Post-Transcriptional Controls by Ribonucleoprotein Complexes in the Acquisition of Drug Resistance
Abstract
:1. Introduction
2. RBPs and Drug Resistance
2.1. HuR
2.1.1. Regulation of mRNA Stability and Drug Resistance
2.1.2. Regulation of Translation and Drug Resistance
2.2. RBM
2.3. IMP3
2.4. CUG Binding Protein 1
2.5. Butyrate Response Factor 1
2.6. Other RBPs Implicated in Drug Resistance
3. MiRNAs and Drug Resistance
3.1. Cisplatin Resistance and miRNAs
3.2. 5-Fluouracil (5-FU) Resistance and miRNAs
3.3. Paclitaxel Resistance and miRNAs
3.4. Tamoxifen Resistance and miRNAs
3.5. Multi-Drug Resistance and miRNAs
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Coley, H.M. Overcoming multidrug resistance in cancer: Clinical studies of p-glycoprotein inhibitors. Meth. Mol. Biol 2010, 596, 341–358. [Google Scholar]
- Janne, P.A.; Gray, N.; Settleman, J. Factors underlying sensitivity of cancers to small-molecule kinase inhibitors. Nat. Rev. Drug Discov 2009, 8, 709–723. [Google Scholar]
- Raguz, S.; Yague, E. Resistance to chemotherapy: New treatments and novel insights into an old problem. Brit. J. Cancer 2008, 99, 387–391. [Google Scholar]
- Tan, D.S.; Gerlinger, M.; Teh, B.T.; Swanton, C. Anti-cancer drug resistance: Understanding the mechanisms through the use of integrative genomics and functional RNA interference. Eur. J. Cancer 2010, 46, 2166–2177. [Google Scholar]
- Teacher, B.A. Cancer Drug Resistance; Humana Press Inc: Totowa, NJ USA,, 2006. [Google Scholar]
- Roberti, A.; La Sala, D.; Cinti, C. Multiple genetic and epigenetic interacting mechanisms contribute to clonally selection of drug-resistant tumors: Current views and new therapeutic prospective. J. Cell Physiol 2006, 207, 571–581. [Google Scholar]
- Glasspool, R.M.; Teodoridis, J.M.; Brown, R. Epigenetics as a mechanism driving polygenic clinical drug resistance. Br. J. Cancer 2006, 94, 1087–1092. [Google Scholar]
- Fojo, T. Multiple paths to a drug resistance phenotype: Mutations, translocations, deletions and amplification of coding genes or promoter regions, epigenetic changes and microRNAs. Drug Resist. Updat 2007, 10, 59–67. [Google Scholar]
- Mishra, P.J. The miRNA-drug resistance connection: A new era of personalized medicine using noncoding RNA begins. Pharmacogenomics 2012, 13, 1321–1324. [Google Scholar]
- Mishra, P.J.; Bertino, J.R. MicroRNA polymorphisms: The future of pharmacogenomics, molecular epidemiology and individualized medicine. Pharmacogenomics 2009, 10, 399–416. [Google Scholar]
- Lee, E.K.; Gorospe, M. Coding region: The neglected post-transcriptional code. RNA Biol 2011, 8, 44–48. [Google Scholar]
- Mourelatos, Z.; Dostie, J.; Paushkin, S.; Sharma, A.; Charroux, B.; Abel, L.; Rappsilber, J.; Mann, M.; Dreyfuss, G. miRNPs: A novel class of ribonucleoproteins containing numerous microRNAs. Genes. Dev 2002, 16, 720–728. [Google Scholar]
