S-Glutathionylation in Monocyte and Macrophage (Dys)Function
Abstract
:1. Introduction
2. Nox in Thiol Redox Signaling
3. Protein-S-Glutathionylation
3.1. Detection of Global Changes in S-Glutathionylated Protein Levels in Cells or Tissues
3.2. Detection of S-Glutathionylation on Specific Proteins and/or Cysteines Residues
3.3. Detection and Identification of S-Glutathionylated Proteins Using Proteomic Techniques
3.4. S-Glutationylatined Proteins That Are Established Redox Signaling Molecules
4. Protein-S-Glutathionylation in Monocyte and Macrophage Dysfunction
5. Conclusions
Acknowledgments
Conflict of Interest
References
- Ingersoll, M.A.; Platt, A.M.; Potteaux, S.; Randolph, G.J. Monocyte trafficking in acute and chronic inflammation. Trends Immunol 2011, 32, 470–477. [Google Scholar]
- Shi, C.; Pamer, E.G. Monocyte recruitment during infection and inflammation. Nat. Rev. Immunol 2011, 11, 762–774. [Google Scholar]
- Libby, P. Inflammation in atherosclerosis. Nature 2002, 420, 868–874. [Google Scholar]
- Hackam, D.G.; Anand, S.S. Emerging risk factors for atherosclerotic vascular disease: A critical review of the evidence. JAMA J. Am. Med. Assoc 2003, 290, 932–940. [Google Scholar]
- Lamb, R.E.; Goldstein, B.J. Modulating an oxidative-inflammatory cascade: Potential new treatment strategy for improving glucose metabolism, insulin resistance, and vascular function. Int. J. Clin. Pract 2008, 62, 1087–1095. [Google Scholar]
- Ullevig, S.; Zhao, Q.; Lee, C.F.; Seok Kim, H.; Zamora, D.; Asmis, R. Nadph oxidase 4 mediates monocyte priming and accelerated chemotaxis induced by metabolic stress. Arterioscler. Thromb. Vasc. Biol 2012, 32, 415–426. [Google Scholar]
- Shelton, M.D.; Chock, P.B.; Mieyal, J.J. Glutaredoxin: Role in reversible protein S-glutathionylation and regulation of redox signal transduction and protein translocation. Antioxid. Redox Signal 2005, 7, 348–366. [Google Scholar]
- Elahi, M.M.; Kong, Y.X.; Matata, B.M. Oxidative stress as a mediator of cardiovascular disease. Oxid. Med. Cell Longev 2009, 2, 259–269. [Google Scholar]
- Winterbourn, C.C.; Hampton, M.B. Thiol chemistry and specificity in redox signaling. Free Radic. Biol. Med 2008, 45, 549–561. [Google Scholar]
- Kellogg, E.W.; Fridovich, I. Liposome oxidation and erythrocyte lysis by enzymically generated superoxide and hydrogen peroxide. J. Biol. Chem 1977, 252, 6721–6728. [Google Scholar]
- Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001, 414, 813–820. [Google Scholar]
- Thum, T.; Fraccarollo, D.; Schultheiss, M.; Froese, S.; Galuppo, P.; Widder, J.D.; Tsikas, D.; Ertl, G.; Bauersachs, J. Endothelial nitric oxide synthase uncoupling impairs endothelial progenitor cell mobilization and function in diabetes. Diabetes 2007, 56, 666–674. [Google Scholar]
- Dalle-Donne, I.; Rossi, R.; Giustarini, D.; Colombo, R.; Milzani, A. S-glutathionylation in protein redox regulation. Free Radic. Biol. Med 2007, 43, 883–898. [Google Scholar]
- Finkel, T. Signal transduction by reactive oxygen species. J. Cell Biol 2011, 194, 7–15. [Google Scholar]
- Thannickal, V.J.; Fanburg, B.L. Reactive oxygen species in cell signaling. Am. J. Physiol.–Lung Cell. Mol. Physiol 2000, 279, L1005–L1028. [Google Scholar]
- Lee, C.F.; Ullevig, S.L.; Kim, H.S.; Asmis, R. Regulation of moncoyte adhesion and migration by nox4. PLoS One 2013, 8, e66964. [Google Scholar]
