Next Article in Journal
MicroRNA-143 Downregulates Interleukin-13 Receptor Alpha1 in Human Mast Cells
Next Article in Special Issue
UVB-Stimulated TNFα Release from Human Melanocyte and Melanoma Cells Is Mediated by p38 MAPK
Previous Article in Journal
ACE Inhibition with Captopril Retards the Development of Signs of Neurodegeneration in an Animal Model of Alzheimer’s Disease
Previous Article in Special Issue
Mechanisms of Radiation Toxicity in Transformed and Non-Transformed Cells
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

The Association of IFI27 Expression and Fatigue Intensification during Localized Radiation Therapy: Implication of a Para-Inflammatory Bystander Response

1
Frances Payne Bolton School of Nursing, Case Western Reserve University, 2120 Cornell Road, Cleveland, OH 44106, USA
2
National Institute of Nursing Research, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 2-1339, Bethesda, MD 20892, USA
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Int. J. Mol. Sci. 2013, 14(8), 16943-16957; https://doi.org/10.3390/ijms140816943
Submission received: 24 June 2013 / Revised: 1 August 2013 / Accepted: 5 August 2013 / Published: 16 August 2013
(This article belongs to the Collection Radiation Toxicity in Cells)

Abstract

:
The mechanisms behind fatigue intensification during cancer therapy remain elusive. The interferon alpha-inducible protein 27 (IFI27) was the most up-regulated gene based on our previous microarray data in fatigued men with non-metastatic prostate cancer receiving localized external beam radiation therapy (EBRT). The purpose of this study was to confirm the IFI27 up-regulation and determine its association with fatigue intensification during EBRT. Peripheral blood samples and fatigue scores were collected at three time points—prior to EBRT, at midpoint, and at completion of EBRT. Confirmatory quantitative real time polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay (ELISA) were utilized to verify the microarray results. Subjects were a total of 40 Caucasian men with prostate cancer; 20 scheduled for EBRT (65.6 ± 7.5 years old), and 20 on active surveillance as controls (62.8 ± 6.1 years old). Significant IFI27 expression overtime during EBRT was confirmed by qPCR (p < 0.5), which correlated with fatigue scores during EBRT (R = −0.90, p = 0.006). Alterations in mechanisms associated with immune response and mitochondrial function that explain the up-regulation of IFI27 may provide an understanding of the pathways related to the intensification of fatigue during localized radiation therapy.

Graphical Abstract

1. Introduction

Improvement in prostate cancer treatment, especially with the use of modulated radiation therapy has increased cure and survival rates [1]. However, side effects associated with these treatments, such as fatigue are commonly reported [2,3]. Fatigue severity in most men with non-metastatic prostate cancer is known to increase significantly during the course of radiation therapy (RT) peaking at midpoint and declining after completion of the RT [4]. The etiology behind the development and intensification of fatigue while receiving cancer treatment remains unknown. A recent review revealed the lack of longitudinal studies that can explain physiologic mechanisms behind intensification of fatigue during cancer therapy [5]. Although studies reported associations between immune and inflammatory markers with the worsening intensity of cancer-related fatigue (CRF) during therapy [610], no compelling data between a specific biomarker and CRF has been established, contributing to its inadequate clinical management.
The peripheral blood has been used to investigate the etiology of CRF; similarly peripheral blood serves as the best medium of bystander response during radiation therapy [11]. In radiation therapy, release of reactive oxygen species and reactive nitrogen species during irradiation induces detrimental cellular damage, not only to irradiated cells but also to non-targeted cells that receive signals from irradiated cells, causing short and long term bystander effects through cytokine stimulation to respond to tissue damage [12]. There is a growing area of research asserting that cancer- and cancer-treatment related fatigue is driven by pro-inflammatory cytokines (e.g., IL-6, IL-1β, TNF-α) and inflammatory pathways (e.g., CRP, IL-1RA) as observed using animal [13,14] and clinical models [6,15]. A recent review characterized the inflammatory response from bystander cells as a para-inflammatory response to low dose radiation [16]. Para-inflammatory response can become chronic if tissue malfunction is persistent [17], and it may contribute to cancer-treatment related sickness behavior [18].
We recently reported profiles of gene expression changes over time during radiation therapy in men treated with non-metastatic prostate cancer, suggesting that mitochondrial dysfunction [19] and neuroinflammatory pathways [20] may play a role in fatigue development and intensification during external beam radiation therapy (EBRT). In our previous gene expression study, the interferon alpha-inducible protein 27 (IFI27) is the most up-regulated gene whole blood RNA of men with non-metastatic prostate cancer receiving localized EBRT [20]. The purpose of this study was to confirm the IFI27 up-regulation and determine its association with fatigue intensification during EBRT, as well as to learn possible pathways, based on the known physiologic functions of IFI27 that can provide clues of the role of bystander response to fatigue intensification during EBRT.

2. Results

The total sample of 40 men with non-metastatic prostate cancer consisted of 20 men who received EBRT and 20 age-, gender-, race- matched controls, who were on active surveillance for their prostate cancer. Table 1 describes the demographic and clinical characteristics of the study participants. The mean age of EBRT subjects was 65.6 years (±7.5), which was within ±5 years from the matched controls (62.8 ± 6.1). In the EBRT group, 17 (85%) received androgen deprivation therapy two months before EBRT and 2 had a radical prostatectomy more than 6 months before scheduled to receive EBRT. None of the participants reached the cutoff score for depression using the Hamilton Depression Scale (HAM-D). About 90% (n = 18/20) of EBRT subjects received a total dose of 75.6 Gray of EBRT, while the rest received a total dose of 68.4 Gray. PSA was significantly higher (p < 0.02) in the study subjects compared to controls related to their higher risk of disease.

