chang, E.; Coon, S.; Walch, M. Microorganisms and the impact of heavy metals in marine ecosystems. Recent Res. Dev. Microbiol 1999, 3, 391–414. [Google Scholar]
- Van Zwieten, L.; Ayres, M.R.; Morris, S.G. Influence of arsenic co- contamination on DDT breakdown and microbial activity. Environ. Pollut 2003, 124, 331–339. [Google Scholar]
- Springael, D.; Oiels, L.; Hooyberghs, L.; Krepsk, S.; Mergeay, M. Construction and characterization of heavy metal resistant haloaromatic degrading Alcaligenes. eutrophus strains. Appl. Environ. Microbiol 1993, 59, 334–339. [Google Scholar]
- Jackson, W.A.; Pardue, J.H. Assessment of metal inhibition of reductive dechlorination of hexachlorobenzene at a Superfund site. Environ. Toxicol. Chem 1998, 17, 1441–1446. [Google Scholar]
- Pepper, I.L.; Gentry, T.J.; Newby, D.T.; Roane, T.M.; Josephson, K.L. The role of cell bioaugmentation and gene bioaugmentation in the remediation of co-contaminated soils. Environ. Health Perspect 2002, 110, 943–946. [Google Scholar]
- Coombs, J.M.; Barkay, T. New findings on evolution of metal homeostasis genes: Evidence from comparative genome analysis of bacteria and archaea. Appl. Environ. Microbiol 2005, 71, 7083–7091. [Google Scholar]
- Coombs, J.M.; Barkay, T. Molecular evidence for the evolution of metal homeostasis genes by lateral gene transfer in bacteria from deep terrestrial subsurface. Appl. Environ. Microbiol 2004, 70, 1698–1707. [Google Scholar]
- Tong, L.; Nakashima, S.; Shibasaka, M.; Katsuhara, M.; Kasamo, K. Novel histidine-rich CPx-ATPase from the filamentous cyanobacterium Oscillatoria brevis related to multiple-heavy-metal cotolerance. Bacteriology 2002, 184, 5027–5035. [Google Scholar]
- Rosen, B.P. Bacterial resistance to heavy metals and metalloids. Biol. Inorg. Chem 1996, 1, 273–277. [Google Scholar]
- Silver, S. Bacterial resistance to toxic metal ions-a review. Gene 1996, 179, 9–19. [Google Scholar]
- Silver, S.; Phung, L.T. Bacterial heavy metal resistance: New surprises. Annu. Rev. Microbiol 1996, 50, 753–789. [Google Scholar]
- Nies, D.H. Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol. Rev 2003, 27, 313–339. [Google Scholar]
- Shuman, L.M.; Dudka, S.; Das, K. Cadmium forms and plant availability in compost-amended soil. Commun. Soil Sci. Plant Anal 2002, 33, 737–748. [Google Scholar]
- Basta, N.T.; Gradwohl, R.; Snethen, K.L.; Schroder, J.L. Chemical immobilization of lead, zinc and cadmium in smelter contaminated soils using biosolids and rock phosphate. Environ. Qual 2001, 30, 1222–1230. [Google Scholar]
- Chen, Z.S.; Lee, G.J.; Liu, J.C. The effects of chemical remediation treatments on the extractability and speciation of cadmium and lead in contaminated soils. Chemosphere 2000, 4, 235–242. [Google Scholar]
- Hodson, M.E.; Valsami-Jones, E.; Cotter-Howells, J.D. Bonemeal additions as a remediation treatment for metal contaminated soil. Environ. Sci. Technol 2000, 34, 3501–3507. [Google Scholar]
- Lehoczky, E.; Marth, P.; Szabados, I.; Szomolanyi, A. The cadmium uptake by lettuce on contaminated soils as influenced by liming. Commun. Soil Sci. Plant Anal 2000, 31, 2433–2438. [Google Scholar]
- Li, Y.M.; Chaney, R.L.; Siebielec, G.; Kerschner, B.A. Response of four turfgrass cultivars to limestone and biosolids-compost amendment of a zinc and cadmium contaminated soil at Palmerton, Pennsylvania. Environ. Qual 2000, 29, 1440–1447. [Google Scholar]