- Lunde, B.M.; Moore, C.; Varani, G. RNA-binding proteins: Modular design for efficient function. Nat. Rev. Mol. Cell Biol 2007, 8, 479–490. [Google Scholar]
- Glisovic, T.; Bachorik, J.L.; Yong, J.; Dreyfuss, G. RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett 2008, 582, 1977–1986. [Google Scholar]
- Van Kouwenhove, M.; Kedde, M.; Agami, R. MicroRNA regulation by RNA-binding proteins and its implications for cancer. Nat. Rev. Cancer 2011, 11, 644–656. [Google Scholar]
- Musunuru, K. Cell-specific RNA-binding proteins in human disease. Trends Cardiovasc. Med 2003, 13, 188–195. [Google Scholar]
- Lukong, K.E.; Chang, K.W.; Khandjian, E.W.; Richard, S. RNA-binding proteins in human genetic disease. Trends Genet 2008, 24, 416–425. [Google Scholar]
- Kim, V.N. MicroRNA biogenesis: Coordinated cropping and dicing. Nat. Rev. Mol. Cell Biol 2005, 6, 376–385. [Google Scholar]
- Moore, M.J. From birth to death: The complex lives of eukaryotic mRNAs. Science 2005, 302, 1514–1518. [Google Scholar]
- Pullmann, R., Jr; Kim, H.H.; Abdelmohsen, K.; Lal, A.; Martindale, J.L.; Yang, X.; Gorospe, M. Analysis of turnover and translation regulatory RNA-binding protein expression through binding to cognate mRNAs. Mol. Cell Biol. 2007, 27, 6265–6278. [Google Scholar]
- Ma, W.J.; Cheng, S.; Campbell, C.; Wright, A.; Furneaux, H. Cloning and characterization of HuR, a ubiquitously expressed Elav-like protein. J. Biol. Chem 1996, 271, 8144–8151. [Google Scholar]
- Srikantan, S.; Gorospe, M. HuR function in disease. Front. Biosci 2012, 17, 189–205. [Google Scholar]
- Wang, H.; Zeng, F.; Liu, Q.; Liu, H.; Liu, Z.; Niu, L.; Teng, M.; Li, X. The structure of the ARE-binding domains of Hu antigen R (HuR) undergoes conformational changes during RNA binding. Acta Crystallogr. D 2013, 69, 373–380. [Google Scholar]
- Hostetter, C.; Licata, L.A.; Witkiewicz, A.; Costantino, C.L.; Yeo, C.J.; Brody, J.R.; Keen, J.C. Cytoplasmic accumulation of the RNA binding protein HuR is central to tamoxifen resistance in estrogen receptor positive breast cancer cells. Cancer Biol. Ther 2008, 7, 1496–1506. [Google Scholar]
- Pryzbylkowski, P.; Obajimi, O.; Keen, J.C. Trichostatin A and 5 Aza-2′ deoxycytidine decrease estrogen receptor mRNA stability in ER positive MCF7 cells through modulation of HuR. Breast Cancer Res. Treat 2008, 111, 15–25. [Google Scholar]
- Hsia, T.C.; Tu, C.Y.; Chen, Y.J.; Wei, Y.L.; Yu, M.C.; Hsu, S.C.; Tsai, S.L.; Chen, W.S.; Yeh, M.H.; Yen, C.J.; et al. Lapatinib-mediated cyclooxygenase-2 expression via epidermal growth factor receptor/HuR interaction enhances the aggressiveness of triple-negative breast cancer cells. Mol. Pharmacol 2013, 83, 857–869. [Google Scholar]
- Rusnak, D.W.; Affleck, K.; Cockerill, S.G.; Stubberfield, C.; Harris, R.; Page, M.; Smith, K.J.; Guntrip, S.B.; Carter, M.C.; Shaw, R.J.; et al. The characterization of novel, dual ErbB-2/EGFR, tyrosine kinase inhibitors: Potential therapy for cancer. Cancer Res 2001, 61, 7196–7203. [Google Scholar]
