tRNA Modification Enzymes GidA and MnmE: Potential Role in Virulence of Bacterial Pathogens
Abstract
:1. Introduction
2. GidA/MnmE-Associated Virulence of Gram-Negative Bacteria
3. GidA/MnmE-Associated Virulence of Gram-Positive Bacteria
4. Potential Mechanism of Virulence
5. Potential Therapeutic Benefits
6. Conclusions
Acknowledgments
Conflicts of Interest
References
- McCloskey, J.A.; Crain, P.F. The RNA modification database—1998. Nucleic Acids Res. 1998, 26, 196–197. [Google Scholar]
- Agris, P.F.; Vendeix, F.A.; Graham, W.D. tRNA’s wobble decoding of the genome: 40 years of modification. J. Mol. Biol. 2007, 366, 1–13. [Google Scholar]
- Gustilo, E.M.; Vendeix, F.A.; Agris, P.F. tRNA’s modifications bring order to gene expression. Curr. Opin. Microbiol. 2008, 11, 134–140. [Google Scholar]
- Kambampati, R.; Lauhon, C.T. MnmA and IscS are required for in vitro 2-thiouridine biosynthesis in Escherichia coli. Biochemistry 2003, 42, 1109–1117. [Google Scholar]
- Ikeuchi, Y.; Shigi, N.; Kato, J.; Nishimura, A.; Suzuki, T. Mechanistic insights into sulfur relay by multiple sulfur mediators involved in thiouridine biosynthesis at tRNA wobble positions. Mol. Cell. 2006, 21, 97–108. [Google Scholar]
- Numata, T.; Ikeuchi, Y.; Fukai, S.; Suzuki, T.; Nureki, O. Snapshots of tRNA sulphuration via an adenylated intermediate. Nature 2006, 442, 419–424. [Google Scholar]
- Lauhon, C.T. Requirement for IscS in biosynthesis of all thionucleosides in Escherichia coli. J. Bacteriol. 2002, 184, 6820–6829. [Google Scholar]
- Nilsson, K.; Lundgren, H.K.; Hagervall, T.G.; Björk, G.R. The cysteine desulfurase IscS is required for synthesis of all five thiolated nucleosides present in tRNA from Salmonella enterica serovar Typhimurium. J. Bacteriol. 2002, 184, 6830–6835. [Google Scholar]
- Lundgren, H.K.; Björk, G.R. Structural alterations of the cysteine desulfurase IscS of Salmonella enterica serovar Typhimurium reveal substrate specificity of IscS in tRNA thiolation. J. Bacteriol. 2006, 188, 3052–3062. [Google Scholar]
- White, D.J.; Merod, R.; Thomasson, B.; Hartzell, P.L. GidA is an FAD-binding protein involved in development of Myxococcus xanthus. Mol. Microbiol. 2001, 42, 503–517. [Google Scholar]
- Urbonavicius, J.; Skouloubris, S.; Myllykallio, H.; Grosjean, H. Identification of a novel gene encoding a flavin-dependent tRNA:m5U methyltransferase in bacteria—Evolutionary implications. Nucleic Acids Res. 2005, 33, 3955–3964. [Google Scholar]
- Von Meyenburg, K.; Jorgensen, B.B.; Nielsen, J.; Hansen, F.G. Promoters of the atp operon coding for the membrane-bound ATP synthase of Escherichia coli mapped by Tn10 insertion mutations. Mol. Gen. Genet. 1982, 188, 240–248. [Google Scholar]
- Shippy, D.C.; Heintz, J.A.; Albrecht, R.M.; Eakley, N.M.; Chopra, A.K.; Fadl, A.A. Deletion of glucose-inhibited division (gidA) gene alters the morphological and replication characteristics of Salmonella enterica serovar Typhimurium. Arch. Microbiol. 2012, 194, 405–412. [Google Scholar]
- Sha, J.; Kozlova, E.V.; Fadl, A.A.; Olano, J.P.; Houston, C.W.; Peterson, J.W.; Chopra, A.K. Molecular characterization of a glucose-inhibited division gene, gidA, that regulates cytotoxic enterotoxin of Aeromonas hydrophila. Infect. Immun. 2004, 72, 1084–1095. [Google Scholar]