- Mench, M.J.; Manceau, A.; Vangronsveld, J.; Clijsters, H.; Mocquot, B. Capacity of soil amendments in lowering the phytoavailability of sludge-borne zinc. Agronomie 2000, 20, 383–397. [Google Scholar]
- Edwards, R.; Rebedea, I.; Lepp, N.W.; Lovell, A.J. An investigation into the mechanism by which synthetic zeolites reduce labile metal concentrations in soils. Environ. Geochem. Health 1999, 21, 157–173. [Google Scholar]
- García-Sánchez, A.; Alastuey, A.; Querol, X. Heavy metal adsorption by different minerals: Application to the remediation of polluted soils. Sci. Total Environ 1999, 242, 179–188. [Google Scholar]
- Panuccio, M.R.; Sorgonà, A.; Rizzo, M.; Cacco, G. Cadmium adsorption on vermiculite, zeolite and pumice: Batch experiment studies. Environ. Manag 2009, 90, 364–374. [Google Scholar]
- Brown, S.; Christensen, B.; Lombi, E.; McLaughlin, M.; McGrath, S.; Colpaert, J.; Vangronsveld, J. An inter-laboratory study to test the ability of amendments to reduce the availability of Cd, Pb, and Zn in situ. Environ. Pollut 2005, 138, 34–45. [Google Scholar]
- Chen, M.; Ma, L.Q.; Singh, S.P.; Cao, R.X.; Melamed, R. Field demonstration of in situ immobilization of soil Pb using P amendments. Adv. Environ. Res 2003, 8, 93–102. [Google Scholar]
- Boenigk, J.; Wiedlroither, A.; Pfandl, K. Heavy metal toxicity and bioavailability of dissolved nutrients to a bacterivorous flagellate are linked to suspended particle physical properties. Aquat. Toxicol 2005, 71, 249–259. [Google Scholar]
- Babich, H.; Stotzky, G. Reductions in toxicity of cadmium to microorganisms by clay minerals. Appl. Environ. Microbiol 1977, 33, 696–705. [Google Scholar]
- Barbier, F.; Duc, G.; Petit-Ramel, M. Adsorption of lead and cadmium ions from aqueous solution to the montmorillonite/water interface. Colloids Surf. A 2000, 166, 153–159. [Google Scholar]
- Echeverria, J.C.; Churio, E.; Garrido, J.J. Retention mechanisms of Cd on illite. Clays Clay Miner 2002, 50, 614–623. [Google Scholar]
- Coles, C.A.; Yong, R.N. Aspects of kaolinite characterization and retention of Pb and Cd. Appl. Clay Sci 2002, 22, 39–45. [Google Scholar]
- Sarkar, D.; Essington, M.E.; Misra, K.C. Adsorption of mercury (II) by kaolinite. Soil Sci. Soc. Am. J 2002, 64, 1968–1975. [Google Scholar]
- Kamel, Z. Toxicity of cadmium to two Streptomyces. species as affected by clay minerals. Plant Soil 1986, 93, 193–205. [Google Scholar]
- Bailey, S.E.; Olin, T.J.; Bricka, R.M.; Adrian, D.D. A review of potentially low-cost sorbents for heavy metals. Water Res 1999, 33, 2469–2479. [Google Scholar]
- Abollino, O.; Aceto, M.; Malandrino, M.; Sarzanini, C.; Mentasti, E. Adsorption of heavy metals on Na-montmorillonite: Effect of pH and organic substances. Water Res 2003, 37, 1619–1627. [Google Scholar]
- Kraepiel, A.M.L.; Keller, K.; Morel, F.M.M. A model for metal adsorption on montmorillonite. Colloid Interface Sci 1999, 210, 43–54. [Google Scholar]
- Mercier, L.; Detellier, C. Preparation, characterization, and applications as heavy metals sorbents of covalently grafted thiol functionalities on the interlamellar surface of montmorillonite. Environ. Sci. Technol 1995, 29, 1318–1323. [Google Scholar]
- Schindler, P.W.; Fürst, B.; Dick, R.; Wolf, P.U. Ligand properties of surface silanol groups. I. Surface complex formation with Fe3+, Cu2+, Cd2+ and Pb2+. Colloid Interface Sci 1976, 55, 469–475. [Google Scholar]
- Gupta, S.S.; Bhattacharyya, K.G. Adsorption of heavy metals on kaolinite and montmorillonite: A review. Phys. Chem. Chem. Phys 2012, 14, 6698–6723. [Google Scholar]
