Potential of the Angiotensin Receptor Blockers (ARBs) Telmisartan, Irbesartan, and Candesartan for Inhibiting the HMGB1/RAGE Axis in Prevention and Acute Treatment of Stroke
Abstract
:1. Introduction
2. Advanced Glycation End-Products (AGEs) and RAGE
3. High Mobility Group Box 1 (HMGB1)
4. Experimental Studies of ARBs
5. Clinical Studies of ARBs
5.1. Telmisartan
5.2. Irbesartan
5.3. Candesartan
6. HMGB1/RAGE and Risk Factors of Stroke
6.1. Hypertension
6.2. Hyperlipidemia
6.3. Diabetes Mellitus
6.4. Atherosclerosis
7. HMGB1/RAGE in Acute Stroke
8. Conclusions
Acknowledgments
Conflicts of Interest
Abbreviations
Ab | antibody |
ACE | angiotensin-converting enzyme |
ACTIVE I | Atrial Fibrillation Clopidogrel Trial with Irbesartan for Prevention of Vascular Events |
AGEs | advanced glycation end-products |
ALP | alkaline phosphatase |
ALT | alanine aminotransferase |
ApoE(−/−) | apolipoprotein E-deficient |
ARB | angiotensin receptor blocker |
BBB | blood–brain barrier |
BDNF | brain-derived neurotrophic factor |
BMI | body mass index |
BMP-2 | bone morphogenetic protein 2 |
BNP | B-type natriuretic peptide |
CAD | coronary artery disease |
CASE-J | Candesartan Antihypertensive Survival Evaluation in Japan |
cbfα1 | core-binding factor α1 |
CCr | creatinine clearance |
CCR2 | C-C chemokine receptor 2 |
CML | N(ɛ)-carboxymethyl-lysine |
COX-2 | cyclooxygenase-2 |
DM | diabetes mellitus |
EC | endothelial cells |
E-COST | Efficacy of Candesartan on Outcome in Saitama Trial |
EGR-1 | early growth response-1 |
esRAGE | endogenous secretory RAGE |
GGT | gamma-glutamyltranspeptidase |
HL | hyperlipidemia |
HMGB1 | high mobility group box 1 |
HT | hypertension |
IL | interleukin |
iNOS | induced nitric oxide synthase |
MAPK | mitogen-activated protein kinase |
McAb | mono-clonal antibody |
MCAO | occlusion of the middle cerebral artery |
MCP-1 | monocyte chemoattractant protein-1 |
MMP | metalloproteinase |
mPGES-1 | microsomal prostaglandin E synthase-1 |
NF-κB | nuclear factor-κB |
NO | nitric oxide |
OGD | oxygen-glucose deprivation |
ONTARGET | Ongoing Telmisartan Alone and in Combination with Ramipril Global Endpoint Trial |
PRoFESS | Prevention Regimen for Effectively Avoiding Second Strokes |
RAGE | receptor for advanced glycation end-products |
ROS | reactive oxygen species |
SCAST | Scandinavian Candesartan Acute Stroke Trial |
SCOPE | Study on Cognition and Prognosis in the Elderly |
SHRSP | stroke-prone spontaneously hypertensive rat |
si | small interfering |
sRAGE | soluble RAGE |
STAIR | Stroke Therapy Academic Industry Roundtable |
TGF-β | transforming growth factor-β |
TNF-α | tumor necrosis factor-α |
TRANSCEND | Telmisartan Randomized Assessment Study in ACE-intolerant Subjects with Cardiovascular Disease |
TrkB | tyrosine-related kinase B |
VCAM-1 | vascular cell adhesion molecule-1 |
VEGF | vascular endothelial growth factor |
VSMCs | vascular smooth muscle cells |
References
- World Health Organization. The Top 10 Causes of Death. Available online: http://www.who.int/mediacentre/factsheets/fs310/en/index.html (accessed on 5 August 2013).
- Demaerschalk, B.M.; Hwang, H.M.; Leung, G. US cost burden of ischemic stroke: A systematic literature review. Am. J. Manag. Care 2010, 16, 525–533. [Google Scholar]
- Furie, K.L.; Kasner, S.E.; Adams, R.J.; Albers, G.W.; Bush, R.L.; Fagan, S.C.; Halperin, J.L.; Johnston, S.C.; Katzan, I.; Kernan, W.N.; et al. Guidelines for the prevention of stroke in patients with stroke or transient ischemic attack: A guideline for healthcare professionals from the american heart association/american stroke association. Stroke 2011, 42, 227–276. [Google Scholar]
- Sacco, R.L.; Benjamin, E.J.; Broderick, J.P.; Dyken, M.; Easton, J.D.; Feinberg, W.M.; Goldstein, L.B.; Gorelick, P.B.; Howard, G.; Kittner, S.J.; et al. American heart association prevention conference. IV. Prevention and rehabilitation of stroke. Risk factors. Stroke 1997, 28, 1507–1517. [Google Scholar]
- Grossin, N.; Boulanger, E.; Wautier, M.P.; Wautier, J.L. The different isoforms of the receptor for advanced glycation end products are modulated by pharmacological agents. Clin. Hemorheol. Microcirc 2010, 45, 143–153. [Google Scholar]
- Brownlee, M.; Cerami, A.; Vlassara, H. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N. Engl. J. Med 1988, 318, 1315–1321. [Google Scholar]
- Bucala, R.; Makita, Z.; Vega, G.; Grundy, S.; Koschinsky, T.; Cerami, A.; Vlassara, H. Modification of low density lipoprotein by advanced glycation end products contributes to the dyslipidemia of diabetes and renal insufficiency. Proc. Natl. Acad. Sci. USA 1994, 91, 9441–9445. [Google Scholar]
- Ruderman, N.B.; Williamson, J.R.; Brownlee, M. Glucose and diabetic vascular disease. FASEB J 1992, 6, 2905–2914. [Google Scholar]
- Neeper, M.; Schmidt, A.M.; Brett, J.; Yan, S.D.; Wang, F.; Pan, Y.C.; Elliston, K.; Stern, D.; Shaw, A. Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J. Biol. Chem 1992, 267, 14998–15004. [Google Scholar]
- Schmidt, A.M.; Vianna, M.; Gerlach, M.; Brett, J.; Ryan, J.; Kao, J.; Esposito, C.; Hegarty, H.; Hurley, W.; Clauss, M.; et al. Isolation and characterization of two binding proteins for advanced glycosylation end products from bovine lung which are present on the endothelial cell surface. J. Biol. Chem 1992, 267, 14987–14997. [Google Scholar]
- Chavakis, T.; Bierhaus, A.; Al-Fakhri, N.; Schneider, D.; Witte, S.; Linn, T.; Nagashima, M.; Morser, J.; Arnold, B.; Preissner, K.T.; et al. The pattern recognition receptor (RAGE) is a counterreceptor for leukocyte integrins: A novel pathway for inflammatory cell recruitment. J. Exp. Med 2003, 198, 1507–1515. [Google Scholar]