2.1. Fatigue during EBRT

The rPFS fatigue scores of EBRT subjects (mean = 1.5 ± 1.6) and matched controls (mean = 1.46 ± 1.73, p = 0.93) were similar at baseline. Similarly, the mean PROMIS fatigue T-score at baseline for subjects (45.9 ± 6.3) and matched controls (41.7 ± 9.5) were not significantly different (p = 0.16). The mean fatigue score of EBRT participants increased significantly over time on both rPFS (F = 13.22, p < 0.001) and PROMIS-F (F = 7.27, p < 0.002) during EBRT. Compared to baseline (1.5 ± 1.6), the rPFS scores increased significantly at midpoint (3.27 ± 2.2, p < 0.001) and at completion of EBRT (3.49 ± 2.29, p = 0.001). The rPFS scores did not significantly change from midpoint to completion of EBRT (p = 0.93). Compared to baseline (45.85 ± 6.34), PROMIS-F scores increased significantly at midpoint (49.84 ± 5.47, p = 0.001) and at completion of EBRT (49.69 ± 7.59, p = 0.002). There was no significant difference in PROMIS-F scores from midpoint to completion of EBRT (p = 0.64). High variability in subjects’ fatigue scores was observed. A 3-point change in fatigue score has been found to be clinically important in a previous study [21]. The rPFS and PROMIS-F scores were highly correlated at each time point (r = 0.65–0.91, p < 0.01). Figure 1A,B illustrate changes in rPFS and PROMIS-F scores.

2.2. Gene Expression by Microarray

Four hundred sixty three probesets (178 up-regulated and 285 down-regulated) were differentially expressed over time after the probesets passed filtering criteria of 1% false discovery rate (FDR) and a slope of 0.07 or more (over 2.6-fold change, p < 0.0003), which we recently reported [20]. The interferon alpha-inducible protein 27 (IFI27) was the most up-regulated gene in the list (expression value = 0.774, p < 0.0001), and was selected for further confirmation based on its association with inflammation and mitochondrial dysfunction, both mechanisms were proposed to be physiologic mechanisms behind CRF [19,20]. The average log 10 expression of the IFI27 probeset from that study showed a significant upward trend of IFI27 expression during EBRT (p < 0.001). Table S1 shows the top 10 differentially expressed genes by microarray.

2.3. Confirmation of IFI27 Expression during EBRT

Further confirmation revealed no significant differences in IFI27 gene (p = 0.56) and protein (p = 0.54) expressions between EBRT subjects and matched controls at baseline using qRT-PCR and ELISA, respectively. Significant up-regulation of IFI27 during EBRT was confirmed (F = 9.55, p = 0.002) by qRT-PCR. IFI27 gene expression increased significantly from baseline to D21 (p = 0.01) and to D42 of EBRT (p = 0.002, Figure 2A). Similarly, IFI27 protein expression increased from baseline to D21 (p = 0.007) and to D42 of EBRT (p = 0.02, Figure 2B), as measured by ELISA. Please refer to Figure 2.

2.4. Correlation between Fatigue and IFI27 Expression

A significant correlation between changes in rPFS fatigue scores and IFI27gene expression using qRT-PCR (ΔCT) was observed from baseline to D21 of EBRT (R = 0.56, p = 0.001). No other significant correlation was noted between the variables at any study time point. However, changes in IFI27 protein concentration was significantly correlated with changes in fatigue (R = 0.64, p = 0.001) as measured by the PROMIS-F from baseline to D21 of EBRT. Figures 3A, B illustrate the association between changes in IFI27 gene/protein expressions and changes in fatigue score. Please refer to Figure 3.