- Dalle-Donne, I.; Aldini, G.; Carini, M.; Colombo, R.; Rossi, R.; Milzani, A. Protein carbonylation, cellular dysfunction, and disease progression. J. Cell. Mol. Med 2006, 10, 389–406. [Google Scholar]
- Chung, H.S.; Wang, S.-B.; Venkatraman, V.; Murray, C.I.; Van Eyk, J.E. Cysteine oxidative posttranslational modifications: Emerging regulation in the cardiovascular system. Circ. Res 2013, 112, 382–392. [Google Scholar]
- Davies, M.J. The oxidative environment and protein damage. Biochimica et Biophysica Acta (BBA)–Proteins Proteom 2005, 1703, 93–109. [Google Scholar]
- Forman, H.J.; Maiorino, M.; Ursini, F. Signaling functions of reactive oxygen species. Biochemistry 2010, 49, 835–842. [Google Scholar]
- Lindahl, M.; Mata-Cabana, A.; Kieselbach, T. The disulfide proteome and other reactive cysteine proteomes: Analysis and functional significance. Antioxid. Redox Signal 2011, 14, 2581–2641. [Google Scholar]
- Fomenko, D.E.; Marino, S.M.; Gladyshev, V.N. Functional diversity of cysteine residues in proteins and unique features of catalytic redox-active cysteines in thiol oxidoreductases. Mol. Cells 2008, 26, 228–235. [Google Scholar]
- Schafer, F.Q.; Buetiner, G.R. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic. Biol. Med 2001, 30, 1191–1212. [Google Scholar]
- Jones, D.P. Redox Potentialof gsh/gssg Couple: Assay and Biological Significance. In Methods in Enzymology; Helmut, S., Lester, P., Eds.; Academic Press: San Diego, CA, USA, 2002; Volume 348, pp. 93–112. [Google Scholar]
- Asmis, R.; Yanmei, W.; Li, X.; Marta, K.; Jim, G.B.; John, J.M. A novel thiol oxidation-based mechanism for adriamycin-induced cell injury in human macrophages. FASEB J 2005, 19, 1866–1868. [Google Scholar]
- Tavakoli, S.; Asmis, R. Reactive oxygen species and thiol redox signaling in the macrophage biology of atherosclerosis. Antioxid. Redox Signal 2012, 17, 1785–1795. [Google Scholar]
- Qiao, M.; Zhao, Q.; Lee, C.F.; Tannock, L.R.; Smart, E.J.; LeBaron, R.G.; Phelix, C.F.; Rangel, Y.; Asmis, R. Thiol oxidative stress induced by metabolic disorders amplifies macrophage chemotactic responses and accelerates atherogenesis and kidney injury in ldl receptor-deficient mice. Arterioscler. Thromb. Vasc. Biol 2009, 29, 1779–1786. [Google Scholar]
- Shelton, M.D.; Mieyal, J.J. Regulation by reversible S-glutathionylation: Molecular targets implicated in inflammatory diseases. Mol. Cells 2008, 25, 332–346. [Google Scholar]
- Stone, J.; Yang, S. Hydrogen peroxide: A signaling messenger. Antioxid. Redox Signal 2006, 8, 243–270. [Google Scholar]
- Jones, D.P. Radical-free biology of oxidative stress. Am. J. Physiol–Cell Physiol 2008, 295, C849–C868. [Google Scholar]
- Mieyal, J.; Gallogly, M.; Qanungo, S.; Sabens, E.; Shelton, M. Molecular mechanisms and clinical implications of reversible protein S-glutathionylation. Antioxid. Redox Signal 2008, 10, 1941–1988. [Google Scholar]
- Winterbourn, C.C.; Metodiewa, D. Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide. Free Radic. Biol. Med 1999, 27, 322–328. [Google Scholar]
- Ushio-Fukai, M. Compartmentalization of redox signaling through nadph oxidase-derived ros. Antioxid. Redox Signal 2009, 11, 1289–1299. [Google Scholar]
- Bedard, K.; Krause, K.-H. The nox family of ros-generating nadph oxidases: Physiology and pathophysiology. Physiol. Rev 2007, 87, 245–313. [Google Scholar]