- Marsche, G.; Weigle, B.; Sattler, W.; Malle, E. Soluble RAGE blocks scavenger receptor CD36-mediated uptake of hypochlorite-modified low-density lipoprotein. FASEB J 2007, 21, 3075–3082. [Google Scholar]
- Katakami, N.; Matsuhisa, M.; Kaneto, H.; Matsuoka, T.A.; Sakamoto, K.; Yasuda, T.; Yamasaki, Y. Endogenous secretory RAGE but not soluble RAGE is associated with carotid atherosclerosis in type 1 diabetes patients. Diabetes Vasc. Dis. Res 2008, 5, 190–197. [Google Scholar]
- Schmidt, A.M.; Yan, S.D.; Wautier, J.L.; Stern, D. Activation of receptor for advanced glycation end products: A mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis. Circ. Res 1999, 84, 489–497. [Google Scholar]
- Mosevitsky, M.I.; Novitskaya, V.A.; Iogannsen, M.G.; Zabezhinsky, M.A. Tissue specificity of nucleo-cytoplasmic distribution of HMG1 and HMG2 proteins and their probable functions. Eur. J. Biochem 1989, 185, 303–310. [Google Scholar]
- Lu, J.; Kobayashi, R.; Brill, S.J. Characterization of a high mobility group 1/2 homolog in yeast. J. Biol. Chem 1996, 271, 33678–33685. [Google Scholar]
- Harris, H.E.; Raucci, A. Alarmin(g) news about danger: Workshop on innate danger signals and HMGB1. EMBO Rep 2006, 7, 774–778. [Google Scholar]
- Mullins, G.E.; Sunden-Cullberg, J.; Johansson, A.S.; Rouhiainen, A.; Erlandsson-Harris, H.; Yang, H.; Tracey, K.J.; Rauvala, H.; Palmblad, J.; Andersson, J.; et al. Activation of human umbilical vein endothelial cells leads to relocation and release of high-mobility group box chromosomal protein 1. Scand. J. Immunol 2004, 60, 566–573. [Google Scholar]
- Park, J.S.; Svetkauskaite, D.; He, Q.; Kim, J.Y.; Strassheim, D.; Ishizaka, A.; Abraham, E. Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J. Biol. Chem 2004, 279, 7370–7377. [Google Scholar]
- Scaffidi, P.; Misteli, T.; Bianchi, M.E. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 2002, 418, 191–195. [Google Scholar]
- Taguchi, A.; Blood, D.C.; del Toro, G.; Canet, A.; Lee, D.C.; Qu, W.; Tanji, N.; Lu, Y.; Lalla, E.; Fu, C.; et al. Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature 2000, 405, 354–360. [Google Scholar]
- Taniguchi, N.; Kawahara, K.; Yone, K.; Hashiguchi, T.; Yamakuchi, M.; Goto, M.; Inoue, K.; Yamada, S.; Ijiri, K.; Matsunaga, S.; et al. High mobility group box chromosomal protein 1 plays a role in the pathogenesis of rheumatoid arthritis as a novel cytokine. Arthritis Rheum 2003, 48, 971–981. [Google Scholar]
- Wang, H.; Bloom, O.; Zhang, M.; Vishnubhakat, J.M.; Ombrellino, M.; Che, J.; Frazier, A.; Yang, H.; Ivanova, S.; Borovikova, L.; et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science 1999, 285, 248–251. [Google Scholar]
- Wang, H.; Vishnubhakat, J.M.; Bloom, O.; Zhang, M.; Ombrellino, M.; Sama, A.; Tracey, K.J. Proinflammatory cytokines (tumor necrosis factor and interleukin 1) stimulate release of high mobility group protein-1 by pituicytes. Surgery 1999, 126, 389–392. [Google Scholar]
- Bianchi, M.E. DAMPs, PAMPs and alarmins: All we need to know about danger. J. Leukoc. Biol 2007, 81, 1–5. [Google Scholar]
- Oppenheim, J.J.; Yang, D. Alarmins: Chemotactic activators of immune responses. Curr. Opin. Immunol 2005, 17, 359–365. [Google Scholar]
- Dumitriu, I.E.; Baruah, P.; Manfredi, A.A.; Bianchi, M.E.; Rovere-Querini, P. HMGB1: Guiding immunity from within. Trends. Immunol 2005, 26, 381–387. [Google Scholar]
- Goldstein, R.S.; Gallowitsch-Puerta, M.; Yang, L.; Rosas-Ballina, M.; Huston, J.M.; Czura, C.J.; Lee, D.C.; Ward, M.F.; Bruchfeld, A.N.; Wang, H.; et al. Elevated high-mobility group box 1 levels in patients with cerebral and myocardial ischemia. Shock 2006, 25, 571–574. [Google Scholar]
- Kawabata, H.; Setoguchi, T.; Yone, K.; Souda, M.; Yoshida, H.; Kawahara, K.; Maruyama, I.; Komiya, S. High mobility group box 1 is upregulated after spinal cord injury and is associated with neuronal cell apoptosis. Spine 2010, 35, 1109–1115. [Google Scholar]
- Kikuchi, K.; Kawahara, K.I.; Biswas, K.K.; Ito, T.; Tancharoen, S.; Shiomi, N.; Koda, Y.; Matsuda, F.; Morimoto, Y.; Oyama, Y.; et al. HMGB1: A new marker for estimation of the postmortem interval. Exp. Ther. Med 2010, 1, 109–111. [Google Scholar]
- Kikuchi, K.; Uchikado, H.; Miura, N.; Morimoto, Y.; Ito, T.; Tancharoen, S.; Miyata, K.; Sakamoto, R.; Kikuchi, C.; Iida, N.; et al. HMGB1 as a therapeutic target in spinal cord injury: A hypothesis for novel therapy development. Exp. Ther. Med 2011, 2, 767–770. [Google Scholar]
- Lindstrom, O.; Tukiainen, E.; Kylanpaa, L.; Mentula, P.; Rouhiainen, A.; Puolakkainen, P.; Rauvala, H.; Repo, H. Circulating levels of a soluble form of receptor for advanced glycation end products and high-mobility group box chromosomal protein 1 in patients with acute pancreatitis. Pancreas 2009, 38, e215–e220. [Google Scholar]
- Lotze, M.T.; Tracey, K.J. High-mobility group box 1 protein (HMGB1): Nuclear weapon in the immune arsenal. Nat. Rev. Immunol 2005, 5, 331–342. [Google Scholar]
- Morimoto, Y.; Kawahara, K.I.; Tancharoen, S.; Kikuchi, K.; Matsuyama, T.; Hashiguchi, T.; Izumi, Y.; Maruyama, I. Tumor necrosis factor-alpha stimulates gingival epithelial cells to release high mobility-group box 1. J. Periodontal Res 2008, 43, 76–83. [Google Scholar]
- Morimoto-Yamashita, Y.; Ito, T.; Kawahara, K.; Kikuchi, K.; Tatsuyama-Nagayama, S.; Kawakami-Morizono, Y.; Fijisawa, M.; Miyashita, K.; Emoto, M.; Torii, M.; et al. Periodontal disease and type 2 diabetes mellitus: Is the HMGB1-RAGE axis the missing link? Med. Hypotheses 2012, 79, 452–455. [Google Scholar]
- Takano, K.; Shinoda, M.; Tanabe, M.; Miyasho, T.; Yamada, S.; Ono, S.; Masugi, Y.; Suda, K.; Fukunaga, K.; Hayashida, T.; et al. Protective effect of high-mobility group box 1 blockade on acute liver failure in rats. Shock 2010, 34, 573–579. [Google Scholar]