- Mahmoud, N.S.; Atwa, S.T.; Sakr, A.K.; Abdel Geleel, M. Kinetic and Thermodynamic Study of the Adsorption of Ni (II) using Spent Activated Clay Mineral. N. Y. Sci. J 2012, 5, 62–68. [Google Scholar]
- Upitis, V.V.; Pakalne, D.S.; Nollendorf, A.F. The dosage of trace elements in the nutrient medium as a factor in increasing the resistance of Chlorella to unfavorable conditions of culturing. Microbiology 1973, 42, 758–762. [Google Scholar]
- Spencer, O.F.; Nichols, L.H. Free nickel inhibits growth of two species of green algae. Environ. Pollut. Serv 1983, 31, 97–104. [Google Scholar]
- Sunda, W.; Guillard, R.R.C. The relationship between cupric ion activity and the toxicity of copper to phytoplankton. Mar. Res 1976, 34, 511–529. [Google Scholar]
- Ogundele, M.O. Cytotoxicity of EDTA used in biological samples: Effect on some human breast-milk studies. Appl. Toxicol 1999, 13, 395–400. [Google Scholar]
- Borgmann, U.; Norwood, W.P. EDTA toxicity and background concentrations of copper and zinc in Hyalella. azteca. Can. J. Fish. Aquat. Sci 1995, 52, 875–881. [Google Scholar]
- Jiang, W.; Tao, T.; Liao, Z. Removal of heavy metal from contaminated soil with chelating agents. Open J. Soil Sci 2011, 1, 70–76. [Google Scholar]
- Pare, S.; Persson, I.; Guel, B.; Lundberg, D.; Zerbo, L.; Kam, S.; Traoré, K. Heavy metal removal from aqueous solutions by sorption using natural clays from Burkina Faso. Afr. J. Biotechnol 2012, 11, 10395–10406. [Google Scholar]
- Xu, Y.; Xie, Z.; Xue, L. Chelation of heavy metals by potassium butyl dithiophosphate. J. Environ. Sci 2011, 23, 778–783. [Google Scholar]
- Malakul, P.; Srinivasan, K.R.; Wang, H.Y. Metal toxicity reduction in naphthalene biodegradation by use of metal chelating adsorbents. Appl. Environ. Microbiol 1998, 64, 4610–4613. [Google Scholar]
- Makker, R.S.; Rochne, K.J. Comparison of synthetic surfactants and biosurfactants in enhancing biodegradation of polycyclic aromatic hydrocarbons. Environ. Toxicol. Chem 2003, 22, 2280–2292. [Google Scholar]
- Van Hamme, J.D.; Singh, A.; Ward, O.P. Physiological aspects Part 1 in a series of papers devoted to surfactants in microbiology and biotechnology. Biotechnol. Adv 2006, 24, 604–620. [Google Scholar]
- Mulligan, C.N. Environmental applications for biosurfactants. Environ. Pollut 2005, 133, 183–198. [Google Scholar]
- Lin, S.C. Biosurfactant: Recent advances. Chem. Technol. Biotechnol 1996, 63, 109–120. [Google Scholar]
- Chrzanowski, L.; Owsianiak, M.; Szulc, A.; Marecik, R.; Piotrowska-Cyplik, A.; Olejnik-Schmidt, A.K.; Staniewski, K.; Lisiecki, P.; Ciesielczyk, F.; Jesionowski, T.; et al. Interactions between rhamnolipid biosurfactants and toxic chlorinated phenols enhance biodegradation of a model hydrocarbon-rich effluent. Int. Biodeter. Biodegr 2011, 65, 605–611. [Google Scholar]
- Maier, R.; Soberon-Chavez, G. Pseudomonas aeruginosa rhamnolipids: Biosynthesis and potential applications. Appl. Microbiol. Biotechnol 2000, 54, 625–633. [Google Scholar]
- Hommel, R.; Weber, L.; Weiss, A.; Rilke, O.; Kleber, H. Production of sophorose lipid by Candida apicola grown on glucose. Biotechnology 1994, 33, 147–155. [Google Scholar]
- Kanga, S.; Bonner, J.; Page, C.; Millis, M.; Autenrieth, R. Solubilization of naphthalene and methyl substituted naphthalene from crude oil using biosurfactants. Environ. Sci. Technol 1997, 31, 556–561. [Google Scholar]