- Helmcke, I.; Heumüller, S.; Tikkanen, R.; Schröder, K.; Brandes, R.P. Identification of structural elements in nox1 and nox4 controlling localization and activity. Antioxid. Redox Signal 2009, 11, 1279–1287. [Google Scholar]
- Dikalov, S.I.; Dikalova, A.E.; Bikineyeva, A.T.; Schmidt, H.H.; Harrison, D.G.; Griendling, K.K. Distinct roles of nox1 and nox4 in basal and angiotensin ii-stimulated superoxide and hydrogen peroxide production. Free Radic. Biol. Med 2008, 45, 1340–1351. [Google Scholar]
- Li, Q.; Zhang, Y.; Marden, J.J.; Banfi, B.; Engelhardt, J.F. Endosomal nadph oxidase regulates c-src activation following hypoxia/reoxygenation injury. Biochem. J 2008, 411, 531–541. [Google Scholar]
- Ambasta, R.K.; Kumar, P.; Griendling, K.K.; Schmidt, H.H.H.W.; Busse, R.; Brandes, R.P. Direct interaction of the novel nox proteins with p22phox is required for the formation of a functionally active nadph oxidase. J. Biol. Chem 2004, 279, 45935–45941. [Google Scholar]
- Kuroda, J.; Ago, T.; Matsushima, S.; Zhai, P.; Schneider, M.D.; Sadoshima, J. Nadph oxidase 4 (nox4) is a major source of oxidative stress in the failing heart. Proc. Natl. Acad. Sci 2010, 107, 15565–15570. [Google Scholar]
- Block, K.; Gorin, Y.; Abboud, H.E. Subcellular localization of nox4 and regulation in diabetes. Proc. Natl. Acad. Sci 2009, 106, 14385–14390. [Google Scholar]
- Kuroda, J.; Nakagawa, K.; Yamasaki, T.; Nakamura, K.-I.; Takeya, R.; Kuribayashi, F.; Imajoh-Ohmi, S.; Igarashi, K.; Shibata, Y.; Sueishi, K.; et al. The superoxide-producing nad(p)h oxidase nox4 in the nucleus of human vascular endothelial cells. Genes Cells 2005, 10, 1139–1151. [Google Scholar]
- Takac, I.; Schröder, K.; Zhang, L.; Lardy, B.; Anilkumar, N.; Lambeth, J.D.; Shah, A.M.; Morel, F.; Brandes, R.P. The e-loop is involved in hydrogen peroxide formation by the nadph oxidase nox4. J. Biol. Chem 2011, 286, 13304–13313. [Google Scholar]
- Mahadev, K.; Motoshima, H.; Wu, X.; Ruddy, J.M.; Arnold, R.S.; Cheng, G.; Lambeth, J.D.; Goldstein, B.J. The nad(p)h oxidase homolog nox4 modulates insulin-stimulated generation of h2o2 and plays an integral role in insulin signal transduction. Mol. Cell. Biol 2004, 24, 1844–1854. [Google Scholar]
- Chiarugi, P.; Pani, G.; Giannoni, E.; Taddei, L.; Colavitti, R.; Raugei, G.; Symons, M.; Borrello, S.; Galeotti, T.; Ramponi, G. Reactive oxygen species as essential mediators of cell adhesion: The oxidative inhibition of a fak tyrosine phosphatase is required for cell adhesion. J. Cell Biol 2003, 161, 933–944. [Google Scholar]
- Xi, G.; Shen, X.-C.; Wai, C.; Clemmons, D.R. Recruitment of nox4 to a plasma membrane scaffold is required for localized ros generation and sustained src activation in response to igf-i. J. Biol. Chem 2013, 288, 15641–15653. [Google Scholar]
- Lee, C.F.; Qiao, M.; Schröder, K.; Zhao, Q.; Asmis, R. Nox4 is a novel inducible source of reactive oxygen species in monocytes and macrophages and mediates oxidized low density lipoprotein-induced macrophage death. Circ. Res 2010, 106, 1489–1497. [Google Scholar]
- Gallogly, M.; Mieyal, J. Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress. Curr. Opin. Pharmacol 2007, 7, 381–391. [Google Scholar]
- Klatt, P.; Lamas, S. Regulation of protein function by S-glutathiolation in response to oxidative and nitrosative stress. Eur. J. Biochem 2000, 267, 4928–4944. [Google Scholar]