- Ulloa, L.; Messmer, D. High-mobility group box 1 (HMGB1) protein: Friend and foe. Cytokine Growth Factor Rev 2006, 17, 189–201. [Google Scholar]
- Van Zoelen, M.A.; Ishizaka, A.; Wolthuls, E.K.; Choi, G.; van der Poll, T.; Schultz, M.J. Pulmonary levels of high-mobility group box 1 during mechanical ventilation and ventilator-associated pneumonia. Shock 2008, 29, 441–445. [Google Scholar]
- Kohno, T.; Anzai, T.; Naito, K.; Miyasho, T.; Okamoto, M.; Yokota, H.; Yamada, S.; Maekawa, Y.; Takahashi, T.; Yoshikawa, T.; et al. Role of high-mobility group box 1 protein in post-infarction healing process and left ventricular remodelling. Cardiovasc. Res 2009, 81, 565–573. [Google Scholar]
- Maeda, S.; Hikiba, Y.; Shibata, W.; Ohmae, T.; Yanai, A.; Ogura, K.; Yamada, S.; Omata, M. Essential roles of high-mobility group box 1 in the development of murine colitis and colitis-associated cancer. Biochem. Biophys. Res. Commun 2007, 360, 394–400. [Google Scholar]
- Sawa, H.; Ueda, T.; Takeyama, Y.; Yasuda, T.; Shinzeki, M.; Nakajima, T.; Kuroda, Y. Blockade of high mobility group box-1 protein attenuates experimental severe acute pancreatitis. World J. Gastroenterol 2006, 12, 7666–7670. [Google Scholar]
- Ulloa, L.; Batliwalla, F.M.; Andersson, U.; Gregersen, P.K.; Tracey, K.J. High mobility group box chromosomal protein 1 as a nuclear protein, cytokine, and potential therapeutic target in arthritis. Arthritis Rheum 2003, 48, 876–881. [Google Scholar]
- Watanabe, T.; Kubota, S.; Nagaya, M.; Ozaki, S.; Nagafuchi, H.; Akashi, K.; Taira, Y.; Tsukikawa, S.; Oowada, S.; Nakano, S. The role of HMGB-1 on the development of necrosis during hepatic ischemia and hepatic ischemia/reperfusion injury in mice. J. Surg. Res 2005, 124, 59–66. [Google Scholar]
- Yang, R.; Harada, T.; Mollen, K.P.; Prince, J.M.; Levy, R.M.; Englert, J.A.; Gallowitsch-Puerta, M.; Yang, L.; Yang, H.; Tracey, K.J.; et al. Anti-HMGB1 neutralizing antibody ameliorates gut barrier dysfunction and improves survival after hemorrhagic shock. Mol. Med 2006, 12, 105–114. [Google Scholar]
- Wu, X.; Kihara, T.; Hongo, H.; Akaike, A.; Niidome, T.; Sugimoto, H. Angiotensin receptor type 1 antagonists protect against neuronal injury induced by oxygen-glucose depletion. Br. J. Pharmacol 2010, 161, 33–50. [Google Scholar]
- Hillion, J.A.; Takahashi, K.; Maric, D.; Ruetzler, C.; Barker, J.L.; Hallenbeck, J.M. Development of an ischemic tolerance model in a PC12 cell line. J. Cereb. Blood Flow Metab 2005, 25, 154–162. [Google Scholar]
- Yamori, Y.; Horie, R.; Handa, H.; Sato, M.; Fukase, M. Pathogenetic similarity of strokes in stroke-prone spontaneously hypertensive rats and humans. Stroke 1976, 7, 46–53. [Google Scholar]
- Katayama, Y.; Katsumata, T.; Muramatsu, H.; Usuda, K.; Obo, R.; Terashi, A. Effect of long-term administration of ethyl eicosapentate (EPA-E) on local cerebral blood flow and glucose utilization in stroke-prone spontaneously hypertensive rats (SHRSP). Brain Res 1997, 761, 300–305. [Google Scholar]
- Thoene-Reineke, C.; Rumschussel, K.; Schmerbach, K.; Krikov, M.; Wengenmayer, C.; Godes, M.; Mueller, S.; Villringer, A.; Steckelings, U.; Namsolleck, P.; et al. Prevention and intervention studies with telmisartan, ramipril and their combination in different rat stroke models. PLoS One 2011, 6, e23646, :1–e23646:10.. [Google Scholar]
- Shimamura, T.; Masui, M.; Torii, M.; Nakajima, M. Hypotensive and prophylactic effects of angiotensin II subtype 1 receptor antagonist, irbesartan, in stroke-prone spontaneously hypertensive rats. Clin. Exp. Hypertens 2004, 26, 27–42. [Google Scholar]
- Inada, Y.; Wada, T.; Ojima, M.; Sanada, T.; Shibouta, Y.; Kanagawa, R.; Ishimura, Y.; Fujisawa, Y.; Nishikawa, K. Protective effects of candesartan cilexetil (TCV-116) against stroke, kidney dysfunction and cardiac hypertrophy in stroke-prone spontaneously hypertensive rats. Clin. Exp. Hypertens 1997, 19, 1079–1099. [Google Scholar]
- Rattiner, L.M.; Davis, M.; French, C.T.; Ressler, K.J. Brain-derived neurotrophic factor and tyrosine kinase receptor B involvement in amygdala-dependent fear conditioning. J. Neurosci 2004, 24, 4796–4806. [Google Scholar]
- Acheson, A.; Conover, J.C.; Fandl, J.P.; DeChiara, T.M.; Russell, M.; Thadani, A.; Squinto, S.P.; Yancopoulos, G.D.; Lindsay, R.M. A BDNF autocrine loop in adult sensory neurons prevents cell death. Nature 1995, 374, 450–453. [Google Scholar]
- Huang, E.J.; Reichardt, L.F. Neurotrophins: Roles in neuronal development and function. Annu. Rev. Neurosci 2001, 24, 677–736. [Google Scholar]
- Lou, M.; Blume, A.; Zhao, Y.; Gohlke, P.; Deuschl, G.; Herdegen, T.; Culman, J. Sustained blockade of brain AT1 receptors before and after focal cerebral ischemia alleviates neurologic deficits and reduces neuronal injury, apoptosis, and inflammatory responses in the rat. J. Cereb. Blood Flow Metab 2004, 24, 536–547. [Google Scholar]
- Tsukuda, K.; Mogi, M.; Iwanami, J.; Min, L.J.; Jing, F.; Oshima, K.; Horiuchi, M. Irbesartan attenuates ischemic brain damage by inhibition of MCP-1/CCR2 signaling pathway beyond AT(1) receptor blockade. Biochem. Biophys. Res. Commun 2011, 409, 275–279. [Google Scholar]
- Engelhorn, T.; Goerike, S.; Doerfler, A.; Okorn, C.; Forsting, M.; Heusch, G.; Schulz, R. The angiotensin II type 1-receptor blocker candesartan increases cerebral blood flow, reduces infarct size, and improves neurologic outcome after transient cerebral ischemia in rats. J. Cereb. Blood Flow Metab 2004, 24, 467–474. [Google Scholar]
- Krikov, M.; Thone-Reineke, C.; Muller, S.; Villringer, A.; Unger, T. Candesartan but not ramipril pretreatment improves outcome after stroke and stimulates neurotrophin BNDF/TrkB system in rats. J. Hypertens 2008, 26, 544–552. [Google Scholar]