3. Discussion

Using microarray technique as an unbiased, hypothesis-generating approach, this study gained new insights into the possible role of bystander response during EBRT. EBRT is a well-established treatment modality delivering radiation doses to tumor sites. A local RT-induced increase in type 1 IFNs (α and β) in the tumor microenvironment, produced by myeloid cells in an autocrine fashion, was recently noted to be an essential factor in tumor regression [22]. Peripheral blood serves as the medium for bystander effects of EBRT. Using whole blood RNA, we observed that the most up-regulated gene that was significantly associated with fatigue intensification during EBRT was IFI27. This gene is known to induce apoptosis by sending extracellular signals to activate other pro-apoptotic genes [23]. IFI27 gene encodes a putative highly hydrophobic membrane protein [24], and is highly induced by interferon-alpha/beta (IFN-α/β) [25]; both cytokines alter immune response by acting as pleiotropic cytokines in generating long-lasting immune response through activities of T lymphocytes and dendritic cells [26]. This finding provides some empirical support that fatigue intensification during EBRT is a bystander response to radiation, and this bystander response can be explained by the upregulation of IFI27, which influences mitochondrial function and immune response, both mechanisms we believe to be involved in CRF.
It is believed that IFN-α, induced by IFI27 [27], stimulates myeloid dendritic cells to activate IL-12, which in turn prompts T-cells to secrete IFN-γ, and arms NK cells and CD8+ cytotoxic T lymphocytes (CTL) with perforin A and granzyme B for killing tumor targets [28]. Fatigue has been associated with low levels of perforin in NK cells [29]. Decreased NK cell activity [30], decreased frequency of myeloid dendritic cells in circulating activated T lymphocytes [31], and higher level of CD4+ T cells that increased in response to stress were observed in fatigued breast cancer survivors [32]. The immune pathways that involve activities of IFI27-induced proteins can shed some light on the mechanisms behind fatigue intensification during localized radiation therapy.
IFN-α therapy has been approved by the Food and Drug Administration (FDA) for treating solid tumors such as malignant melanoma, Kaposi’s sarcoma related to acquired immune deficiency syndrome, and hematologic malignancies such as aggressive follicular non-Hodgkin’s lymphoma and chronic myelogenous leukemia [28]. It has been shown to prolong disease-free survival in melanoma patients [33]. However, IFN-α therapy is associated with multiple toxicities such as fatigue, anorexia, fever, nausea, and chills [34] and is often administered at a lower dose or as an adjuvant therapy to reduce these toxicities [28]. An association between fatigue and overexpression of 2′-5′-oligoadenylate synthetase 2 (OAS2), a gene linked to chronic fatigue syndrome, was noted in cancer patients receiving chronic IFNα therapy [35]. This finding and results of our study suggest that downstream pathways (e.g., IFNs-α and β, IL-12, NK cells, and CTL) involved in innate and adaptive immune responses that are activated by IFI27 may provide some mechanism that influence the intensification of fatigue in this population.
The change of fatigue scores using rPFS was associated with the change of IFI27 PCR expression, while the change of fatigue scores using PROMIS-F was associated with the change of IFI27 protein expression. Although rPFS and PROMIS-F are highly correlated in this study, their associations to potential biological markers of fatigue differ; hence, further investigation is warranted. We have reported previous associations between rPFS, PROMIS-F, and molecular-genetics findings [19,20]. More longitudinal investigations are needed to confirm validity and reliability of these tools in assessing relationships of potential physiological markers with fatigue.
This study was conducted in a tertiary research setting with a semi-selective patient population; therefore, the results may not be generalizable. Another limitation to this study is the small sample size. Additionally, collecting data at one time point from the control group limited our ability to longitudinally compare the trajectory of fatigue symptoms and gene/protein expressions in prostate cancer not receiving any treatment from EBRT subjects.
Our hypothesis-generating finding confirms the association of IFI27 upregulation and fatigue intensification during EBRT, but it does not prove causation. Further investigation is necessary to determine the direct link of mitochondrial dysfunction and para-inflammation from IFI27 upregulation with fatigue intensification during cancer therapy. The change of fatigue symptoms we associated our gene expression data with, has been reported to be the minimum change in fatigue scores that is large enough to influenceclinical care [20]. Conducting an intervention targeting IFI27 to reduce fatigue symptom during EBRT will confirm the clinical relevance of our findings. Understanding the etiology of fatigue during cancer therapy is critical because CRF persists even at survivorship [36]. About 71% of our participants with high fatigue during EBRT had persistent high fatigue symptoms one year post EBRT, which is consistent with previous findings [4].

4. Methods/Experimental Section

This study was approved by the Institutional Review Board of the National Institutes of Health (NIH), Bethesda, MD, USA (NCT00852111). Subjects were enrolled from May 2009 to September 2011 and data were collected at three time points: baseline (prior to EBRT, D0), midpoint (days 19–21, D21), and completion (days 38–42, D42) of EBRT. To distinguish that differential gene expression observed in this study is related to EBRT and not to stage of cancer, age-, gender-, race-matched patients on active surveillance for their non-metastatic prostate cancer were used as controls for the comparison of fatigue and gene/protein expressions at baseline (pre-EBRT). Patients and controls were excluded from the study if they had progressive disease causing significant fatigue; experienced psychiatric disease within five years; had uncorrected hypothyroidism or anemia; took sedatives, steroids, or non-steroidal anti-inflammatory agents; or had a second malignancy.
Self-report fatigue was measured at each time point using the validated revised Piper Fatigue Scale (rPFS), which measures cancer-related fatigue on multiple dimensions (e.g., sensory, affective, cognitive, and behavioral) on 10-point scales [37]. This scale has good reliability and validity with internal consistency ranging from 0.7 to 0.9 across 4 dimensions in previous studies of patients with cancer [37,38]. Also administered was the 7-item Patient Reported Outcomes Measurement Information System-Fatigue subscale (PROMIS-F), which had an internal consistency reliability coefficient of 0.81 when validated in multiple disease populations including cancer [39]. Fatigue is essentially a subject experience and measurement of fatigue is a challenging process [40]. Utilizing two validated fatigue instruments for a biomarker-directed hypothesis strengthens our findings. Depressive symptoms were screened using the Hamilton Depression Rating Scale (HAM-D) at each time point. HAM-D is a 21-item, clinician-rated paper questionnaire with good internal reliability (α = 0.81 to 0.98) [41].