- Mulligan, C.N.; Yong, R.N.; Gibbs, B.F. Surfactant-enhanced remediation of contaminated soil: A review. Eng. Geol 2001, 60, 371–380. [Google Scholar]
- Ozturk, S.; Kaya, T.; Aslim, B.; Tan, S. Removal and reduction of chromium by Pseudomonasspp. and their correlation to rhamnolipid production. J. Hazard. Mater 2012, 231–232, 64–69. [Google Scholar]
- Gusiatin, Z.M.; Klimiuk, E. Metal (Cu, Cd and Zn) removal and stabilization during multiple soil washing by saponin. Chemosphere 2012, 86, 383–391. [Google Scholar]
- Noriyuki, I.; Sunairi, M.; Urai, M.; Itoh, C.; Anzai, H.; Nakajima, M.; Harayama, S. Extracellular polysaccharides of Rhodococcus. rhodochrous S-2 stimulate the degradation of components in crude oil by indigenous marine bacteria. Appl. Environ. Microbiol 2002, 68, 2337–2343. [Google Scholar]
- Berg, G.; Seech, A.; Lee, H.; Trevors, J. Identification and characterization of bacterium with emulsifying activity. Environ. Sci. Health 1990, 7, 753–764. [Google Scholar]
- Miller, R.M. Biosurfactant facilitated remediation of contaminated soil. Environ. Health Perspect 1995, 103, 59–62. [Google Scholar]
- Pacwa-Płociniczak, M.; Płaza, G.A.; Piotrowska-Seget, Z.; Cameotra, S.S. Environmental applications of biosurfactants: Recent advances. Int. J. Mol. Sci 2011, 12, 633–654. [Google Scholar]
- Herman, D.C.; Zhang, Y.M.; Miller, R.M. Rhamnolipid (biosurfactant) effects on cell aggregation and biodegradation of residual hexadecane under saturated flow conditions. Appl. Environ. Microbiol 1997, 63, 3622–3627. [Google Scholar]
- Zhang, Y.M.; Maier, W.J.; Miller, R.M. Effect of rhamnolipids on the dissolution, bioavailability and biodegradation of phenanthrene. Environ. Sci. Technol 1997, 31, 2211–2217. [Google Scholar]
- Al-Tahhan, R.; Sandrin, T.; Bodour, A.; Maier, R. Cell surface hydrophobicity of Pseudomonas aeruginosa: Effect of monorhamnolipid on fatty acid and lipopolysaccharide content. Appl. Environ. Microbiol 2000, 66, 3262–3268. [Google Scholar]
- Mulligan, C.N.; Yong, C.N.; Gibbs, B.F. On the use of biosurfactants for the removal of heavy metals from oil contaminated soil. Environ. Progr 1999, 18, 31–35. [Google Scholar]
- Abraham, W.R.; Nogales, B.; Golyshin, P.N.; Pieper, D.H.; Timmis, K.N. Polychlorinated biphenyl-degrading microbial communities in soils and sediments. Curr. Opin. Microbiol 2002, 5, 246–253. [Google Scholar]
- Lin, Q.; Shen, K.L.; Zhao, H.M.; Li, W.H. Growth response of Zea mays L. in pyrene-copper co-contaminated soil and the fate of pollutants. J. Hazard. Mater 2008, 150, 515–521. [Google Scholar]
- Wu, C.H.; Wood, T.K.; Mulchandani, A.; Chen, W. Engineering plant-microbe symbiosis for rhizoremediation of heavy metals. Appl. Environ. Microbiol 2006, 72, 1129–1134. [Google Scholar]
- Rascio, N.; Navari-Izzo, F. Heavy metal hyperaccumulating plants: How and what do they do it? And what makes them so interesting? Plant. Sci 2011, 180, 169–181. [Google Scholar]
- Bhargava, A.; Carmona, F.F.; Bhargava, M.; Srivastava, S. Approaches for enhanced phytoextraction of heavy metals. J. Environ. Manag 2012, 105, 103–120. [Google Scholar]
- Göhre, V.; Paszkowski, U. Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 2006, 223, 1115–1122. [Google Scholar]
- Singh, O.V.; Jain, R.K. Phytoremediation of toxic aromatic pollutants from soil. Appl. Microbiol. Biotechnol 2003, 63, 128–135. [Google Scholar]