- Dang, A.B.; Tay, B.K.; Kim, H.T.; Nauth, A.; Alfonso-Jaume, M.A.; Lovett, D.H. Inhibition of MMP2/MMP9 after spinal cord trauma reduces apoptosis. Spine 2008, 33, E576–E579. [Google Scholar]
- Guan, W.; Kozak, A.; El-Remessy, A.B.; Johnson, M.H.; Pillai, B.A.; Fagan, S.C. Acute treatment with candesartan reduces early injury after permanent middle cerebral artery occlusion. Transl. Stroke Res 2011, 2, 179–185. [Google Scholar]
- O’Collins, V.E.; Macleod, M.R.; Donnan, G.A.; Horky, L.L.; van der Worp, B.H.; Howells, D.W. 1,026 experimental treatments in acute stroke. Ann. Neurol 2006, 59, 467–477. [Google Scholar]
- Yusuf, S.; Diener, H.C.; Sacco, R.L.; Cotton, D.; Ounpuu, S.; Lawton, W.A.; Palesch, Y.; Martin, R.H.; Albers, G.W.; Bath, P.; et al. Telmisartan to prevent recurrent stroke and cardiovascular events. N. Engl. J. Med 2008, 359, 1225–1237. [Google Scholar]
- Yusuf, S.; Teo, K.K.; Pogue, J.; Dyal, L.; Copland, I.; Schumacher, H.; Dagenais, G.; Sleight, P.; Anderson, C. Telmisartan, ramipril, or both in patients at high risk for vascular events. N. Engl. J. Med 2008, 358, 1547–1559. [Google Scholar]
- Yusuf, S.; Teo, K.; Anderson, C.; Pogue, J.; Dyal, L.; Copland, I.; Schumacher, H.; Dagenais, G.; Sleight, P. Effects of the angiotensin-receptor blocker telmisartan on cardiovascular events in high-risk patients intolerant to angiotensin-converting enzyme inhibitors: A randomised controlled trial. Lancet 2008, 372, 1174–1183. [Google Scholar]
- Yusuf, S.; Healey, J.S.; Pogue, J.; Chrolavicius, S.; Flather, M.; Hart, R.G.; Hohnloser, S.H.; Joyner, C.D.; Pfeffer, M.A.; Connolly, S.J. Irbesartan in patients with atrial fibrillation. N. Engl. J. Med 2011, 364, 928–938. [Google Scholar]
- Beer, C.; Blacker, D.; Bynevelt, M.; Hankey, G.J.; Puddey, I.B. A randomized placebo controlled trial of early treatment of acute ischemic stroke with atorvastatin and irbesartan. Int. J. Stroke 2012, 7, 104–111. [Google Scholar]
- Lithell, H.; Hansson, L.; Skoog, I.; Elmfeldt, D.; Hofman, A.; Olofsson, B.; Trenkwalder, P.; Zanchetti, A. The Study on Cognition and Prognosis in the Elderly (SCOPE): Principal results of a randomized double-blind intervention trial. J. Hypertens 2003, 21, 875–886. [Google Scholar]
- Fukui, T.; Rahman, M.; Hayashi, K.; Takeda, K.; Higaki, J.; Sato, T.; Fukushima, M.; Sakamoto, J.; Morita, S.; Ogihara, T.; et al. Candesartan Antihypertensive Survival Evaluation in Japan (CASE-J) trial of cardiovascular events in high-risk hypertensive patients: Rationale, design, and methods. Hypertens. Res 2003, 26, 979–990. [Google Scholar]
- Suzuki, H.; Kanno, Y. Effects of candesartan on cardiovascular outcomes in Japanese hypertensive patients. Hypertens Res 2005, 28, 307–314. [Google Scholar]
- Sandset, E.C.; Bath, P.M.; Boysen, G.; Jatuzis, D.; Korv, J.; Luders, S.; Murray, G.D.; Richter, P.S.; Roine, R.O.; Terent, A.; et al. The angiotensin-receptor blocker candesartan for treatment of acute stroke (SCAST): A randomised, placebo-controlled, double-blind trial. Lancet 2011, 377, 741–750. [Google Scholar]
- Antoniou, T.; Camacho, X.; Yao, Z.; Gomes, T.; Juurlink, D.N.; Mamdani, M.M. Comparative effectiveness of angiotensin-receptor blockers for preventing macrovascular disease in patients with diabetes: A population-based cohort study. CMAJ 2013, 185, 1035–1041. [Google Scholar]
- Carnevale, D.; Mascio, G.; D’Andrea, I.; Fardella, V.; Bell, R.D.; Branchi, I.; Pallante, F.; Zlokovic, B.; Yan, S.S.; Lembo, G. Hypertension induces brain beta-amyloid accumulation, cognitive impairment, and memory deterioration through activation of receptor for advanced glycation end products in brain vasculature. Hypertension 2012, 60, 188–197. [Google Scholar]
- Geroldi, D.; Falcone, C.; Emanuele, E.; D’Angelo, A.; Calcagnino, M.; Buzzi, M.P.; Scioli, G.A.; Fogari, R. Decreased plasma levels of soluble receptor for advanced glycation end-products in patients with essential hypertension. J. Hypertens 2005, 23, 1725–1729. [Google Scholar]
- Nakamura, K.; Adachi, H.; Matsui, T.; Kurita, Y.; Takeuchi, M.; Yamagishi, S. Independent determinants of soluble form of receptor for advanced glycation end products in elderly hypertensive patients. Metabolism 2009, 58, 421–425. [Google Scholar]
- Nakamura, K.; Yamagishi, S.; Nakamura, Y.; Takenaka, K.; Matsui, T.; Jinnouchi, Y.; Imaizumi, T. Telmisartan inhibits expression of a receptor for advanced glycation end products (RAGE) in angiotensin-II-exposed endothelial cells and decreases serum levels of soluble RAGE in patients with essential hypertension. Microvasc. Res 2005, 70, 137–141. [Google Scholar]
- Nakamura, T.; Sato, E.; Fujiwara, N.; Kawagoe, Y.; Yamada, S.; Ueda, Y.; Koide, H. Changes in urinary albumin excretion, inflammatory and oxidative stress markers in ADPKD patients with hypertension. Am. J. Med. Sci 2012, 343, 46–51. [Google Scholar]
- Haraba, R.; Suica, V.I.; Uyy, E.; Ivan, L.; Antohe, F. Hyperlipidemia stimulates the extracellular release of the nuclear high mobility group box 1 protein. Cell Tissue Res 2011, 346, 361–368. [Google Scholar]
- Santilli, F.; Bucciarelli, L.; Noto, D.; Cefalu, A.B.; Davi, V.; Ferrante, E.; Pettinella, C.; Averna, M.R.; Ciabattoni, G.; Davi, G. Decreased plasma soluble RAGE in patients with hypercholesterolemia: Effects of statins. Free Radic. Biol. Med 2007, 43, 1255–1262. [Google Scholar]
- Volz, H.C.; Seidel, C.; Laohachewin, D.; Kaya, Z.; Muller, O.J.; Pleger, S.T.; Lasitschka, F.; Bianchi, M.E.; Remppis, A.; Bierhaus, A.; et al. HMGB1: The missing link between diabetes mellitus and heart failure. Basic Res. Cardiol 2010, 105, 805–820. [Google Scholar]
- Yao, D.; Brownlee, M. Hyperglycemia-induced reactive oxygen species increase expression of the receptor for advanced glycation end products (RAGE) and RAGE ligands. Diabetes 2010, 59, 249–255. [Google Scholar]