4.1. Gene Expression Chip Processing

At each time point, 2.5 mL of blood from each subject was collected using RNA PAXGene tubes (Qiagen, Frederick, MD, USA) and stored at −80 °C freezer until ready for RNA extraction. Total RNA were extracted from leukocytes following the PAXgene blood kit procedure (PreAnalytix, Valencia, CA, USA). RNA extraction, purification, cDNA and cRNA synthesis, amplication, hybridization, scanning, and data analyses were conducted following standard protocols as previously described [42]. Summary of Affymetrix microarray chips (HG U133 Plus 2.0, Santa Clara, CA, USA), normalization of raw signal intensity values, transformation of quantile normalization value, detection of outliers, and statistical methods used followed the same procedures that were previously described [14]. The most up-regulated gene was selected for confirmation by quantitative real time polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay (ELISA).

4.2. Confirmatory Quantitative Real Time Polymerase Chain Reaction (qPCR)

A total of 100 to 150 ng of extracted RNA per sample was converted to cDNA using the RT2 First Strand Kit (Qiagen, Frederick, MD, USA) and subsequently diluted tenfold with dH2O. Q-PCR amplification mixers (10 μL) contained 1 μL of diluted first strand cDNA, 5 μL of 2 × RT2 Real Time SYBR Green/Rox PCR Master Mix (Qiagen, Frederick, MD, USA) and 400 nM of forward and reverse primers. GADPH and ACTB were used as reference genes. Primers for GAPDH (reference position 756), ACTB (reference position 730), and IFI27 (reference position 149) were used for normalization of data and amplification of Interferon, alpha-inducible protein 27 (Qiagen, Frederick, MD, USA). All samples were tested in triplicate. Reactions were carried out on ABI PRISM 7900HT Sequence Detection System and were subjected to initial ten minute denaturation at 95 °C and 40 cycles at 95 °C for 15 seconds and 60 °C for 60 seconds. When calculating for delta Ct values, geometric means of Ct values of the 2 reference genes were used.

4.3. Confirmation by Enzyme-Linked Immunosorbent Assay (ELISA)

IFI27 expression was confirmed using the human interferon alpha-inducible protein 27, mitochondrial isoform 1 ELISA kit (Cusabio, Wuhan, China, catalog # CSB-EL011009HU). About 3 mL of whole blood collected using EDTA tubes were centrifuged (1400× g for 10 minutes at 4 °C) and cells were separated and stored at −80 °C in a freezer. The cell pellets (erythrocytes and white blood cells) were thawed on ice and lysed in 2 volumes of cell extraction buffer (10 mM Tris HCl, pH 7.4, 100 mM NaCl, 1 mM EDTA, 1mM EGTA, 1% Triton, 0.1% SDS and 10% glycerol with protease inhibitors). Protein concentrations were determined using Pierce® BCA protein assay kit (Thermo Scientific, Rockford, IL, USA). ELISA was performed using 100 μL of diluted cell lysate samples following manufacturer’s instruction. All samples were tested in triplicate. The final concentration of each sample was normalized to the amount of cell lysate (mg). The plates were read in a micro plate reader VICTOR3 at 450 nm for 0.1 s.

4.4. Statistical Methods

Descriptive statistics were calculated for the participants’ demographic and clinical characteristics. Gene expression data were analyzed using Partek Genome Suite version 6.12 (Partek Inc., St. Louis, MO, USA). Differentially expressed genes were selected using the following criteria: fold change >2.5 or <−2.5 and a p-value of <0.01. We used independent t-tests to describe the mean differences of fatigue and gene/protein expressions from subjects at baseline (D0) and matched controls. Repeated-measures ANOVA was used to compare the mean differences of fatigue and gene/protein expressions at baseline, midpoint, and at the end of the treatment for the EBRT subjects. Individual growth curve analysis was used to describe how variables change over time during EBRT from baseline to the end of the treatment. All statistical analyses were conducted using SPSS 19.0 (IBM Corporation, Armonk, NY, USA), and R 2.15.0 for window (available online: http://cran.r-project.org/bin/windows/base/old/2.15.0/).
Linear mixed effect model was used to determine the association between changes in fatigue and gene/protein expression. The intercept and slope of the individual growth curve for fatigue scores, gene expression, and protein concentrations were estimated using mixed model analysis. In the model, we used time variables in terms of days during EBRT and a simple linear relationship was assumed in the time variable. The intercepts and slopes of the outcome variables (changes in fatigue scores) and the predictors (changes in gene expression and changes in protein concentration) for each participating individual were estimated in the mixed model. In addition to the analyses, the changes over time were modeled in a linear fashion. The slope of the individual growth curve represents the estimated rate of change over time during EBRT and the intercept of the individual growth curve represents the estimated baseline value for each patient based on a linear trajectory of their fatigue scores. To determine the associations between changes in fatigue scores, gene expression, and protein concentration, the intercepts and slopes of fatigue scores and clinical predictors (gene and protein expressions) were estimated based on a mixed model for each patient and the resulting estimated intercepts and slopes were correlated. The missing data were not assigned any replacement values and were not used for the analysis.

5. Conclusions

Fatigue is a commonly reported symptom and can be debilitating for many cancer patients at any stage of the disease or even during survivorship. Without knowing the molecular-genetic etiology of fatigue induced by cancer and/or its treatment, interventional options to manage it will remain challenging. Identification of possible biomarkers for fatigue associated with cancer may provide insights on possible therapeutic targets. Determining the functional significance of the association between fatigue symptoms and IFI27 expression may identify key novel pathways, for example pro-apoptotic signals, oxidative stress, or para-inflammatory bystander response, that supports the proposed assumption that inflammation and mitochondrial dysfunction play major roles in the intensification of fatigue during cancer therapy.