- Kim, H.S.; Ullevig, S.L.; Zamora, D.; Lee, C.F.; Asmis, R. Redox regulation of mapk phosphatase 1 controls monocyte migration and macrophage recruitment. Proc. Natl. Acad. Sci 2012, 109, E2803–E2812. [Google Scholar]
- Gravina, S.A.; Mieyal, J.J. Thioltransferase is a specific glutathionyl mixed-disulfide oxidoreductase. Biochemistry 1993, 32, 3368–3376. [Google Scholar]
- Findlay, V.J.; Townsend, D.M.; Morris, T.E.; Fraser, J.P.; He, L.; Tew, K.D. A novel role for human sulfiredoxin in the reversal of glutathionylation. Cancer Res 2006, 66, 6800–6806. [Google Scholar]
- Leonard, S.E.; Carroll, K.S. Chemical “omics” approaches for understanding protein cysteine oxidation in biology. Curr. Opin. Chem. Biol 2011, 15, 88–102. [Google Scholar]
- Hill, B.G.; Ramana, K.V.; Cai, J.; Bhatnagar, A.; Srivastava, S.K. Measurement and identification of S-glutathiolated proteins. Methods Enzymol 2010, 473, 179–197. [Google Scholar]
- Fratelli, M.; Demol, H.; Puype, M.; Casagrande, S.; Eberini, I.; Salmona, M.; Bonetto, V.; Mengozzi, M.; Duffieux, F.; Miclet, E.; et al. Identification by redox proteomics of glutathionylated proteins in oxidatively stressed human t lymphocytes. Proc. Natl. Acad. Sci. USA 2002, 99, 3505–3510. [Google Scholar]
- Lind, C.; Gerdes, R.; Hamnell, Y.; Schuppe-Koistinen, I.; Brockenhuus von Lowenhielm, H.; Homgren, A.; Cotgreave, I.A. Identification of S-glutathionylated cellular proteins during oxidative stress and constitutive metabolism by affinity purification and proteomic analysis. Arch. Biochem. Biophys 2002, 406, 229–240. [Google Scholar]
- Baty, J.W.; Hampton, M.B.; Winterbourn, C.C. Detection of oxidant sensitive thiol proteins by fluorescence labeling and two-dimensional electrophoresis. Proteomics 2002, 2, 1261–1266. [Google Scholar]
- Harding, J.J. Free and protein-bound glutathione in normal and cataractous human lenses. Biochem. J 1970, 117, 957–960. [Google Scholar]
- Ying, J.; Clavreul, N.; Sethuraman, M.; Adachi, T.; Cohen, R.A. Thiol oxidation in signaling and response to stress: Detection and quantification of physiological and pathophysiological thiol modifications. Free Radic. Biol. Med 2007, 43, 1099–1108. [Google Scholar]
- Reynaert, N.L.; Ckless, K.; Guala, A.S.; Wouters, E.F.M.; van der Vleit, A.; Janssen-Heininger, Y.M.W. In situ detection of S-glutathionylated proteins following glutaredoxin-1 catalyzed cysteine derivatization. Biochim. Biophys. Acta 2006, 1760, 380–387. [Google Scholar]
- Xiong, Y.; Uys, J.D.; Tew, K.D.; Townsend, D.M. S-glutathionylation: From molecular mechanism to health outcomes. Antioxid. Redox Signal 2011, 15, 233–270. [Google Scholar]
- Aesif, S.W.; Janssen-Heininger, Y.M.W.; Reynaert, N.L. Chapter 17–Protocols for the Detection of S-Glutathionylated and S-Nitrosylated Proteins in situ. In Methods in Enzymology; Enrique, C., Lester, P., Eds.; Academic Press: San Diego, CA, USA, 2010; Volume 474, pp. 289–296. [Google Scholar]
- Anathy, V.; Aesif, S.W.; Guala, A.S.; Havermans, M.; Reynaert, N.L.; Ho, Y.-S.; Budd, R.C.; Janssen-Heininger, Y.M.W. Redox amplification of apoptosis by caspase-dependent cleavage of glutaredoxin 1 and S-glutathionylation of fas. J. Cell Biol 2009, 184, 241–252. [Google Scholar]
- Sullivan, D.M.W.N.; Fergusson, M.M.; Levine, R.L.; Finkel, T. Identification of oxidant-sensitive proteins: Tnp-alpha induces protein glutathiolation. Biochemistry 2000, 39, 11121–11128. [Google Scholar]