- Ichikawa, K.; Yoshinari, M.; Iwase, M.; Wakisaka, M.; Doi, Y.; Iino, K.; Yamamoto, M.; Fujishima, M. Advanced glycosylation end products induced tissue factor expression in human monocyte-like U937 cells and increased tissue factor expression in monocytes from diabetic patients. Atherosclerosis 1998, 136, 281–287. [Google Scholar]
- Yonekura, H.; Yamamoto, Y.; Sakurai, S.; Watanabe, T.; Yamamoto, H. Roles of the receptor for advanced glycation endproducts in diabetes-induced vascular injury. J. Pharmacol. Sci 2005, 97, 305–311. [Google Scholar]
- Ding, Y.; Kantarci, A.; Hasturk, H.; Trackman, P.C.; Malabanan, A.; van Dyke, T.E. Activation of RAGE induces elevated O2− generation by mononuclear phagocytes in diabetes. J. Leukoc. Biol 2007, 81, 520–527. [Google Scholar]
- Xanthis, A.; Hatzitolios, A.; Fidani, S.; Befani, C.; Giannakoulas, G.; Koliakos, G. Receptor of advanced glycation end products (RAGE) positively regulates CD36 expression and reactive oxygen species production in human monocytes in diabetes. Angiology 2009, 60, 772–779. [Google Scholar]
- Reddy, M.A.; Li, S.L.; Sahar, S.; Kim, Y.S.; Xu, Z.G.; Lanting, L.; Natarajan, R. Key role of Src kinase in S100B-induced activation of the receptor for advanced glycation end products in vascular smooth muscle cells. J. Biol. Chem 2006, 281, 13685–13693. [Google Scholar]
- Brett, J.; Schmidt, A.M.; Yan, S.D.; Zou, Y.S.; Weidman, E.; Pinsky, D.; Nowygrod, R.; Neeper, M.; Przysiecki, C.; Shaw, A.; et al. Survey of the distribution of a newly characterized receptor for advanced glycation end products in tissues. Am. J. Pathol 1993, 143, 1699–1712. [Google Scholar]
- Owen, W.F., Jr; Hou, F.F.; Stuart, R.O.; Kay, J.; Boyce, J.; Chertow, G.M.; Schmidt, A.M. Beta 2-microglobulin modified with advanced glycation end products modulates collagen synthesis by human fibroblasts. Kidney Int. 1998, 53, 1365–1373. [Google Scholar]
- Schmidt, A.M.; Yan, S.D.; Stern, D.M. The dark side of glucose. Nat. Med 1995, 1, 1002–1004. [Google Scholar]
- Lewis, P.; Stefanovic, N.; Pete, J.; Calkin, A.C.; Giunti, S.; Thallas-Bonke, V.; Jandeleit-Dahm, K.A.; Allen, T.J.; Kola, I.; Cooper, M.E. Lack of the antioxidant enzyme glutathione peroxidase-1 accelerates atherosclerosis in diabetic apolipoprotein E-deficient mice. Circulation 2007, 115, 2178–2187. [Google Scholar]
- Coughlan, M.T.; Thorburn, D.R.; Penfold, S.A.; Laskowski, A.; Harcourt, B.E.; Sourris, K.C.; Tan, A.L.; Fukami, K.; Thallas-Bonke, V.; Nawroth, P.P.; et al. RAGE-induced cytosolic ROS promote mitochondrial superoxide generation in diabetes. J. Am. Soc. Nephrol 2009, 20, 742–752. [Google Scholar]
- Monden, M.; Koyama, H.; Otsuka, Y.; Morioka, T.; Mori, K.; Shoji, T.; Mima, Y.; Motoyama, K.; Fukumoto, S.; Shioi, A.; et al. Receptor for advanced glycation end products regulates adipocyte hypertrophy and insulin sensitivity in mice: Involvement of toll-like receptor 2. Diabetes 2013, 62, 478–489. [Google Scholar]
- De Vriese, A.S.; Flyvbjerg, A.; Mortier, S.; Tilton, R.G.; Lameire, N.H. Inhibition of the interaction of AGE-RAGE prevents hyperglycemia-induced fibrosis of the peritoneal membrane. J. Am. Soc. Nephrol 2003, 14, 2109–2118. [Google Scholar]
- Kato, T.; Yamashita, T.; Sekiguchi, A.; Tsuneda, T.; Sagara, K.; Takamura, M.; Kaneko, S.; Aizawa, T.; Fu, L.T. Angiotensin II type 1 receptor blocker attenuates diabetes-induced atrial structural remodeling. J. Cardiol 2011, 58, 131–136. [Google Scholar]
- Fan, Q.; Liao, J.; Kobayashi, M.; Yamashita, M.; Gu, L.; Gohda, T.; Suzuki, Y.; Wang, L.N.; Horikoshi, S.; Tomino, Y. Candesartan reduced advanced glycation end-products accumulation and diminished nitro-oxidative stress in type 2 diabetic KK/Ta mice. Nephrol. Dial. Transplant 2004, 19, 3012–3020. [Google Scholar]
- Ishibashi, T.; Kawaguchi, M.; Sugimoto, K.; Uekita, H.; Sakamoto, N.; Yokoyama, K.; Maruyama, Y.; Takeishi, Y. Advanced glycation end product-mediated matrix metallo-proteinase-9 and apoptosis via renin-angiotensin system in type 2 diabetes. J. Atheroscler. Thromb 2010, 17, 578–589. [Google Scholar]
- Piarulli, F.; Lapolla, A.; Ragazzi, E.; Susana, A.; Sechi, A.; Nollino, L.; Cosma, C.; Fedele, D.; Sartore, G. Role of endogenous secretory RAGE (esRAGE) in defending against plaque formation induced by oxidative stress in type 2 diabetic patients. Atherosclerosis 2012, 226, 252–257. [Google Scholar]
- Su, X.D.; Li, S.S.; Tian, Y.Q.; Zhang, Z.Y.; Zhang, G.Z.; Wang, L.X. Elevated serum levels of advanced glycation end products and their monocyte receptors in patients with type 2 diabetes. Arch. Med. Res 2011, 42, 596–601. [Google Scholar]
- Cipollone, F.; Iezzi, A.; Fazia, M.; Zucchelli, M.; Pini, B.; Cuccurullo, C.; De Cesare, D.; de Blasis, G.; Muraro, R.; Bei, R.; et al. The receptor RAGE as a progression factor amplifying arachidonate-dependent inflammatory and proteolytic response in human atherosclerotic plaques: Role of glycemic control. Circulation 2003, 108, 1070–1077. [Google Scholar]
- Cuccurullo, C.; Iezzi, A.; Fazia, M.L.; de Cesare, D.; di Francesco, A.; Muraro, R.; Bei, R.; Ucchino, S.; Spigonardo, F.; Chiarelli, F.; et al. Suppression of RAGE as a basis of simvastatin-dependent plaque stabilization in type 2 diabetes. Arterioscler. Thromb. Vasc. Biol 2006, 26, 2716–2723. [Google Scholar]
- Devangelio, E.; Santilli, F.; Formoso, G.; Ferroni, P.; Bucciarelli, L.; Michetti, N.; Clissa, C.; Ciabattoni, G.; Consoli, A.; Davi, G. Soluble RAGE in type 2 diabetes: Association with oxidative stress. Free Radic. Biol. Med 2007, 43, 511–518. [Google Scholar]
- Lu, L.; Pu, L.J.; Zhang, Q.; Wang, L.J.; Kang, S.; Zhang, R.Y.; Chen, Q.J.; Wang, J.G.; de Caterina, R.; Shen, W.F. Increased glycated albumin and decreased esRAGE levels are related to angiographic severity and extent of coronary artery disease in patients with type 2 diabetes. Atherosclerosis 2009, 206, 540–545. [Google Scholar]