- Susarla, S.; Medina, V.F.; McCutcheon, S.C. Phytoremediation: An ecological solution to organic chemical contamination. Ecol. Eng 2002, 18, 647–658. [Google Scholar]
- Ma, L.Q.; Komar, K.M.; Tu, C.; Zhang, W.; Cai, Y.; Kennelley, E.D. A fern that hyperaccumulates arsenic. Nature 2001, 409, 579. [Google Scholar]
- Miransari, M. Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol. Adv 2011, 29, 645–653. [Google Scholar]
- Sun, Y.; Zhoua, Q.; Xub, Y.; Wang, L.; Liang, X. Phytoremediation for co-contaminated soils of benzo[a]pyrene (B[a]P) and heavy metals using ornamental plant Tagetes. patula. J. Hazard. Mater 2011, 186, 2075–2082. [Google Scholar]
- Huang, H.; Yu, N.; Wang, L.; Gupta, D.K.; He, Z.; Wang, K.; Zhu, Z.; Yan, X.; Li, T.; Yang, X. The phytoremediation potential of bioenergy crop Ricinus. communis for DDTs and cadmium co-contaminated soil. The phytoremediation potential of bioenergy crop Ricinus. communis for DDTs and cadmium co-contaminated soil. Bioresour. Technol 2011, 102, 11034–11038. [Google Scholar]
- Rajkumar, M.; Sandhya, S.; Prasad, M.N.V.; Freitas, H. Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol. Adv 2012, 30, 1562–1574. [Google Scholar]
- Li, W.C.; Wong, M.H. Interaction of Cd/Zn hyperaccumulating plant (Sedum alfredii) and rhizosphere bacteria on metal uptake and removal of phenanthrene. J. Hazard. Mater 2012, 209–210, 421–433. [Google Scholar]
- Zhu, Z.; Yang, X.; Wang, K.; Huang, H.; Zhang, X.; Fang, H.; Li, T.; Alva, A.K.; He, Z. Bioremediation of Cd-DDT co-contaminated soil using the Cd-hyperaccumulator Sedum alfredii and DDT-degrading microbes. J. Hazard. Mater 2012, 235–236, 144–151. [Google Scholar]
- Khan, A.G. Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J. Trace Elem. Med. Biol 2005, 18, 355–364. [Google Scholar]
Metal | Organic | Lowest metal concentration | Microbe(s) studied | Environment | pH | Reference |
---|---|---|---|---|---|---|
As3+ | DDT | 5 mg/kg a | Indigenous community | Former co-contaminated soil | NR | [114] |
Cu2+ | 2,4-DME | 0.027 mg/L a | Indigenous community | Aufwuchs (microcosm) | 5.0 | [16] |
Cu2+ | 2,4-DME | 0.076 mg/L a | Indigenous community | Sediment (microcosm) | 6.1 | [16] |
Cu2+ | 4-CP, 3-CB, 2,4-D | <14.3–71.6 mg/L a,b | Alcaligenes sp., Pseudomonas sp., Moraxella sp. | Tris-buffered minimal medium plates | 7.0 | [115] |
Cd2+ | 2,4-D | 0.060 mg/g a | Alcaligenes eutrophus JMP134 | Soil microcosms | 8.2 | [26] |
Cd2+ | 2,4-D | 0.060 mg/g a | Alcaligenes eutrophus JMP134 | Field-scale bioreactors | 8.2 | [26] |
Cd2+ | 2,4-DME | 0.100 mg/La | Indigenous community | Sediment (microcosm) | 6.5 | [16] |
Cd2+ | 2,4-DME | 0.629 mg/L a | Indigenous community | Aufwuchs (microcosm) | 5.6 | [16] |
Cd2+ | 2,4-D | >3 mg/L a | Alcaligenes eutrophus JMP134 | Mineral salts medium | 6.0 | [26] |
Cd2+ | 2,4-D | 24 mg/L a | Alcaligenes eutrophus JMP134 | Mineral salts medium containing cadmium-resistant isolate | 6.0 | [26] |
Cd2+ | 4-CP, 3-CB, 2,4-D | <25.3–50.6 mg/L a,b | Alcaligenes spp., Pseudomonas spp., Moraxella sp. | Tris-buffered minimal medium plates | 7.0 | [115] |
Co2+ | 4-CP, 3-CB, 2,4-D | <13.3–1.330 mg/L a,b | Alcaligenes spp., Pseudomonas spp., Moraxella sp. | Tris-buffered minimal medium plates | 7.0 | [115] |
Cr3+ | 2,4-DME | 0.177 mg/L a | Indigenous community | Aufwuchs (microcosm) | 6.1 | [16] |
Cr6+ | 4-CP, 3-CB, 2,4-D | <131 mg/L a,b | Alcaligenes spp., Pseudomonas spp., Moraxella sp. | Tris-buffered minimal medium plates | 7.0 | [115] |