- Liu, Z.M.; Tseng, J.T.; Hong, D.Y.; Huang, H.S. Suppression of TG-interacting factor sensitizes arsenic trioxide-induced apoptosis in human hepatocellular carcinoma cells. Biochem. J 2011, 438, 349–358. [Google Scholar]
- Costantino, C.L.; Witkiewicz, A.K.; Kuwano, Y.; Cozzitorto, J.A.; Kennedy, E.P.; Dasgupta, A.; Keen, J.C.; Yeo, C.J.; Gorospe, M.; Brody, J.R. The role of HuR in gemcitabine efficacy in pancreatic cancer: HuR Up-regulates the expression of the gemcitabine metabolizing enzyme deoxycytidine kinase. Cancer Res 2009, 69, 4567–4572. [Google Scholar]
- Hazra, S.; Ort, S.; Konrad, M.; Lavie, A. Structural and kinetic characterization of human deoxycytidine kinase variants able to phosphorylate 5-substituted deoxycytidine and thymidine analogues. Biochemistry 2010, 49, 6784–6790. [Google Scholar]
- Sebastiani, V.; Ricci, F.; Rubio-Viqueira, B.; Kulesza, P.; Yeo, C.J.; Hidalgo, M.; Klein, A.; Laheru, D.; Iacobuzio-Donahue, C.A. Immunohistochemical and genetic evaluation of deoxycytidine kinase in pancreatic cancer: Relationship to molecular mechanisms of gemcitabine resistance and survival. Clin. Cancer Res 2006, 12, 2492–2497. [Google Scholar]
- Filippova, N.; Yang, X.; Wang, Y.; Gillespie, G.Y.; Langford, C.; King, P.H.; Wheeler, C.; Nabors, L.B. The RNA-binding protein HuR promotes glioma growth and treatment resistance. Mol. Cancer Res 2011, 9, 648–659. [Google Scholar]
- Prislei, S.; Martinelli, E.; Mariani, M.; Raspaglio, G.; Sieber, S.; Ferrandina, G.; Shahabi, S.; Scambia, G.; Ferlini, C. miR-200c and HuR in ovarian cancer. BMC Cancer 2013, 13, 72. [Google Scholar]
- Raspaglio, G.; de Maria, I.; Filippetti, F.; Martinelli, E.; Zannoni, G.F.; Prislei, S.; Ferrandina, G.; Shahabi, S.; Scambia, G.; Ferlini, C. HuR regulates beta-tubulin isotype expression in ovarian cancer. Cancer Res 2010, 70, 5891–5900. [Google Scholar]
- Latorre, E.; Tebaldi, T.; Viero, G.; Sparta, A.M.; Quattrone, A.; Provenzani, A. Downregulation of HuR as a new mechanism of doxorubicin resistance in breast cancer cells. Mol. Cancer 2012, 11, 13. [Google Scholar]
- Srikantan, S.; Abdelmohsen, K.; Lee, E.K.; Tominaga, K.; Subaran, S.S.; Kuwano, Y.; Kulshrestha, R.; Panchakshari, R.; Kim, H.H.; Yang, X.; et al. Translational control of TOP2A influences doxorubicin efficacy. Mol. Cell Biol 2011, 31, 3790–3801. [Google Scholar]
- Wright, C.F.; Oswald, B.W.; Dellis, S. Vaccinia virus late transcription is activated in vitro by cellular heterogeneous nuclear ribonucleoproteins. J. Biol. Chem 2001, 276, 40680–40686. [Google Scholar]
- Jogi, A.; Brennan, D.J.; Ryden, L.; Magnusson, K.; Ferno, M.; Stal, O.; Borgquist, S.; Uhlen, M.; Landberg, G.; Pahlman, S.; Ponten, F.; Jirstrom, K. Nuclear expression of the RNA-binding protein RBM3 is associated with an improved clinical outcome in breast cancer. Modern Pathol 2009, 22, 1564–1574. [Google Scholar]