Supplementary Information

ijms-14-16943-s001.pdf

Acknowledgements

This study is fully supported by the Intramural Research Program of the National Institute of Nursing Research of the National Institutes of Health, Bethesda, Maryland (Protocol # 09-NR-0088). We appreciate the guidance of Dan Wang, especially in serving as resource during the qPCR and ELISA experiments. We also would like to thank Joan Austin and Brigit Sullivan, Biomedical Librarian, National Institutes of Health (NIH) Library Writing Center, for editing assistance.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Wong, W.W.; Vora, S.A.; Schild, S.E.; Ezzell, G.A.; Andrews, P.E.; Ferrigni, R.G.; Swanson, S.K. Radiation dose escalation for localized prostate cancer: Intensity-modulated radiotherapy versus permanent transperineal brachytherapy. Cancer 2009, 115, 5596–5606. [Google Scholar]
  2. Basivireddy, J.; Jacob, M.; Balasubramanian, K.A. Oral glutamine attenuates indomethacin-induced small intestinal damage. Clin. Sci. (Lond. ) 2004, 107, 281–289. [Google Scholar]
  3. Smets, E.M.; Visser, M.R.; Willems-Groot, A.F.; Garssen, B.; Oldenburger, F.; van Tienhoven, G.; de Haes, J.C. Fatigue and radiotherapy: A experience in patients undergoing treatment. Br. J. Cancer 1998, 78, 899–906. [Google Scholar]
  4. Miaskowski, C.; Paul, S.M.; Cooper, B.A.; Lee, K.; Dodd, M.; West, C.; Aouizerat, B.E.; Swift, P.S.; Wara, W. Trajectories of fatigue in men with prostate cancer before, during, and after radiation therapy. J. Pain Symptom Manage 2008, 35, 632–643. [Google Scholar]
  5. Saligan, L.N.; Kim, H.S. A systematic review of the association between immunogenomic markers and cancer-related fatigue. Brain. Behav. Immun 2012, 26, 830–848. [Google Scholar]
  6. Bower, J.E.; Ganz, P.A.; Tao, M.L.; Hu, W.; Belin, T.R.; Sepah, S.; Cole, S.; Aziz, N. Inflammatory biomarkers and fatigue during radiation therapy for breast and prostate cancer. Clin. Cancer Res 2009, 15, 5534–5540. [Google Scholar]
  7. Wratten, C.; Kilmurray, J.; Nash, S.; Seldon, M.; Hamilton, C.S.; O’Brien, P.C.; Denham, J.W. Fatigue during breast radiotherapy and its relationship to biological factors. Int. J. Radiat. Oncol. Biol. Phys 2004, 59, 160–167. [Google Scholar]
  8. Bower, J.E.; Ganz, P.A.; Irwin, M.R.; Kwan, L.; Breen, E.C.; Cole, S.W. Inflammation and behavioral symptoms after breast cancer treatment: do fatigue, depression, and sleep disturbance share a common underlying mechanism? J. Clin. Oncol 2011, 29, 3517–3522. [Google Scholar]
  9. Liu, L.; Mills, P.J.; Rissling, M.; Fiorentino, L.; Natarajan, L.; Dimsdale, J.E.; Sadler, G.R.; Parker, B.A.; Ancoli-Israel, S. Fatigue and sleep quality are associated with changes in inflammatory markers in breast cancer patients undergoing chemotherapy. Brain. Behav. Immun 2012, 26, 706–713. [Google Scholar]
  10. Aouizerat, B.E.; Dodd, M.; Lee, K.; West, C.; Paul, S.M.; Cooper, B.A.; Wara, W.; Swift, P.; Dunn, L.B.; Miaskowski, C. Preliminary Evidence of a Genetic Association Between Tumor Necrosis Factor Alpha and the Severity of Sleep Disturbance and Morning Fatigue. Biol. Res. Nurs 2009, 11, 27–41. [Google Scholar]
  11. Belloni, P.; Latini, P.; Palitti, F. Radiation-induced bystander effect in healthy G0 human lymphocytes: Biological and clinical significance. Mutat. Res. Fundam. Mol. Mech. Mutagenes 2011, 713, 32–38. [Google Scholar]
  12. Mariotti, L.G.; Bertolotti, A.; Ranza, E.; Babini, G.; Ottolenghi, A. Investigation of the mechanisms underpinning IL-6 cytokine release in bystander responses: the roles of radiation dose, radiation quality and specific ROS/RNS scavengers. Int. J. Radiat. Biol 2012, 88, 751–762. [Google Scholar]
  13. York, J.M.; Blevins, N.A.; Meling, D.D.; Peterlin, M.B.; Gridley, D.S.; Cengel, K.A.; Freund, G.G. The biobehavioral and neuroimmune impact of low-dose ionizing radiation. Brain. Behav. Immun 2012, 26, 218–227. [Google Scholar]
  14. Khayyal, M.T.; El-Ghazaly, M.A.; El-Hazek, R.M.; Nada, A.S. The effects of celecoxib, a COX-2 selective inhibitor, on acute inflammation induced in irradiated rats. Inflammopharmacology 2009, 17, 255–266. [Google Scholar]
  15. Donovan, K.; Jacobsen, P.; Andrykowski, M.; Winters, E.; Balducci, L.; Malik, U.; Kenady, D.; McGrath, P. Course of fatigue in women receiving chemotherapy and/or radiotherapy for early stage breast cancer. J. Pain Symptom Manage 2004, 28, 373–380. [Google Scholar]
  16. Wright, E.G. Manifestations and mechanisms of non-targeted effects of ionizing radiation. Mutat. Res. Fundam. Mol. Mech. Mutagenes 2010, 687, 28–33. [Google Scholar]
  17. Medzhitov, R. Origin and physiological roles of inflammation. Nature 2008, 454, 428–435. [Google Scholar]
  18. Wood, L.J.; Nail, L.M.; Perrin, N.A.; Elsea, C.R.; Fischer, A.; Druker, B.J. The Cancer Chemotherapy Drug Etoposide (VP-16) Induces Proinflammatory Cytokine Production and Sickness Behavior–like Symptoms in a Mouse Model of Cancer Chemotherapy–Related Symptoms. Biol.Res. Nurs 2006, 8, 157–169. [Google Scholar]