Hg2+ | 2,4-DME | 0.002 mg/L a | Indigenous community | Aufwuchs (microcosm) | 6.8 | [16] |
Hg2+ | 4-CP, 3-CB, 2,4-D | <45.2–226 mg/L a,b | Alcaligenes sp., Pseudomonas spp., Moraxella sp. | Tris-buffered minimal medium plates | 7.0 | [115] |
Ni2+ | 4-CP, 3-CB, 2,4-D | 5.18–10.3 mg/L a,b | Alcaligenes sp., Pseudomonas spp., Moraxella sp. | Tris-buffered minimal medium plates | 7.0 | [115] |
Zn2+ | 2,4-DME | 0.006 mg/L a | Indigenous community | Sediment (microcosm) | 6.4 | [16] |
Zn2+ | 2,4-DME | 0.041 mg/L a | Indigenous community | Aufwuchs (microcosm) | 5.6 | [16] |
Zn2+ | 4-CP, 3-CB, 2,4-D | <29.5–736 mg/L a,b | Alcaligenes sp., Pseudomonas spp., Moraxella sp. | Tris-buffered minimal medium plates | 7.0 | [115] |
Metal | Organic | Lowest metal concentration | Microbe(s) studied | Environment | pH | Reference |
---|---|---|---|---|---|---|
Cd2+ | TCA | 0.01 mg/L a | Indigenous community | Laboratory soil microcosms containing rice paddy and bottomland hardwood soils | 6.9–7.4 | [95] |
Cd2+ | TCA | 0.2 mg/L a | Indigenous community | Laboratory soil microcosms containing organic matter- rich soil | 6.8 | [95] |
Cd2+ | 2-CP; 3-CB | 0.5–1.0 mg/L b | Indigenous community | Aqueous sediment enriched in anaerobic growth medium | 7.0 | [15] |
Cd2+ | 2-CP; 3-CP | 20 mg/L b | Indigenous community | Sediment slurry | 7.0 | [73] |
Cr 6+ | 2-CP; 3-CB | 0.01–0.5 mg/L b | Indigenous community | Aqueous sediment enriched in anaerobic growth medium | 7.0 | [15] |
Cu2+ | 2-CP, 3-CB | 0.1–1.0 mg/L b | Indigenous community | Aqueous sediment enriched in anaerobic growth medium | 7.0 | [15] |
Cu2+ | 2-CP; 3-CP | 20 mg/L b | Indigenous community | Sediment slurry | 7.0 | [73] |
Cr 6+ | 2-CP; 3-CP | 20 mg/L b | Indigenous community | Sediment slurry | 7.0 | [73] |
Pb2+ | HCB | 0.001 mg/g b | Indigenous community | Microcosms containing contaminated sediment | NR | [116] |
Hg2+ | 2-CP; 3-CB | 0.1–1.0 mg/L b | Indigenous community | Aqueous sediment enriched in anaerobic growth medium | 7.0 | [15] |
Zn2+ | PCP | 2 mg/L b | Indigenous community | Anaerobic digester sludge in a liquid medium containing 0.6 mM phosphate | NR | [96] |
Zn2+ | PCP | 8.6 mg/L b | Indigenous community | Anaerobic enrichment cultures in serum bottles | NR | [72] |
© 2013 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Olaniran, A.O.; Balgobind, A.; Pillay, B. Bioavailability of Heavy Metals in Soil: Impact on Microbial Biodegradation of Organic Compounds and Possible Improvement Strategies. Int. J. Mol. Sci. 2013, 14, 10197-10228. https://doi.org/10.3390/ijms140510197
Olaniran AO, Balgobind A, Pillay B. Bioavailability of Heavy Metals in Soil: Impact on Microbial Biodegradation of Organic Compounds and Possible Improvement Strategies. International Journal of Molecular Sciences. 2013; 14(5):10197-10228. https://doi.org/10.3390/ijms140510197
Chicago/Turabian StyleOlaniran, Ademola O., Adhika Balgobind, and Balakrishna Pillay. 2013. "Bioavailability of Heavy Metals in Soil: Impact on Microbial Biodegradation of Organic Compounds and Possible Improvement Strategies" International Journal of Molecular Sciences 14, no. 5: 10197-10228. https://doi.org/10.3390/ijms140510197
APA StyleOlaniran, A. O., Balgobind, A., & Pillay, B. (2013). Bioavailability of Heavy Metals in Soil: Impact on Microbial Biodegradation of Organic Compounds and Possible Improvement Strategies. International Journal of Molecular Sciences, 14(5), 10197-10228. https://doi.org/10.3390/ijms140510197