- Ehlen, A.; Brennan, D.J.; Nodin, B.; O’Connor, D.P.; Eberhard, J.; Alvarado-Kristensson, M.; Jeffrey, I.B.; Manjer, J.; Brandstedt, J.; Uhlen, M.; et al. Expression of the RNA-binding protein RBM3 is associated with a favourable prognosis and cisplatin sensitivity in epithelial ovarian cancer. J. Transl. Med 2010, 8, 78. [Google Scholar]
- Li, P.; Wang, K.; Zhang, J.; Zhao, L.; Liang, H.; Shao, C.; Sutherland, L.C. The 3p21.3 tumor suppressor RBM5 resensitizes cisplatin-resistant human non-small cell lung cancer cells to cisplatin. Cancer Epidemiol 2012, 36, 481–489. [Google Scholar]
- Samanta, S.; Pursell, B.; Mercurio, A.M. IMP3 Protein promotes chemoresistance in breast cancer cells by regulating breast cancer resistance protein (ABCG2) expression. J. Biol. Chem 2013, 288, 12569–12573. [Google Scholar]
- Chang, E.T.; Donahue, J.M.; Xiao, L.; Cui, Y.; Rao, J.N.; Turner, D.J.; Twaddell, W.S.; Wang, J.Y.; Battafarano, R.J. The RNA-binding protein CUG-BP1 increases survivin expression in oesophageal cancer cells through enhanced mRNA stability. Biochem. J 2012, 446, 113–123. [Google Scholar]
- Stoecklin, G.; Colombi, M.; Raineri, I.; Leuenberger, S.; Mallaun, M.; Schmidlin, M.; Gross, B.; Lu, M.; Kitamura, T.; Moroni, C. Functional cloning of BRF1, a regulator of ARE-dependent mRNA turnover. EMBO J 2002, 21, 4709–4718. [Google Scholar]
- Lee, S.K.; Kim, S.B.; Kim, J.S.; Moon, C.H.; Han, M.S.; Lee, B.J.; Chung, D.K.; Min, Y.J.; Park, J.H.; Choi, D.H.; et al. Butyrate response factor 1 enhances cisplatin sensitivity in human head and neck squamous cell carcinoma cell lines. Int. J. Cancer 2005, 117, 32–40. [Google Scholar]
- Stark, M.; Bram, E.E.; Akerman, M.; Mandel-Gutfreund, Y.; Assaraf, Y.G. Heterogeneous nuclear ribonucleoprotein H1/H2-dependent unsplicing of thymidine phosphorylase results in anticancer drug resistance. J. Biol. Chem 2011, 286, 3741–3754. [Google Scholar]
- Hu, G.; Wei, Y.; Kang, Y. The multifaceted role of MTDH/AEG-1 in cancer progression. Clin. Cancer Res 2009, 15, 5615–5620. [Google Scholar]
- Yoo, B.K.; Gredler, R.; Vozhilla, N.; Su, Z.Z.; Chen, D.; Forcier, T.; Shah, K.; Saxena, U.; Hansen, U.; Fisher, P.B.; Sarkar, D. Identification of genes conferring resistance to 5-fluorouracil. Proc. Natl. Acad. Sci. USA 2009, 106, 12938–12943. [Google Scholar]
- Liu, H.; Song, X.; Liu, C.; Xie, L.; Wei, L.; Sun, R. Knockdown of astrocyte elevated gene-1 inhibits proliferation and enhancing chemo-sensitivity to cisplatin or doxorubicin in neuroblastoma cells. J. Exp. Clin. Cancer Res 2009, 28, 19. [Google Scholar]
- Meng, X.; Zhu, D.; Yang, S.; Wang, X.; Xiong, Z.; Zhang, Y.; Brachova, P.; Leslie, K.K. Cytoplasmic Metadherin (MTDH) provides survival advantage under conditions of stress by acting as RNA-binding protein. J. Biol. Chem 2012, 287, 4485–4491. [Google Scholar]
- Ma, J.; Dong, C.; Ji, C. MicroRNA and drug resistance. Cancer Gene Ther 2010, 17, 523–531. [Google Scholar]