  19. Hsiao, C.P.; Wang, D.; Kaushal, A.; Saligan, L. Mitochondria-related gene expression changes are associated with fatigue in patients with nonmetastatic prostate cancer receiving external beam radiation therapy. Cancer Nurs 2012, 36, 189–197. [Google Scholar]
  20. Saligan, L.N.; Hsiao, C.P.; Wang, D.; Wang, X.M.; John, L.S.; Kaushal, A.; Citrin, D.; Barb, J.J.; Munson, P.J.; Dionne, R.A. Upregulation of alpha-synuclein during localized radiation therapy signals the association of cancer-related fatigue with the activation of inflammatory and neuroprotective pathways. Brain. Behav. Immun 2012, 27, 63–70. [Google Scholar]
  21. Yost, K.J.; Eton, D.T.; Garcia, S.F.; Cella, D. Minimally important differences were estimated for six Patient-Reported Outcomes Measurement Information System-Cancer scales in advanced-stage cancer patients. J. Clin. Epidemiol 2011, 64, 507–516. [Google Scholar]
  22. Burnette, B.C.; Liang, H.; Lee, Y.; Chlewicki, L.; Khodarev, N.N.; Weichselbaum, R.R.; Fu, Y.X.; Auh, S.L. The efficacy of radiotherapy relies upon induction of type I interferon-dependent innate and adaptive immunity. Cancer Res 2011, 71, 2488–2496. [Google Scholar]
  23. Rosebeck, S.; Leaman, D.W. Mitochondrial localization and pro-apoptotic effects of the interferon-inducible protein ISG12a. Apoptosis 2008, 13, 562–572. [Google Scholar]
  24. Rasmussen, U.B.; Wolf, C.; Mattei, M.-G.; Chenard, M.-P.; Bellocq, J.-P.; Chambon, P.; Rio, M.-C.; Basset, P. Identification of a New Interferon-α-inducible Gene (p27) on Human Chromosome 14q32 and Its Expression in Breast Carcinoma. Cancer Res 1993, 53, 4096–4101. [Google Scholar]
  25. Kelly, J.M.; Porter, A.C.; Chernajovsky, Y.; Gilbert, C.S.; Stark, G.R.; Kerr, I.M. Characterization of a human gene inducible by alpha- and beta-interferons and its expression in mouse cells. EMBO J 1986, 5, 1601–1606. [Google Scholar]
  26. Belardelli, F.; Ferrantini, M. Cytokines as a link between innate and adaptive antitumor immunity. Trends Immunol 2002, 23, 201–208. [Google Scholar]
  27. Liu, Y.J.; Kanzler, H.; Soumelis, V.; Gilliet, M. Dendritic cell lineage, plasticity and cross-regulation. Nat. Immunol 2001, 2, 585–589. [Google Scholar]
  28. Naing, A.; Reuben, J.M.; Camacho, L.H.; Gao, H.; Lee, B.N.; Cohen, E.N.; Verschraegen, C.; Stephen, S.; Aaron, J.; Hong, D.; et al. Phase I Dose Escalation Study of Sodium Stibogluconate (SSG), a Protein Tyrosine Phosphatase Inhibitor, Combined with Interferon Alpha for Patients with Solid Tumors. J. Cancer 2011, 2, 81–89. [Google Scholar]
  29. Maher, K.J.; Klimas, N.G.; Fletcher, M.A. Chronic fatigue syndrome is associated with diminished intracellular perforin. Clin. Exp. Immunol 2005, 142, 505–511. [Google Scholar]
  30. Bower, J.E.; Ganz, P.A.; Aziz, N.; Fahey, J.L. Fatigue and proinflammatory cytokine activity in breast cancer survivors. Psychosom. Med 2002, 64, 604–611. [Google Scholar]
  31. Collado-Hidalgo, A.; Bower, J.E.; Ganz, P.A.; Cole, S.W.; Irwin, M.R. Inflammatory biomarkers for persistent fatigue in breast cancer survivors. Clin. Cancer Res 2006, 12, 2759–2766. [Google Scholar]
  32. Bower, J.E.; Ganz, P.A.; Aziz, N.; Olmstead, R.; Irwin, M.R.; Cole, S.W. Inflammatory responses to psychological stress in fatigued breast cancer survivors: relationship to glucocorticoids. Brain. Behav. Immun 2007, 21, 251–258. [Google Scholar]
  33. Eggermont, A.M.; Suciu, S.; Santinami, M.; Testori, A.; Kruit, W.H.; Marsden, J.; Punt, C.J.; Sales, F.; Gore, M.; Mackie, R.; et al. Adjuvant therapy with pegylated interferon alfa-2b versus observation alone in resected stage III melanoma: final results of EORTC 18991, a randomised phase III trial. Lancet 2008, 372, 117–126. [Google Scholar]
  34. Groenewegen, G.; Walraven, M.; Vermaat, J.; de Gast, B.; Witteveen, E.; Giles, R.; Haanen, J.; Voest, E. Targeting the endothelin axis with atrasentan, in combination with IFN-alpha, in metastatic renal cell carcinoma. Br. J. Cancer 2012, 106, 284–289. [Google Scholar]
  35. Felger, J.C.; Alagbe, O.; Pace, T.W.; Woolwine, B.J.; Hu, F.; Raison, C.L.; Miller, A.H. Early activation of p38 mitogen activated protein kinase is associated with interferon-alpha-induced depression and fatigue. Brain. Behav. Immun 2011, 25, 1094–1098. [Google Scholar]
  36. Fransson, P. Fatigue in prostate cancer patients treated with external beam radiotherapy: A prospective 5-year long-term patient-reported evaluation. J. Cancer res. Ther 2010, 6, 516–520. [Google Scholar]
  37. Piper, B.F.; Dibble, S.L.; Dodd, M.J.; Weiss, M.C.; Slaughter, R.E.; Paul, S.M. The revised Piper Fatigue Scale: psychometric evaluation in women with breast cancer. Oncol. Nurs. Forum 1998, 25, 677–684. [Google Scholar]
  38. Byar, K.L.; Berger, A.M.; Bakken, S.L.; Cetak, M.A. Impact of adjuvant breast cancer chemotherapy on fatigue, other symptoms, and quality of life. Oncol. Nurs. Forum 2006, 33, E18–E26. [Google Scholar]