- Armengod, M.E.; Moukadiri, I.; Prado, S.; Ruiz-Partida, R.; Benitez-Paez, A.; Villarroya, M.; Lomas, R.; Garzon, M.J.; Martinez-Zamora, A.; Meseguer, S.; et al. Enzymology of tRNA modification in the bacterial MnmEG pathway. Biochimie 2012, 94, 1510–1520. [Google Scholar]
- Yim, L.; Moukadiri, I.; Björk, G.R.; Armengod, M.E. Further insights into the tRNA modification process controlled by proteins MnmE and GidA of Escherichia coli. Nucleic Acids Res. 2006, 34, 5892–5905. [Google Scholar]
- Wittinghofer, A.; Vetter, I.R. Structure–function relationships of the G domain, a canonical switch motif. Annu. Rev. Biochem. 2011, 80, 943–971. [Google Scholar]
- Cabedo, H.; Macian, F.; Villarroya, M.; Escudero, J.C.; Martinez-Vicente, M.; Knecht, E.; Armengod, M.E. The Escherichia coli trmE (mnmE) gene, involved in tRNA modification, codes for an evolutionarily conserved GTPase with unusual biochemical properties. EMBO J. 1999, 18, 7063–7076. [Google Scholar]
- Yamanaka, K.; Hwang, J.; Inouye, M. Characterization of GTPase activity of TrmE, a member of a novel GTPase superfamily, from Thermotoga maritima. J. Bacteriol. 2000, 182, 7078–7082. [Google Scholar]
- Scrima, A.; Wittinghofer, A. Dimerisation-dependent GTPase reaction of MnmE: How potassium acts as GTPase-activating element. EMBO J. 2006, 25, 2940–2951. [Google Scholar]
- Elseviers, D.; Petrullo, L.A.; Gallagher, P.J. Novel E. coli mutants deficient in biosynthesis of 5-methylaminomethyl-2-thiouridine. Nucleic Acids Res. 1984, 12, 3521–3534. [Google Scholar]
- Bregeon, D.; Colot, V.; Radman, M.; Taddei, F. Translational misreading: A tRNA modification counteracts a +2 ribosomal frameshift. Genes Dev. 2001, 15, 2295–2306. [Google Scholar]
- Moukadiri, I.; Prado, S.; Piera, J.; Velazquez-Campoy, A.; Björk, G.R.; Armengod, M.E. Evolutionarily conserved proteins MnmE and GidA catalyze the formation of two methyluridine derivatives at tRNA wobble positions. Nucleic Acids Res. 2009, 37, 7177–7193. [Google Scholar]
- Shi, R.; Villarroya, M.; Ruiz-Partida, R.; Li, Y.; Proteau, A.; Prado, S.; Moukadiri, I.; Benitez-Paez, A.; Lomas, R.; Wagner, J.; et al. Structure–function analysis of Escherichia coli MnmG (GidA), a highly conserved tRNA-modifying enzyme. J. Bacteriol. 2009, 191, 7614–7619. [Google Scholar]
- Osawa, T.; Ito, K.; Inanaga, H.; Nureki, O.; Tomita, K.; Numata, T. Conserved cysteine residues of GidA are essential for biogenesis of 5-carboxymethylaminomethyluridine at tRNA anticodon. Structure 2009, 17, 713–724. [Google Scholar]
- Hagervall, T.G.; Edmonds, C.G.; McCloskey, J.A.; Björk, G.R. Transfer RNA(5-methylaminomethyl-2-thiouridine)-methyltransferase from Escherichia coli K-12 has two enzymatic activities. J. Biol. Chem. 1987, 262, 8488–8495. [Google Scholar]
- Bujnicki, J.M.; Oudjama, Y.; Roovers, M.; Owczarek, S.; Caillet, J.; Droogmans, L. Identification of a bifunctional enzyme MnmC involved in the biosynthesis of a hypermodified uridine in the wobble position of tRNA. RNA 2004, 10, 1236–1242. [Google Scholar]
- Roovers, M.; Oudjama, Y.; Kaminska, K.H.; Purta, E.; Caillet, J.; Droogmans, L.; Bujnicki, J.M. Sequence–structure–function analysis of the bifunctional enzyme MnmC that catalyses the last two steps in the biosynthesis of hypermodified nucleoside mnm5s2u in tRNA. Proteins 2008, 71, 2076–2085. [Google Scholar]
- Pearson, D.; Carell, T. Assay of both activities of the bifunctional tRNA-modifying enzyme MnmC reveals a kinetic basis for selective full modification of cmnm5s2u to mnm5s2u. Nucleic Acids Res. 2011, 39, 4818–4826. [Google Scholar]