- Tam, X.H.; Shiu, S.W.; Leng, L.; Bucala, R.; Betteridge, D.J.; Tan, K.C. Enhanced expression of receptor for advanced glycation end-products is associated with low circulating soluble isoforms of the receptor in Type 2 diabetes. Clin. Sci 2011, 120, 81–89. [Google Scholar]
- Wautier, M.P.; Khodabandehlou, T.; Le Devehat, C.; Wautier, J.L. Modulation of RAGE expression influences the adhesion of red blood cells from diabetic patients. Clin. Hemorheol. Microcirc 2006, 35, 379–386. [Google Scholar]
- Nakamura, K.; Yamagishi, S.; Adachi, H.; Kurita-Nakamura, Y.; Matsui, T.; Yoshida, T.; Imaizumi, T. Serum levels of sRAGE, the soluble form of receptor for advanced glycation end products, are associated with inflammatory markers in patients with type 2 diabetes. Mol. Med 2007, 13, 185–189. [Google Scholar]
- Grossin, N.; Wautier, M.P.; Meas, T.; Guillausseau, P.J.; Massin, P.; Wautier, J.L. Severity of diabetic microvascular complications is associated with a low soluble RAGE level. Diabetes Metab 2008, 34, 392–395. [Google Scholar]
- Katakami, N.; Matsuhisa, M.; Kaneto, H.; Matsuoka, T.A.; Sakamoto, K.; Nakatani, Y.; Ohtoshi, K.; Hayaishi-Okano, R.; Kosugi, K.; Hori, M.; et al. Decreased endogenous secretory advanced glycation end product receptor in type 1 diabetic patients: Its possible association with diabetic vascular complications. Diabetes Care 2005, 28, 2716–2721. [Google Scholar]
- Tan, K.C.; Shiu, S.W.; Chow, W.S.; Leng, L.; Bucala, R.; Betteridge, D.J. Association between serum levels of soluble receptor for advanced glycation end products and circulating advanced glycation end products in type 2 diabetes. Diabetologia 2006, 49, 2756–2762. [Google Scholar]
- Niu, W.; Qi, Y.; Wu, Z.; Liu, Y.; Zhu, D.; Jin, W. A meta-analysis of receptor for advanced glycation end products gene: Four well-evaluated polymorphisms with diabetes mellitus. Mol. Cell Endocrinol 2012, 358, 9–17. [Google Scholar]
- Arabi, Y.M.; Dehbi, M.; Rishu, A.H.; Baturcam, E.; Kahoul, S.H.; Brits, R.J.; Naidu, B.; Bouchama, A. sRAGE in diabetic and non-diabetic critically ill patients: Effects of intensive insulin therapy. Crit. Care 2011, 15, R203. [Google Scholar]
- Skrha, J., Jr; Kalousova, M.; Svarcova, J.; Muravska, A.; Kvasnicka, J.; Landova, L.; Zima, T.; Skrha, J. Relationship of soluble RAGE and RAGE ligands HMGB1 and EN-RAGE to endothelial dysfunction in type 1 and type 2 diabetes mellitus. Exp. Clin. Endocrinol. Diabetes 2012, 120, 277–281. [Google Scholar]
- Yan, X.X.; Lu, L.; Peng, W.H.; Wang, L.J.; Zhang, Q.; Zhang, R.Y.; Chen, Q.J.; Shen, W.F. Increased serum HMGB1 level is associated with coronary artery disease in nondiabetic and type 2 diabetic patients. Atherosclerosis 2009, 205, 544–548. [Google Scholar]
- Nin, J.W.; Ferreira, I.; Schalkwijk, C.G.; Jorsal, A.; Prins, M.H.; Parving, H.H.; Tarnow, L.; Rossing, P.; Stehouwer, C.D. Higher plasma high-mobility group box 1 levels are associated with incident cardiovascular disease and all-cause mortality in type 1 diabetes: A 12 year follow-up study. Diabetologia 2012, 55, 2489–2493. [Google Scholar]
- Hu, P.; Lai, D.; Lu, P.; Gao, J.; He, H. ERK and Akt signaling pathways are involved in advanced glycation end product-induced autophagy in rat vascular smooth muscle cells. Int. J. Mol. Med 2012, 29, 613–618. [Google Scholar]
- Zhao, L.M.; Su, X.L.; Wang, Y.; Li, G.R.; Deng, X.L. KCa3.1 channels mediate the increase of cell migration and proliferation by advanced glycation endproducts in cultured rat vascular smooth muscle cells. Lab. Invest 2013, 93, 159–167. [Google Scholar]
- Hayakawa, E.; Yoshimoto, T.; Sekizawa, N.; Sugiyama, T.; Hirata, Y. Overexpression of receptor for advanced glycation end products induces monocyte chemoattractant protein-1 expression in rat vascular smooth muscle cell line. J. Atheroscler. Thromb 2012, 19, 13–22. [Google Scholar]
- Yamagishi, S.; Matsui, T.; Nakamura, K.; Takeuchi, M.; Inoue, H. Telmisartan inhibits advanced glycation end products (AGEs)-elicited endothelial cell injury by suppressing AGE receptor (RAGE) expression via peroxisome proliferator-activated receptor-gammaactivation. Protein. Pept. Lett 2008, 15, 850–853. [Google Scholar]
- Fujita, M.; Okuda, H.; Tsukamoto, O.; Asano, Y.; Hirata, Y.L.; Kim, J.; Miyatsuka, T.; Takashima, S.; Minamino, T.; Tomoike, H.; et al. Blockade of angiotensin II receptors reduces the expression of receptors for advanced glycation end products in human endothelial cells. Arterioscler. Thromb. Vasc. Biol 2006, 26, e138–e142. [Google Scholar]
- Liu, Y.; Liang, C.; Liu, X.; Liao, B.; Pan, X.; Ren, Y.; Fan, M.; Li, M.; He, Z.; Wu, J.; et al. AGEs increased migration and inflammatory responses of adventitial fibroblasts via RAGE, MAPK and NF-kappaB pathways. Atherosclerosis 2010, 208, 34–42. [Google Scholar]
- Wang, Z.; Jiang, Y.; Liu, N.; Ren, L.; Zhu, Y.; An, Y.; Chen, D. Advanced glycation end-product Nepsilon-carboxymethyl-Lysine accelerates progression of atherosclerotic calcification in diabetes. Atherosclerosis 2012, 221, 387–396. [Google Scholar]
- Yu, W.; Liu-Bryan, R.; Stevens, S.; Damanahalli, J.K.; Terkeltaub, R. RAGE signaling mediates post-injury arterial neointima formation by suppression of liver kinase B1 and AMPK activity. Atherosclerosis 2012, 222, 417–425. [Google Scholar]
- Soro-Paavonen, A.; Watson, A.M.; Li, J.; Paavonen, K.; Koitka, A.; Calkin, A.C.; Barit, D.; Coughlan, M.T.; Drew, B.G.; Lancaster, G.I.; et al. Receptor for advanced glycation end products (RAGE) deficiency attenuates the development of atherosclerosis in diabetes. Diabetes 2008, 57, 2461–2469. [Google Scholar]