- Clavreul, N.; Adachi, T.; Pimental, D.R.; Ido, Y.; Schoneich, C.; Cohen, R.A. S-glutathiolation by peroxynitrite of p21ras at cysteine-118 mediates its direct activation and downstream signaling in endothelial cells. FASEB J. 2006. [Google Scholar] [CrossRef]
- Brennan, J.P.; Miller, J.I.A.; Filler, W.; Wait, R.; Begum, S.; Dunn, M.J.; Eaton, P. The utility of N,N-biotinyl glutathione disulfide in the study of protein S-glutathiolation. Mol. Cell Proteomics 2006, 5, 215–225. [Google Scholar]
- Clavreul, N.D.C.; Huang, H.; Sethuraman, M.; McComb, M.; Costello, C.E.; Cohen, R.A. Detection and identification of S-glutathiolated proteins in endothelial cells exposed to oxidants by a biotin-labeling liquid chromatography and ms method. J. Am. Soc. Mass Spectrom 2006, 17, 121S. [Google Scholar]
- Rogers, L.; Leinweber, B.L.; Smith, C.V. Detection of reversible protein thiol modifcations in tissues. Anal. Biochem 2006, 358, 171–184. [Google Scholar]
- Pretzer, E.; Wiktorowicz, J.E. Saturation fluorescence labeling of proteins for proteomic analyses. Anal. Biochem 2008, 374, 250–262. [Google Scholar]
- Tyagarajan, K.; Pretzer, E.; Wiktorowicz, J.E. Thiol-reactive dyes for fluorescence labeling of proteomic samples. Electrophoresis 2003, 24, 2348–2358. [Google Scholar]
- Takai, Y.; Sasaki, T.; Matozaki, T. Small gtp-binding proteins. Physiol. Rev 2001, 81, 153–208. [Google Scholar]
- Ji, Y.; Akerboom, T.P.M.; Sies, H.; Thomas, J.A. S-nitrosylation and S-glutathiolation of protein sulfhydryls bys-nitroso glutathione. Arch. Biochem. Biophys 1999, 362, 67–78. [Google Scholar]
- Mallis, R.J.; Buss, J.E.; Thomas, J.A. Oxidative modification of h-ras: S-thiolation and snitrosylation of reactive cysteines. Biochem J 2001, 355, 145–153. [Google Scholar]
- Sethuraman, M.; Clavreul, N.; Huang, H.; McComb, M.E.; Costello, C.E.; Cohen, R.A. Quantification of oxidative posttranslational modifications of cysteine thiols of p21ras associated with redox modulation of activity using isotope-coded affinity tags and mass spectrometry. Free Radic. Biol. Med 2007, 42, 823–829. [Google Scholar]
- Hobbs, G.A.; Bonini, M.G.; Gunawardena, H.P.; Chen, X.; Campbell, S.L. Glutathiolated ras: Characterization and implications for ras activation. Free Radic. Biol. Med 2013, 57, 221–229. [Google Scholar]
- Adachi, T.; Pimentel, D.R.; Heibeck, T.; Hou, X.; Lee, Y.J.; Jiang, B.; Ido, Y.; Cohen, R.A. S-glutathiolation of ras mediates redox-sensitive signaling by angiotensin ii in vascular smooth muscle cells. J. Biol. Chem 2004, 279, 29857–29862. [Google Scholar]
- Clavreul, N.; Bachschmid, M.M.; Hou, X.; Shi, C.; Idrizovic, A.; Ido, Y.; Pimentel, D.; Cohen, R.A. S-glutathiolation of p21ras by peroxynitrite mediates endothelial insulin resistance caused by oxidized low-density lipoprotein. Arterioscler. Thromb. Vasc. Biol 2006, 26, 2454–2461. [Google Scholar]
- Pimentel, D.R.; Adachi, T.; Ido, Y.; Heibeck, T.; Jiang, B.; Lee, Y.; Melendez, J.A.; Cohen, R.A.; Colucci, W.S. Strain-stimulated hypertrophy in cardiac myocytes is mediated by reactive oxygen species-dependent ras S-glutathiolation. J. Mol. Cell. Cardiol 2006, 41, 613–622. [Google Scholar]
- Salmeen, A.; Barford, D. Functions and mechanisms of redox regulation of cysteine-based phosphatases. Antioxid. Redox Signal 2005, 7, 560–577. [Google Scholar]