  39. Hays, R.D.; Bjorner, J.B.; Revicki, D.A.; Spritzer, K.L.; Cella, D. Development of physical and mental health summary scores from the patient-reported outcomes measurement information system (PROMIS) global items. Qual. Life Res 2009, 18, 873–880. [Google Scholar]
  40. Dittner, A.J.; Wessely, S.C.; Brown, R.G. The assessment of fatigue: A practical guide for clinicians and researchers. J. Psychosom. Res 2004, 56, 157–170. [Google Scholar]
  41. Lydiatt, W.M.; Denman, D.; McNeilly, D.P.; Puumula, S.E.; Burke, W.J. A randomized, placebo-controlled trial of citalopram for the prevention of major depression during treatment for head and neck cancer. Arch. Otolaryngol. Head Neck Surg 2008, 134, 528–535. [Google Scholar]
  42. Wang, X.M.; Wu, T.X.; Hamza, M.; Ramsay, E.S.; Wahl, S.M.; Dionne, R.A. Rofecoxib modulates multiple gene expression pathways in a clinical model of acute inflammatory pain. Pain 2007, 128, 136–147. [Google Scholar]
Figure 1. Fatigue scores of the sample. (A) Fatigue scores of 20 men with non-metastatic prostate cancer significantly changed (p = 0.001) from baseline to midpoint (Day 21), and completion (Day 42) of external beam radiation therapy (EBRT) as measured by the revised Piper Fatigue Scale (rPFS); (B) Similarly, fatigue scores of the same 20 subjects significantly changed (p = 0.002) from baseline to Day 21, and Day 42 of EBRT as measured by the Patient Reported Outcomes Measurement Information System-Fatigue subscale (PROMIS-F).
Figure 1. Fatigue scores of the sample. (A) Fatigue scores of 20 men with non-metastatic prostate cancer significantly changed (p = 0.001) from baseline to midpoint (Day 21), and completion (Day 42) of external beam radiation therapy (EBRT) as measured by the revised Piper Fatigue Scale (rPFS); (B) Similarly, fatigue scores of the same 20 subjects significantly changed (p = 0.002) from baseline to Day 21, and Day 42 of EBRT as measured by the Patient Reported Outcomes Measurement Information System-Fatigue subscale (PROMIS-F).
Ijms 14 16943f1
Figure 2. Confirmation of IFI27 expression. (A) Interferon alpha-inducible protein 27 (IFI27) significantly changed from baseline to day 21 and day 42 of external beam radiation therapy (EBRT) using quantitative real time polymerase chain reaction (qPCR) as measured by delta cycle time (ΔCt, an approximation method). Ct representes level of gene expression; the less Ct value, the higher the gene expression level. The Ct value of IFI27 decreases over time indicating an over expression of IFI27 over time; (B) There was also a significant change in the concentration (ng/mg) of the human interferon alpha-inducible protein 27, mitochondrial isoform 1 as measured by enzyme-linked immunosorbent assay (ELISA) from baseline to day 21, and day 42 of EBRT.
Figure 2. Confirmation of IFI27 expression. (A) Interferon alpha-inducible protein 27 (IFI27) significantly changed from baseline to day 21 and day 42 of external beam radiation therapy (EBRT) using quantitative real time polymerase chain reaction (qPCR) as measured by delta cycle time (ΔCt, an approximation method). Ct representes level of gene expression; the less Ct value, the higher the gene expression level. The Ct value of IFI27 decreases over time indicating an over expression of IFI27 over time; (B) There was also a significant change in the concentration (ng/mg) of the human interferon alpha-inducible protein 27, mitochondrial isoform 1 as measured by enzyme-linked immunosorbent assay (ELISA) from baseline to day 21, and day 42 of EBRT.
Ijms 14 16943f2
Figure 3. Correlations between changes in fatigue scores and gene/protein expressions of IFI27. (A) Changes in fatigue measured by the revised Piper Fatigue Scale was significantly associated (R = 0.56, p = 0.01) with changes in the expression of interferon alpha-inducible protein 27 (IFI27) using qPCR (from baseline to midpoint of external beam radiation therapy); (B) Changes in fatigue measured by the Patient Reported Outcomes Measurement Information System-Fatigue subscale (PROMIS-F) was significantly associated (R = 0.64, p = 0.01) with changes in ELISA interferon alpha-inducible protein 27 (IFI27) concentration (from baseline to midpoint of external beam radiation therapy).
Figure 3. Correlations between changes in fatigue scores and gene/protein expressions of IFI27. (A) Changes in fatigue measured by the revised Piper Fatigue Scale was significantly associated (R = 0.56, p = 0.01) with changes in the expression of interferon alpha-inducible protein 27 (IFI27) using qPCR (from baseline to midpoint of external beam radiation therapy); (B) Changes in fatigue measured by the Patient Reported Outcomes Measurement Information System-Fatigue subscale (PROMIS-F) was significantly associated (R = 0.64, p = 0.01) with changes in ELISA interferon alpha-inducible protein 27 (IFI27) concentration (from baseline to midpoint of external beam radiation therapy).
Ijms 14 16943f3
Table 1. Demographic and clinical characteristics of study sample at baseline.
Table 1. Demographic and clinical characteristics of study sample at baseline.
VariablesParticipants (n = 40)p value