- Rukov, J.L.; Shomron, N. MicroRNA pharmacogenomics: Post-transcriptional regulation of drug response. Trends Mol. Med 2011, 17, 412–423. [Google Scholar]
- Hummel, R.; Wang, T.; Watson, D.I.; Michael, M.Z.; van der Hoek, M.; Haier, J.; Hussey, D.J. Chemotherapy-induced modification of microRNA expression in esophageal cancer. Oncol. Rep 2011, 26, 1011–1017. [Google Scholar]
- Rosenberg, B. Fundamental studies with cisplatin. Cancer 1985, 55, 2303–l2306. [Google Scholar]
- Stordal, B.; Davey, M. Understanding cisplatin resistance using cellular models. Iubmb. Life 2007, 59, 696–699. [Google Scholar] [Green Version]
- Fu, X.; Tian, J.; Zhang, L.; Chen, Y.; Hao, Q. Involvement of microRNA-93, a new regulator of PTEN/Akt signaling pathway, in regulation of chemotherapeutic drug cisplatin chemosensitivity in ovarian cancer cells. FEBS Lett 2012, 586, 1279–1286. [Google Scholar]
- Zang, Y.S.; Zhong, Y.F.; Fang, Z.; Li, B.; An, J. miR-155 inhibits the sensitivity of lung cancer cells to cisplatin via negative regulation of Apaf-1 expression. Cancer Gene Ther 2012, 19, 773–778. [Google Scholar]
- Pu, J.; Bai, D.; Yang, X.; Lu, X.; Xu, L.; Lu, J. Adrenaline promotes cell proliferation and increases chemoresistance in colon cancer HT29 cells through induction of miR-155. Biochem. Biophys. Res. Commun 2012, 428, 210–215. [Google Scholar]
- Zhou, L.; Qiu, T.; Xu, J.; Wang, T.; Wang, J.; Zhou, X.; Huang, Z.; Zhu, W.; Shu, Y.; Liu, P. miR-135a/b modulate cisplatin resistance of human lung cancer cell line by targeting MCL1. Pathol. Oncol. Res. 2013. [Google Scholar] [CrossRef]
- Zhu, W.; Shan, X.; Wang, T.; Shu, Y.; Liu, P. miR-181b modulates multidrug resistance by targeting BCL2 in human cancer cell lines. Int. J. Cancer 2010, 127, 2520–2529. [Google Scholar]
- Liu, S.; Tetzlaff, M.T.; Cui, R.; Xu, X. miR-200c inhibits melanoma progression and drug resistance through down-regulation of BMI-1. Amer. J. Pathol 2012, 181, 1823–1835. [Google Scholar]
- Ru, P.; Steele, R.; Hsueh, E.C.; Ray, R.B. Anti-miR-203 Upregulates SOCS3 expression in breast cancer cells and enhances cisplatin chemosensitivity. Genes Cancer 2011, 2, 720–727. [Google Scholar]
- Longley, D.B.; Harkin, D.P.; Johnston, P.G. 5-fluorouracil: Mechanisms of action and clinical strategies. Nat. Rev. Cancer 2003, 3, 330–338. [Google Scholar]
- Kurokawa, K.; Tanahashi, T.; Iima, T.; Yamamoto, Y.; Akaike, Y.; Nishida, K.; Masuda, K.; Kuwano, Y.; Murakami, Y.; Fukushima, M.; et al. Role of miR-19b and its target mRNAs in 5-fluorouracil resistance in colon cancer cells. J. Gastroenterol 2012, 47, 883–895. [Google Scholar]
- Boni, V.; Bitarte, N.; Cristobal, I.; Zarate, R.; Rodriguez, J.; Maiello, E.; Garcia-Foncillas, J.; Bandres, E. miR-192/miR-215 influence 5-fluorouracil resistance through cell cycle-mediated mechanisms complementary to its post-transcriptional thymidilate synthase regulation. Mol. Cancer Ther 2010, 9, 2265–2275. [Google Scholar]