- Mueller, A.S.; Bosse, A.C.; Most, E.; Klomann, S.D.; Schneider, S.; Pallauf, J. Regulation of the insulin antagonistic protein tyrosine phosphatase 1b by dietary se studied in growing rats. J. Nutr. Biochem 2009, 20, 235–247. [Google Scholar]
- Barrett, W.C.; DeGnore, J.P.; König, S.; Fales, H.M.; Keng, Y.-F.; Zhang, Z.-Y.; Yim, M.B.; Chock, P.B. Regulation of ptp1b via glutathionylation of the active site cysteine 215. Biochemistry 1999, 38, 6699–6705. [Google Scholar]
- Townsend, D.M. S-glutathionylation: Indicator of cell stress and regulator of the unfolded protein response. Mol. Interv 2007, 7, 313–324. [Google Scholar]
- Rinna, A.; Torres, M.; Forman, H.J. Stimulation of the alveolar macrophage respiratory burst by adp causes selective glutathionylation of protein tyrosine phosphatase 1b. Free Radic. Biol. Med 2006, 41, 86–91. [Google Scholar]
- Mueller, A.S.; Klomann, S.D.; Wolf, N.M.; Schneider, S.; Schmidt, R.; Spielmann, J.; Stangl, G.; Eder, K.; Pallauf, J. Redox regulation of protein tyrosine phosphatase 1b by manipulation of dietary selenium affects the triglyceride concentration in rat liver. J. Nutr 2008, 138, 2328–2336. [Google Scholar]
- Qiao, M.; Kisgati, M.; Cholewa, J.M.; Zhu, W.; Smart, E.J.; Sulistio, M.S.; Asmis, R. Increased expression of glutathione reductase in macrophages decreases atherosclerotic lesion formation in low-density lipoprotein receptordeficient mice. Arterioscler. Thromb. Vasc. Biol 2007, 27, 1375–1382. [Google Scholar]
- Callegari, A.; Liu, Y.; White, C.C.; Chait, A.; Gough, P.; Raines, E.W.; Cox, D.; Kavanagh, T.J.; Rosenfeld, M.E. Gain and loss of function for glutathione synthesis: Impact on advanced atherosclerosis in apolipoprotein e–deficient mice. Arterioscler. Thromb. Vasc. Biol 2011, 31, 2473–2482. [Google Scholar]
- Rosenblat, M.; Coleman, R.; Aviram, M. Increased macrophage glutathione content reduces cell-mediated oxidation of ldl and atherosclerosis in apolipoprotein e-deficient mice. Atherosclerosis 2002, 163, 17–28. [Google Scholar]
- Aesif, S.W.; Anathy, V.; Kuipers, I.; Guala, A.S.; Reiss, J.N.; Ho, Y.-S.; Janssen-Heininger, Y.M.W. Ablation of glutaredoxin-1 attenuates lipopolysaccharide-induced lung inflammation and alveolar macrophage activation. Am. J. Respir. Cell Mol. Biol 2011, 44, 491–499. [Google Scholar]
- Asmis, R.; Qiao, M.; Rossi, R.R.; Cholewa, J.; Xu, L.; Asmis, L.M. Adriamycin promotes macrophage dysfunction in mice. Free Radic. Biol. Med 2006, 41, 165–174. [Google Scholar]
- Wang, Y.; Qiao, M.; Mieyal, J.J.; Asmis, L.M.; Asmis, R. Molecular mechanism of glutathione-mediated protection from oxidized low-density lipoprotein-induced cell injury in human macrophages: Role of glutathione reductase and glutaredoxin. Free Radic. Biol. Med 2006, 41, 775–785. [Google Scholar]
- Rottner, K.; Stradal, T.E.B. Actin dynamics and turnover in cell motility. Curr. Opin. Cell Biol 2011, 23, 569–578. [Google Scholar]
- Thelen, M. How chemokines invite leukocytes to dance. Nat. Immunol. 2008, 9, 953–959. [Google Scholar]
- Pollard, T.D.; Cooper, J.A. Actin, a central player in cell shape and movement. Science 2009, 326, 1208–1212. [Google Scholar]
- Dominguez, R.; Holmes, K.C. Actin structure and function. Annu. Rev. Biophys 2011, 40, 169–186. [Google Scholar]
- Fiaschi, T.; Cozzi, G.; Raugei, G.; Formigli, L.; Ramponi, G.; Chiarugi, P. Redox regulation of beta-actin during integrin-mediated cell adhesion. J. Biol. Chem 2006, 281, 22983–22991. [Google Scholar]