- Morris-Rosenfeld, S.; Blessing, E.; Preusch, M.R.; Albrecht, C.; Bierhaus, A.; Andrassy, M.; Nawroth, P.P.; Rosenfeld, M.E.; Katus, H.A.; Bea, F. Deletion of bone marrow-derived receptor for advanced glycation end products inhibits atherosclerotic plaque progression. Eur. J. Clin. Invest 2011, 41, 1164–1171. [Google Scholar]
- Wendt, T.; Bucciarelli, L.; Qu, W.; Lu, Y.; Yan, S.F.; Stern, D.M.; Schmidt, A.M. Receptor for advanced glycation endproducts (RAGE) and vascular inflammation: Insights into the pathogenesis of macrovascular complications in diabetes. Curr Atheroscler. Rep 2002, 4, 228–237. [Google Scholar]
- Kanellakis, P.; Agrotis, A.; Kyaw, T.S.; Koulis, C.; Ahrens, I.; Mori, S.; Takahashi, H.K.; Liu, K.; Peter, K.; Nishibori, M.; et al. High-mobility group box protein 1 neutralization reduces development of diet-induced atherosclerosis in apolipoprotein e-deficient mice. Arterioscler. Thromb. Vasc. Biol 2011, 31, 313–319. [Google Scholar]
- Calkin, A.C.; Giunti, S.; Sheehy, K.J.; Chew, C.; Boolell, V.; Rajaram, Y.S.; Cooper, M.E.; Jandeleit-Dahm, K.A. The HMG-CoA reductase inhibitor rosuvastatin and the angiotensin receptor antagonist candesartan attenuate atherosclerosis in an apolipoprotein E-deficient mouse model of diabetes via effects on advanced glycation, oxidative stress and inflammation. Diabetologia 2008, 51, 1731–1740. [Google Scholar]
- Kalinina, N.; Agrotis, A.; Antropova, Y.; DiVitto, G.; Kanellakis, P.; Kostolias, G.; Ilyinskaya, O.; Tararak, E.; Bobik, A. Increased expression of the DNA-binding cytokine HMGB1 in human atherosclerotic lesions: Role of activated macrophages and cytokines. Arterioscler. Thromb. Vasc. Biol 2004, 24, 2320–2325. [Google Scholar]
- Inoue, K.; Kawahara, K.; Biswas, K.K.; Ando, K.; Mitsudo, K.; Nobuyoshi, M.; Maruyama, I. HMGB1 expression by activated vascular smooth muscle cells in advanced human atherosclerosis plaques. Cardiovasc. Pathol 2007, 16, 136–143. [Google Scholar]
- Koyama, H.; Shoji, T.; Yokoyama, H.; Motoyama, K.; Mori, K.; Fukumoto, S.; Emoto, M.; Shoji, T.; Tamei, H.; Matsuki, H.; et al. Plasma level of endogenous secretory RAGE is associated with components of the metabolic syndrome and atherosclerosis. Arterioscler. Thromb. Vasc. Biol 2005, 25, 2587–2593. [Google Scholar]
- Katakami, N.; Matsuhisa, M.; Kaneto, H.; Matsuoka, T.A.; Sakamoto, K.; Yasuda, T.; Umayahara, Y.; Kosugi, K.; Yamasaki, Y. Serum endogenous secretory RAGE level is an independent risk factor for the progression of carotid atherosclerosis in type 1 diabetes. Atherosclerosis 2009, 204, 288–292. [Google Scholar]
- Ito, T.; Kawahara, K.; Nakamura, T.; Yamada, S.; Nakamura, T.; Abeyama, K.; Hashiguchi, T.; Maruyama, I. High-mobility group box 1 protein promotes development of microvascular thrombosis in rats. J. Thromb. Haemost 2007, 5, 109–116. [Google Scholar]
- Zhai, D.X.; Kong, Q.F.; Xu, W.S.; Bai, S.S.; Peng, H.S.; Zhao, K.; Li, G.Z.; Wang, D.D.; Sun, B.; Wang, J.H.; et al. RAGE expression is up-regulated in human cerebral ischemia and pMCAO rats. Neurosci. Lett 2008, 445, 117–121. [Google Scholar]
- Chang, J.S.; Wendt, T.; Qu, W.; Kong, L.; Zou, Y.S.; Schmidt, A.M.; Yan, S.F. Oxygen deprivation triggers upregulation of early growth response-1 by the receptor for advanced glycation end products. Circ. Res 2008, 102, 905–913. [Google Scholar]
- Kikuchi, K.; Kawahara, K.; Biswas, K.K.; Ito, T.; Tancharoen, S.; Morimoto, Y.; Matsuda, F.; Oyama, Y.; Takenouchi, K.; Miura, N.; et al. Minocycline attenuates both OGD-induced HMGB1 release and HMGB1-induced cell death in ischemic neuronal injury in PC12 cells. Biochem. Biophys. Res. Commun 2009, 385, 132–136. [Google Scholar]
- Kikuchi, K.; Kawahara, K.; Tancharoen, S.; Matsuda, F.; Morimoto, Y.; Ito, T.; Biswas, K.K.; Takenouchi, K.; Miura, N.; Oyama, Y.; et al. The free radical scavenger edaravone rescues rats from cerebral infarction by attenuating the release of high-mobility group box-1 in neuronal cells. J. Pharmacol. Exp. Ther 2009, 329, 865–874. [Google Scholar]
- Mazarati, A.; Maroso, M.; Iori, V.; Vezzani, A.; Carli, M. High-mobility group box-1 impairs memory in mice through both toll-like receptor 4 and receptor for advanced glycation end products. Exp. Neurol 2011, 232, 143–148. [Google Scholar]
- Pedrazzi, M.; Raiteri, L.; Bonanno, G.; Patrone, M.; Ledda, S.; Passalacqua, M.; Milanese, M.; Melloni, E.; Raiteri, M.; Pontremoli, S.; et al. Stimulation of excitatory amino acid release from adult mouse brain glia subcellular particles by high mobility group box 1 protein. J. Neurochem 2006, 99, 827–838. [Google Scholar]
- Pichiule, P.; Chavez, J.C.; Schmidt, A.M.; Vannucci, S.J. Hypoxia-inducible factor-1 mediates neuronal expression of the receptor for advanced glycation end products following hypoxia/ischemia. J.Biol. Chem 2007, 282, 36330–36340. [Google Scholar]
- Kamide, T.; Kitao, Y.; Takeichi, T.; Okada, A.; Mohri, H.; Schmidt, A.M.; Kawano, T.; Munesue, S.; Yamamoto, Y.; Yamamoto, H.; et al. RAGE mediates vascular injury and inflammation after global cerebral ischemia. Neurochem. Int 2012, 60, 220–228. [Google Scholar]
- Muhammad, S.; Barakat, W.; Stoyanov, S.; Murikinati, S.; Yang, H.; Tracey, K.J.; Bendszus, M.; Rossetti, G.; Nawroth, P.P.; Bierhaus, A.; et al. The HMGB1 receptor RAGE mediates ischemic brain damage. J. Neurosci 2008, 28, 12023–12031. [Google Scholar]
- Liu, K.; Mori, S.; Takahashi, H.K.; Tomono, Y.; Wake, H.; Kanke, T.; Sato, Y.; Hiraga, N.; Adachi, N.; Yoshino, T.; et al. Anti-high mobility group box 1 monoclonal antibody ameliorates brain infarction induced by transient ischemia in rats. FASEB J 2007, 21, 3904–3916. [Google Scholar]