- Yang, X.; Yin, J.; Yu, J.; Xiang, Q.; Liu, Y.; Tang, S.; Liao, D.; Zhu, B.; Zu, X.; Tang, H.; Lei, X. miRNA-195 sensitizes human hepatocellular carcinoma cells to 5-FU by targeting BCL-w. Oncol. Rep 2012, 27, 250–257. [Google Scholar]
- Schetter, A.J.; Leung, S.Y.; Sohn, J.J.; Zanetti, K.A.; Bowman, E.D.; Yanaihara, N.; Yuen, S.T.; Chan, T.L.; Kwong, D.L.; Au, G.K.; et al. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 2008, 299, 425–436. [Google Scholar]
- Valeri, N.; Gasparini, P.; Braconi, C.; Paone, A.; Lovat, F.; Fabbri, M.; Sumani, K.M.; Alder, H.; Amadori, D.; Patel, T.; et al. MicroRNA-21 induces resistance to 5-fluorouracil by down-regulating human DNA MutS homolog 2 (hMSH2). Proc. Natl. Acad. Sci. USA 2010, 107, 21098–21103. [Google Scholar]
- Chai, H.; Liu, M.; Tian, R.; Li, X.; Tang, H. miR-20a targets BNIP2 and contributes chemotherapeutic resistance in colorectal adenocarcinoma SW480 and SW620 cell lines. Acta Biochim. Biophys. Sinica 2011, 43, 217–225. [Google Scholar]
- Shuang, T.; Shi, C.; Chang, S.; Wang, M.; Bai, C.H. Downregulation of miR-17~92 expression increase paclitaxel sensitivity in human ovarian carcinoma SKOV3-TR30 cells via BIM instead of PTEN. Int. J. Mol. Sci 2013, 14, 3802–3816. [Google Scholar]
- Mitamura, T.; Watari, H.; Wang, L.; Kanno, H.; Hassan, M.K.; Miyazaki, M.; Katoh, Y.; Kimura, T.; Tanino, M.; Nishihara, H.; et al. Downregulation of miRNA-31 induces taxane resistance in ovarian cancer cells through increase of receptor tyrosine kinase MET. Oncogenesis 2013, 2, e40. [Google Scholar]
- Catuogno, S.; Cerchia, L.; Romano, G.; Pognonec, P.; Condorelli, G.; de Franciscis, V. miR-34c may protect lung cancer cells from paclitaxel-induced apoptosis. Oncogene 2013, 32, 341–351. [Google Scholar]
- Massarweh, S.; Osborne, C.K.; Creighton, C.J.; Qin, L.; Tsimelzon, A.; Huang, S.; Weiss, H.; Rimawi, M.; Schiff, R. Tamoxifen resistance in breast tumors is driven by growth factor receptor signaling with repression of classic estrogen receptor genomic function. Cancer Res 2008, 68, 826–833. [Google Scholar]
- Green, K.A.; Carroll, J.S. Oestrogen-receptor-mediated transcription and the influence of co-factors and chromatin state. Nat. Rev. Cancer 2007, 7, 713–722. [Google Scholar]
- Frasor, J.; Chang, E.C.; Komm, B.; Lin, C.Y.; Vega, V.B.; Liu, E.T.; Miller, L.D.; Smeds, J.; Bergh, J.; Katzenellenbogen, B.S. Gene expression preferentially regulated by tamoxifen in breast cancer cells and correlations with clinical outcome. Cancer Res 2006, 66, 7334–7340. [Google Scholar]
- Bergamaschi, A.; Katzenellenbogen, B.S. Tamoxifen downregulation of miR-451 increases 14-3-3zeta and promotes breast cancer cell survival and endocrine resistance. Oncogene 2012, 31, 39–47. [Google Scholar]