- Shippy, D.C.; Eakley, N.M.; Lauhon, C.T.; Bochsler, P.N.; Fadl, A.A. Virulence characteristics of Salmonella following deletion of genes encoding the tRNA modification enzymes GidA and MnmE. Microb. Pathog. 2013, 57, 1–9. [Google Scholar]
- Decoster, E.; Vassal, A.; Faye, G. MSS1, a nuclear-encoded mitochondrial GTPase involved in the expression of COX1 subunit of cytochrome c oxidase. J. Mol. Biol. 1993, 232, 79–88. [Google Scholar]
- Colby, G.; Wu, M.; Tzagoloff, A. MTO1 codes for a mitochondrial protein required for respiration in paromomycin-resistant mutants of Saccharomyces cerevisiae. J. Biol. Chem. 1998, 273, 27945–27952. [Google Scholar]
- Li, X.; Guan, M.X. A human mitochondrial GTP binding protein related to tRNA modification may modulate phenotypic expression of the deafness-associated mitochondrial 12s rRNA mutation. Mol. Cell. Biol. 2002, 22, 7701–7711. [Google Scholar]
- Li, X.; Li, R.; Lin, X.; Guan, M.X. Isolation and characterization of the putative nuclear modifier gene MTO1 involved in the pathogenesis of deafness-associated mitochondrial 12S rRNA A1555G mutation. J. Biol. Chem. 2002, 277, 27256–27264. [Google Scholar]
- Chen, C.; Tuck, S.; Bystrom, A.S. Defects in tRNA modification associated with neurological and developmental dysfunctions in Caenorhabditis elegans elongator mutants. PLoS Genet. 2009, 5, e1000561. [Google Scholar]
- Villarroya, M.; Prado, S.; Esteve, J.M.; Soriano, M.A.; Aguado, C.; Perez-Martinez, D.; Martinez-Ferrandis, J.I.; Yim, L.; Victor, V.M.; Cebolla, E.; et al. Characterization of human GTPBP3, a GTP-binding protein involved in mitochondrial tRNA modification. Mol. Cell. Biol. 2008, 28, 7514–7531. [Google Scholar]
- Cho, K.H.; Caparon, M.G. tRNA modification by GidA/MnmE is necessary for Streptococcus pyogenes virulence: A new strategy to make live attenuated strains. Infect. Immun. 2008, 76, 3176–3186. [Google Scholar]
- Shippy, D.C.; Eakley, N.M.; Bochsler, P.N.; Chopra, A.K.; Fadl, A.A. Biological and virulence characteristics of Salmonella enterica serovar Typhimurium following deletion of glucose-inhibited division (gidA) gene. Microb. Pathog. 2011, 50, 303–313. [Google Scholar]
- Rehl, J.M.; Shippy, D.C.; Eakley, N.M.; Brevik, M.D.; Sand, J.M.; Cook, M.E.; Fadl, A.A. GidA expression in Salmonella is modulated under certain environmental conditions. Curr. Microbiol. 2013, 67, 279–285. [Google Scholar]
- Gong, S.; Ma, Z.; Foster, J.W. The era-like GTPase TrmE conditionally activates gadE and glutamate-dependent acid resistance in Escherichia coli. Mol. Microbiol. 2004, 54, 948–961. [Google Scholar]
- Zhang, W.; Zhao, Z.; Zhang, B.; Wu, X.G.; Ren, Z.G.; Zhang, L.Q. Posttranscriptional regulation of 2,4-diacetylphloroglucinol production by GidA and TrmE in Pseudomonas fluorescens 2p24. Appl. Environ. Microbiol. 2014, 80, 3972–3981. [Google Scholar]
- Kinscherf, T.G.; Willis, D.K. Global regulation by GidA in Pseudomonas syringae. J. Bacteriol. 2002, 184, 2281–2286. [Google Scholar]
- Faron, M.; Fletcher, J.R.; Rasmussen, J.A.; Long, M.E.; Allen, L.A.; Jones, B.D. The Francisella tularensis migR, trmE, and cphA genes contribute to F. tularensis pathogenicity island gene regulation and intracellular growth by modulation of the stress alarmone ppGpp. Infect. Immun. 2013, 81, 2800–2811. [Google Scholar]