- Wang, J.; Tekle, E.; Oubrahim, H.; Mieyal, J.J.; Stadtman, E.R.; Chock, P.B. Stable and controllable rna interference: Investigating the physiological function of glutathionylated actin. Proc. Natl. Acad. Sci. USA 2003, 100, 5103–5106. [Google Scholar]
- Dalle-Donne, I.; Giustarini, D.; Rossi, R.; Colombo, R.; Milzani, A. Reversible S-glutathionylation of cys374 regulates actin filament formation by inducing structural changes in the actin molecule. Free Radic. Biol. Med 2003, 34, 23–32. [Google Scholar]
- Wang, J.; Boja, E.S.; Tan, W.; Tekle, E.; Fales, H.M.; English, S.; Mieyal, J.J.; Chock, P.B. Reversible glutathionylation regulates actin polymerization in a431 cells. J. Biol. Chem 2001, 276, 47763–47766. [Google Scholar]
- Yassin, R.; Shefcyk, J.; White, J.R.; Tao, W.; Volpi, M.; Molski, T.F.; Naccache, P.H.; Feinstein, M.B.; Sha’afi, R.I. Effects of chemotactic factors and other agents on the amounts of actin and a 65,000-mol-wt protein associated with the cytoskeleton of rabbit and human neutrophils. J. Cell Biol 1985, 101, 182–188. [Google Scholar]
- Cruz, C.M.; Rinna, A.; Forman, H.J.; Ventura, A.L.M.; Persechini, P.M.; Ojcius, D.M. Atp activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. J. Biol. Chem 2007, 282, 2871–2879. [Google Scholar]
- Konstantinidis, D.; Paletas, K.; Koliakos, G.; Kaloyianni, M. The ambiguous role of the Na+-H+ exchanger isoform 1 (nhe1) in leptin-induced oxidative stress in human monocytes. Cell Stress Chaperones 2009, 14, 591–601. [Google Scholar]
- Meissner, F.; Molawi, K.; Zychlinsky, A. Superoxide dismutase 1 regulates caspase-1 and endotoxic shock. Nat. Immunol 2008, 9, 866–872. [Google Scholar]
- Rozenberg, O.; Aviram, M. S-glutathionylation regulates hdl-associated paraoxonase 1 (pon1) activity. Biochem. Biophys. Res. Commun 2006, 351, 492–498. [Google Scholar]
- Ashida, N.; Arai, H.; Yamasaki, M.; Kita, T. Distinct signaling pathways for mcp-1-dependent integrin activation and chemotaxis. J. Biol. Chem 2001, 276, 16555–16560. [Google Scholar]
- Arefieva, T.I.; Kukhtina, N.B.; Antonova, O.A.; Krasnikova, T.L. Mcp-1-stimulated chemotaxis of monocytic and endothelial cells is dependent on activation of different signaling cascades. Cytokine 2005, 31, 439–446. [Google Scholar]
- Moon, A.; Drubin, D.G. The adf/cofilin proteins: Stimulus-responsive modulators of actin dynamics. Mol. Biol. Cell 1995, 6, 1423–1431. [Google Scholar]
- Bamburg, J.R. Proteins of the adf/cofilin family: Essential regulators of actin dynamics. Annu. Rev. Cell Dev. Biol 1999, 15, 185–230. [Google Scholar]
- Niwa, R.; Nagata-Ohashi, K.; Takeichi, M.; Mizuno, K.; Uemura, T. Control of actin reorganization by slingshot, a family of phosphatases that dephosphorylate adf/cofilin. Cell 2002, 108, 233–246. [Google Scholar]
- Ohta, Y.; Kousaka, K.; Nagata-Ohashi, K.; Ohashi, K.; Muramoto, A.; Shima, Y.; Niwa, R.; Uemura, T.; Mizuno, K. Differential activities, subcellular distribution and tissue expression patterns of three members of slingshot family phosphatases that dephosphorylate cofilin. Genes Cells 2003, 8, 811–824. [Google Scholar]
- Kim, J.-S.; Huang, T.Y.; Bokoch, G.M. Reactive oxygen species regulate a slingshot-cofilin activation pathway. Mol. Biol. Cell 2009, 20, 2650–2660. [Google Scholar]
- Kim, H.S.; Asmis, R. Univerisity of Texas Health Science Center: San Antonio, San Antonio, TX, Unpublished observation; 2013.