- Miller, T.E.; Ghoshal, K.; Ramaswamy, B.; Roy, S.; Datta, J.; Shapiro, C.L.; Jacob, S.; Majumder, S. MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J. Biol. Chem 2008, 283, 29897–29903. [Google Scholar]
- Gu, J.; Zhu, X.; Li, Y.; Dong, D.; Yao, J.; Lin, C.; Huang, K.; Hu, H.; Fei, J. miRNA-21 regulates arsenic-induced anti-leukemia activity in myelogenous cell lines. Med. Oncol 2011, 28, 211–218. [Google Scholar]
- Robin, T.P.; Smith, A.; McKinsey, E.; Reaves, L.; Jedlicka, P.; Ford, H.L. EWS/FLI1 regulates EYA3 in Ewing sarcoma via modulation of miRNA-708, resulting in increased cell survival and chemoresistance. Mol. Cancer Res 2012, 10, 1098–1108. [Google Scholar]
- Asuthkar, S.; Velpula, K.K.; Chetty, C.; Gorantla, B.; Rao, J.S. Epigenetic regulation of miRNA-211 by MMP-9 governs glioma cell apoptosis, chemosensitivity and radiosensitivity. Oncotarget 2012, 3, 1439–1454. [Google Scholar]
- Song, B.; Wang, Y.; Titmus, M.A.; Botchkina, G.; Formentini, A.; Kornmann, M.; Ju, J. Molecular mechanism of chemoresistance by miR-215 in osteosarcoma and colon cancer cells. Mol. Cancer 2010, 9, 96. [Google Scholar]
- Qian, X.; Yu, J.; Yin, Y.; He, J.; Wang, L.; Li, Q.; Zhang, L.Q.; Li, C.Y.; Shi, Z.M.; Xu, Q.; et al. MicroRNA-143 inhibits tumor growth and angiogenesis and sensitizes chemosensitivity to oxaliplatin in colorectal cancers. Cell Cycle 2013, 12, 1385–1394. [Google Scholar]
- Gottesman, M.M. Mechanisms of cancer drug resistance. Annu. Rev. Med 2002, 53, 615–627. [Google Scholar]
Regulators | Target genes | Anti-cancer drugs | Cell or tissue types | Function | Effect | References |
---|---|---|---|---|---|---|
HuR | ER | Tamoxifen | Breast cancer cell | mRNA stability ↑ | Resistance ↑ | [13] |
HuR | COX-2 | Lapatinib | Breast cancer cell | mRNA stability ↑ | Invasion ↑ Metastasis ↑ | [19] |
HuR | TGIF | ATO | Hepatocellular carcinoma cell | mRNA stability ↑ | Cell death ↓ | [16] |
HuR | dCK | Gemcitabine | Pancreatic cancer | Translation ↑ | Sensitivity ↑ | [17] |
HuR | BCL2 | Etoposide, Topotecan, Cisplatin | Glioma cell | Translation ↑ | Resistance ↑ | [21] |
HuR | TOP2A | Doxorubicin | Hela cell | Translation ↑ | Sensitivity ↑ | [25] |
HuR | Several targets | Doxorubicin | Breast cancer cell | Translation ↑ | Sensitivity ↑ | [24] |
HuR | Beta-tubulin | Cisplatin | Ovarian cancer cells | Translation ↑ | Resistance ↑ | [22] |
RBM3 | Unknown | Cisplatin | Epithelial ovarian cancer | Unknown | Sensitivity ↑ | [28] |
RBM5 | Unknown | Cisplatin | Non-small cell lung cancer | Unknown | Sensitivity ↑ | [29] |
IMP3 | BCRP | Doxorubicin, Mtoxantrone | Breast cancer cell | mRNA stability ↑ | Resistance ↑ | [30] |
CUG-BP1 | Survivin | Camptothecin | Oesophageal cancer | mRNA stability ↑ | Resistance ↑ | [31] |
BRF1 | cIAP2 | Cisplatin | Head and neck squamous Carcinoma cell lines | mRNA degradation | Sensitivity ↑ | [33] |
HnRNPs H1/H2 | TYMP | 5′-deoxyfluorouridine | Histiocytic lymphoma cell | Splicing | Resistance ↑ | [34] |