- Kim, J.B.; Sig Choi, J.; Yu, Y.M.; Nam, K.; Piao, C.S.; Kim, S.W.; Lee, M.H.; Han, P.L.; Park, J.S.; Lee, J.K. HMGB1, a novel cytokine-like mediator linking acute neuronal death and delayed neuroinflammation in the postischemic brain. J. Neurosci 2006, 26, 6413–6421. [Google Scholar]
- Zhang, J.; Takahashi, H.K.; Liu, K.; Wake, H.; Liu, R.; Maruo, T.; Date, I.; Yoshino, T.; Ohtsuka, A.; Mori, S.; et al. Anti-high mobility group box-1 monoclonal antibody protects the blood-brain barrier from ischemia-induced disruption in rats. Stroke 2011, 42, 1420–1428. [Google Scholar]
- Haraguchi, T.; Takasaki, K.; Naito, T.; Hayakawa, K.; Katsurabayashi, S.; Mishima, K.; Iwasaki, K.; Fujiwara, M. Cerebroprotective action of telmisartan by inhibition of macrophages/microglia expressing HMGB1 via a peroxisome proliferator-activated receptor gamma-dependent mechanism. Neurosci. Lett 2009, 464, 151–155. [Google Scholar]
- Huang, J.M.; Hu, J.; Chen, N.; Hu, M.L. Relationship between plasma high-mobility group box-1 levels and clinical outcomes of ischemic stroke. J. Crit. Care 2013, 28, 792–797. [Google Scholar]
- Zhou, Y.; Xiong, K.L.; Lin, S.; Zhong, Q.; Lu, F.L.; Liang, H.; Li, J.C.; Wang, J.Z.; Yang, Q.W. Elevation of high-mobility group protein box-1 in serum correlates with severity of acute intracerebral hemorrhage. Mediators Inflamm 2010, 2010, 142458, :1–142458:6.. [Google Scholar]
- Yokota, C.; Minematsu, K.; Tomii, Y.; Naganuma, M.; Ito, A.; Nagasawa, H.; Yamaguchi, T. Low levels of plasma soluble receptor for advanced glycation end products are associated with severe leukoaraiosis in acute stroke patients. J. Neurol. Sci 2009, 287, 41–44. [Google Scholar]
- Zimmerman, G.A.; Meistrell, M., III; Bloom, O.; Cockroft, K.M.; Bianchi, M.; Risucci, D.; Broome, J.; Farmer, P.; Cerami, A.; Vlassara, H.; et al. Neurotoxicity of advanced glycation endproducts during focal stroke and neuroprotective effects of aminoguanidine. Proc. Natl. Acad. Sci. USA 1995, 92, 3744–3748. [Google Scholar]
- Dirnagl, U.; Iadecola, C.; Moskowitz, M.A. Pathobiology of ischaemic stroke: An integrated view. Trends Neurosci 1999, 22, 391–397. [Google Scholar]
- Yoshida, T.; Yamagishi, S.; Nakamura, K.; Matsui, T.; Imaizumi, T.; Takeuchi, M.; Koga, H.; Ueno, T.; Sata, M. Telmisartan inhibits AGE-induced C-reactive protein production through downregulation of the receptor for AGE via peroxisome proliferator-activated receptor-gamma activation. Diabetologia 2006, 49, 3094–3099. [Google Scholar]
Item | Description | Telmisartan | Irbesartan | Candesartan |
---|---|---|---|---|
Laboratory setting | Focal model tested in two or more laboratories | √ | √ | √ |
Animal species | Focal model tested in two or more species | √ | √ | √ |
Health of animals | Focal model tested in old or diseased animals (e.g., diabetic, hypertensive, aged, and hyperglycemic) | √ | √ | √ |
Sex of animals | Focal model tested in male and female animals | × | × | × |
Reperfusion | Tested in temporary and permanent models of focal ischemia | √ | √ | √ |
Time window | Drug administered at least 1 h after occlusion in focal model | × | × | √ |
Dose response | Drug administered using at least two doses in focal model | √ | √ | √ |
Route of delivery | Tested using a feasible mode of delivery (e.g., not intracisternal or intraventricular, cortical transplant or graft only) | × | × | × |
Endpoint | Behavioral and histological outcomes measured | √ | √ | √ |
Long-term effect | Outcome measured at 4 or more weeks after occlusion in focal models | √ | × | × |
Total | 7 | 6 | 7 |
Drugs | Effect for stroke | Sample size | p value | Study name | Reference |
---|---|---|---|---|---|
Telmisartan | Prevention | 20,332 | 0.23 | PRoFESS | [62] |
Prevention | 25,611 | – | ONTARGET | [63] | |
Prevention | 5926 | 0.136 | TRANSCEND | [64] | |
Irbesartan | Prevention | 9016 | 0.20 | ACTIVE I | [65] |
Acute treatment | 43 | 0.066 | – | [66] | |
Candesartan | Prevention | 4964 | 0.06 | SCOPE | [67] |
Prevention | 4728 | 0.198 | CASE-J | [68] | |
Prevention | 2048 | – | E-COST | [69] | |
Prevention, acute treatment | 2029 | 0.38, 0.47 | SCAST | [70] |
© 2013 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Kikuchi, K.; Tancharoen, S.; Ito, T.; Morimoto-Yamashita, Y.; Miura, N.; Kawahara, K.-i.; Maruyama, I.; Murai, Y.; Tanaka, E. Potential of the Angiotensin Receptor Blockers (ARBs) Telmisartan, Irbesartan, and Candesartan for Inhibiting the HMGB1/RAGE Axis in Prevention and Acute Treatment of Stroke. Int. J. Mol. Sci. 2013, 14, 18899-18924. https://doi.org/10.3390/ijms140918899
Kikuchi K, Tancharoen S, Ito T, Morimoto-Yamashita Y, Miura N, Kawahara K-i, Maruyama I, Murai Y, Tanaka E. Potential of the Angiotensin Receptor Blockers (ARBs) Telmisartan, Irbesartan, and Candesartan for Inhibiting the HMGB1/RAGE Axis in Prevention and Acute Treatment of Stroke. International Journal of Molecular Sciences. 2013; 14(9):18899-18924. https://doi.org/10.3390/ijms140918899
Chicago/Turabian StyleKikuchi, Kiyoshi, Salunya Tancharoen, Takashi Ito, Yoko Morimoto-Yamashita, Naoki Miura, Ko-ichi Kawahara, Ikuro Maruyama, Yoshinaka Murai, and Eiichiro Tanaka. 2013. "Potential of the Angiotensin Receptor Blockers (ARBs) Telmisartan, Irbesartan, and Candesartan for Inhibiting the HMGB1/RAGE Axis in Prevention and Acute Treatment of Stroke" International Journal of Molecular Sciences 14, no. 9: 18899-18924. https://doi.org/10.3390/ijms140918899
APA StyleKikuchi, K., Tancharoen, S., Ito, T., Morimoto-Yamashita, Y., Miura, N., Kawahara, K. -i., Maruyama, I., Murai, Y., & Tanaka, E. (2013). Potential of the Angiotensin Receptor Blockers (ARBs) Telmisartan, Irbesartan, and Candesartan for Inhibiting the HMGB1/RAGE Axis in Prevention and Acute Treatment of Stroke. International Journal of Molecular Sciences, 14(9), 18899-18924. https://doi.org/10.3390/ijms140918899