|
Cell type | Target | Stimulus | Functional importance | Criteria fulfilled | Reference |
---|---|---|---|---|---|
Rat alveolar macrophage cell-line (NR8383) | Phosphatase and tensin homologue deleted from chromosome 10 (PTEN) | Extracellular adenosine triphosphate (ATP)-induced inflammation | Correlated with activation of PI3K, Akt, ERK1/2, caspase-1 and upregulation of GSH synthesis genes | 1, 2, 3 | Cruz, et al. [99] |
Rat alveolar macrophage cell-line (NR8383) | Protein tyrosine phosphatase 1B (PTP1B) | Extracellular adenosine diphosphate (ADP)-stimulation of the respiratory burst | Unknown | 1, 2, 3 | Rinna, et al. [82] |
Primary human monocytes | Na-H exchanger isoform 1 (NHE1) | Leptin | Activation of NHE1 which increased intracellular pH | 1, 2, 3 | Konstantinidis, et al. [100] |
Primary Mouse peritoneal macrophages (Superoxide Dismutase null) | Caspase-1 | ATP, nigericin, or S. aurease supernantant | Decreased caspase-1 activity and decreased IL-1β release | 1, 2, 3 | Meissner, et al. [101] |
Mouse macrophage cell-line (J774A.1) | Paraoxonase 1 (PON1) | GSSG | Decreased high-density lipoprotein (HDL)-mediated cholesterol efflux | 1, 3 | Rozenberg, et al. [102] |
Human monocytic cell-line (THP-1) | Actin | High glucose (20 mM) and native LDL (100 μg/mL) | Increased actin turnover and accelerated monocyte migration | 1,2, 3, 4, 5 | Ullevig, et al. [6] |
Human monocytic cell-line (THP-1) | MKP-1 | High glucose (20 mM) and native LDL (100 μg/mL) | Hyperactivation of p38 pathway, increased monocyte migration | 1, 2, 3, 4, 5 | Kim, et al. [49] |
© 2013 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ullevig, S.; Kim, H.S.; Asmis, R. S-Glutathionylation in Monocyte and Macrophage (Dys)Function. Int. J. Mol. Sci. 2013, 14, 15212-15232. https://doi.org/10.3390/ijms140815212
Ullevig S, Kim HS, Asmis R. S-Glutathionylation in Monocyte and Macrophage (Dys)Function. International Journal of Molecular Sciences. 2013; 14(8):15212-15232. https://doi.org/10.3390/ijms140815212
Chicago/Turabian StyleUllevig, Sarah, Hong Seok Kim, and Reto Asmis. 2013. "S-Glutathionylation in Monocyte and Macrophage (Dys)Function" International Journal of Molecular Sciences 14, no. 8: 15212-15232. https://doi.org/10.3390/ijms140815212
APA StyleUllevig, S., Kim, H. S., & Asmis, R. (2013). S-Glutathionylation in Monocyte and Macrophage (Dys)Function. International Journal of Molecular Sciences, 14(8), 15212-15232. https://doi.org/10.3390/ijms140815212