MTDH | Several targets | Mitomycin C, BIBF1120 | Endometrial cancer cell line | Stress granule formation? | Resistance ↑ | [38] |
Regulators | Target genes | Anti-cancer drugs | Cell or tissue types | Effect | References |
---|---|---|---|---|---|
miR-93 | PTEN/Akt | Cisplatin | Ovarian cancer | Resistance ↑ | [43] |
miR-155 | Apaf-1 | Cisplatin | Lung cancer | Sensitivity ↓ | [44] |
miR-155 | PPP2CA | Cisplatin | Colon cancer | Resistance ↑ | [45] |
miR-135a/b | MCL1 | Cisplatin | Lung cancer | Resistance ↓ | [46] |
miR-200c | Bmi-1 | Cisplatin | Melanoma | Resistance ↓ | [47] |
miR-203 | SOCS3 | Cisplatin | Breast cancer | Sensitivity ↓ | [48] |
miR-181b | Bcl2 | Cisplatin | Lung cancer | Resistance ↓ | [49] |
miR-19b | SFPQ, MYBL2 | 5-fluouracil | Colorectal cancer | Resistance ↑ | [51] |
miR-192/215 | TYMS | 5-fluouracil | Colorectal cancer | Resistance ↓ | [52] |
miR195 | Bcl-w | 5-fluouracil | Hepatocellular carcinoma | Resistance ↓ | [53] |
miR-21 | hMSH6, hMSH2 | 5-fluouracil | Colorectal cancer | Resistance ↑ | [55] |
miR-20a | BNIP | 5-fluouracil | Colorectal cancer | Resistance ↑ | [56] |
miR-17 | BIM | Paclitaxel | Ovarian cancer | Sensitivity ↓ | [57] |
miR-31 | MET | Paclitaxel | Ovarian cancer | Resistance ↓ | [58] |
miR-34c | Bmf | Paclitaxel | Lung cancer | Resistance ↑ | [59] |
miR-451 | 14-3-3ζ | Tamoxifen | Breast cancer | Resistance ↓ | [63] |
miR-221/222 | p27 | Tamoxifen | Breast cancer | Resistance ↑ | [64] |
miR-21 | PDCD4 | Arsenic trioxide | Leukemia | Resistance ↑ | [65] |
miR-708 | EYA3 | Etoposide, Doxorubicin | Ewing sarcoma | Resistance ↓ | [66] |
miR-211 | MMP9 | Temozolomide | Glioma | Sensitivity ↑ | [67] |
miR-215 | DTL, DHFR, TYMS | Methotrexate, Tomudex | Osteosarcoma, Colorectal cancer | Sensitivity ↓ | [68] |
miR-143 | IGF-IR | Oxaliplatin | Colorectal cancer | Sensitivity ↑ | [69] |
© 2013 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Kang, H.; Kim, C.; Lee, H.; Kim, W.; Lee, E.K. Post-Transcriptional Controls by Ribonucleoprotein Complexes in the Acquisition of Drug Resistance. Int. J. Mol. Sci. 2013, 14, 17204-17220. https://doi.org/10.3390/ijms140817204
Kang H, Kim C, Lee H, Kim W, Lee EK. Post-Transcriptional Controls by Ribonucleoprotein Complexes in the Acquisition of Drug Resistance. International Journal of Molecular Sciences. 2013; 14(8):17204-17220. https://doi.org/10.3390/ijms140817204
Chicago/Turabian StyleKang, Hoin, Chongtae Kim, Heejin Lee, Wook Kim, and Eun Kyung Lee. 2013. "Post-Transcriptional Controls by Ribonucleoprotein Complexes in the Acquisition of Drug Resistance" International Journal of Molecular Sciences 14, no. 8: 17204-17220. https://doi.org/10.3390/ijms140817204
APA StyleKang, H., Kim, C., Lee, H., Kim, W., & Lee, E. K. (2013). Post-Transcriptional Controls by Ribonucleoprotein Complexes in the Acquisition of Drug Resistance. International Journal of Molecular Sciences, 14(8), 17204-17220. https://doi.org/10.3390/ijms140817204