Patients (n = 20)
Mean (±SD) or N (%)
Controls (n = 20)
Mean (±SD) or N (%)
Mean Age, years65.6 ± 7.562.8 ± 6.10.36

T-stage

T1c7 (35%)15 (75%)
T2a7 (35%)5 (25%)
T2b- T2c3 (15%)
T3a- T3b3 (15%)

Gleason Score

6–710 (50%)20 (100%)
8–1010 (50%)
Karnofsky performance scale89.5 (±2.2)95.2 (±1.2)0.91
Testosterone (ng/dL)211.7 (±167.5)
Thyroid Stimulating Hormone (μIU/mL)2.01 (±1.1)
PSA (ng/mL)15.8 (±13.2)2.68 (±1.9)0.02
Albumin (g/dL)3.9 (±0.3)
Hemoglobin (mg/dL)13.7 (±0.9)
Hematocrit (%)40.3 (±3.8)42.1 (±1.7)0.22
Depression (HAM-D)1.2 (±2.1)0.5 (±0.6)0.11
Fatigue score (rPFS)1.51 (±1.4)1.46 (±1.7)0.93

Total EBRT dosage (Gray)

75.618 (90%)
68.42 (10%)
ng/dL = nanogram per deciliter; μIU/mL = micro International Units per milliliter; ng/mL = nanogram per milliliter; PSA = prostate specific antigen; g = gram; mg = milligram; Day 0 = baseline, before external beam radiation therapy (EBRT); HAM-D = Hamilton Depression Scale; rPFS = Revised Piper Fatigue Scale.

Share and Cite

MDPI and ACS Style

Hsiao, C.-P.; Araneta, M.; Wang, X.M.; Saligan, L.N. The Association of IFI27 Expression and Fatigue Intensification during Localized Radiation Therapy: Implication of a Para-Inflammatory Bystander Response. Int. J. Mol. Sci. 2013, 14, 16943-16957. https://doi.org/10.3390/ijms140816943

AMA Style

Hsiao C-P, Araneta M, Wang XM, Saligan LN. The Association of IFI27 Expression and Fatigue Intensification during Localized Radiation Therapy: Implication of a Para-Inflammatory Bystander Response. International Journal of Molecular Sciences. 2013; 14(8):16943-16957. https://doi.org/10.3390/ijms140816943

Chicago/Turabian Style

Hsiao, Chao-Pin, Maria Araneta, Xiao Min Wang, and Leorey N. Saligan. 2013. "The Association of IFI27 Expression and Fatigue Intensification during Localized Radiation Therapy: Implication of a Para-Inflammatory Bystander Response" International Journal of Molecular Sciences 14, no. 8: 16943-16957. https://doi.org/10.3390/ijms140816943

APA Style

Hsiao, C. -P., Araneta, M., Wang, X. M., & Saligan, L. N. (2013). The Association of IFI27 Expression and Fatigue Intensification during Localized Radiation Therapy: Implication of a Para-Inflammatory Bystander Response. International Journal of Molecular Sciences, 14(8), 16943-16957. https://doi.org/10.3390/ijms140816943

Article Metrics

Back to TopTop