- Li, D.; Shibata, Y.; Takeshita, T.; Yamashita, Y. A novel gene involved in the survival of Streptococcus mutans under stress conditions. Appl. Environ. Microbiol. 2014, 80, 97–103. [Google Scholar]
- Li, W.; Liu, L.; Qiu, D.; Chen, H.; Zhou, R. Identification of Streptococcus suis serotype 2 genes preferentially expressed in the natural host. Int. J. Med. Microbiol. 2010, 300, 482–488. [Google Scholar]
- Menendez, A.; Fernandez, L.; Reimundo, P.; Guijarro, J.A. Genes required for Lactococcus garvieae survival in a fish host. Microbiology 2007, 153, 3286–3294. [Google Scholar]
- Yu, H.; Kim, K.S. mRNA context dependent regulation of cytotoxic necrotizing factor 1 translation by GidA, a tRNA modification enzyme in Escherichia coli. Gene 2012, 491, 116–122. [Google Scholar]
- Singh, A.K.; Pindi, P.K.; Dube, S.; Sundareswaran, V.R.; Shivaji, S. Importance of TrmE for growth of the psychrophile Pseudomonas syringae at low temperatures. Appl. Environ. Microbiol. 2009, 75, 4419–4426. [Google Scholar]
- Erova, T.E.; Kosykh, V.G.; Sha, J.; Chopra, A.K. DNA adenine methyltransferase (DAM) controls the expression of the cytotoxic enterotoxin (act) gene of Aeromonas hydrophila via tRNA modifying enzyme-glucose-inhibited division protein (GidA). Gene 2012, 498, 280–287. [Google Scholar]
- Karita, M.; Etterbeek, M.L.; Forsyth, M.H.; Tummuru, M.K.; Blaser, M.J. Characterization of Helicobacter pylori dapE and construction of a conditionally lethal dapE mutant. Infect. Immun. 1997, 65, 4158–4164. [Google Scholar]
- Durand, J.M.; Bjork, G.R.; Kuwae, A.; Yoshikawa, M.; Sasakawa, C. The modified nucleoside 2-methylthio-n6-isopentenyladenosine in tRNA of Shigella flexneri is required for expression of virulence genes. J. Bacteriol. 1997, 179, 5777–5782. [Google Scholar]
- Durand, J.M.; Okada, N.; Tobe, T.; Watarai, M.; Fukuda, I.; Suzuki, T.; Nakata, N.; Komatsu, K.; Yoshikawa, M.; Sasakawa, C. vacC, a virulence-associated chromosomal locus of Shigella flexneri, is homologous to tgt, a gene encoding tRNA-guanine transglycosylase (Tgt) of Escherichia coli K-12. J. Bacteriol. 1994, 176, 4627–4634. [Google Scholar]
- Patil, A.; Chan, C.T.; Dyavaiah, M.; Rooney, J.P.; Dedon, P.C.; Begley, T.J. Translational infidelity-induced protein stress results from a deficiency in Trm9-catalyzed tRNA modifications. RNA Biol. 2012, 9, 990–1001. [Google Scholar]
- Lamichhane, T.N.; Blewett, N.H.; Crawford, A.K.; Cherkasova, V.A.; Iben, J.R.; Begley, T.J.; Farabaugh, P.J.; Maraia, R.J. Lack of tRNA modification isopentenyl-A37 alters mRNA decoding and causes metabolic deficiencies in fission yeast. Mol. Cell. Biol. 2013, 33, 2918–2929. [Google Scholar]
- Dedon, P.C.; Begley, T.J. A system of RNA modifications and biased codon use controls cellular stress response at the level of translation. Chem. Res. Toxicol. 2014, 27, 330–337. [Google Scholar]
- Kirino, Y.; Suzuki, T. Human mitochondrial diseases associated with tRNA wobble modification deficiency. RNA Biol. 2005, 2, 41–44. [Google Scholar]
- Zeharia, A.; Shaag, A.; Pappo, O.; Mager-Heckel, A.M.; Saada, A.; Beinat, M.; Karicheva, O.; Mandel, H.; Ofek, N.; Segel, R.; et al. Acute infantile liver failure due to mutations in the trmU gene. Am. J. Hum. Genet. 2009, 85, 401–407. [Google Scholar]
- Ghezzi, D.; Baruffini, E.; Haack, T.B.; Invernizzi, F.; Melchionda, L.; Dallabona, C.; Strom, T.M.; Parini, R.; Burlina, A.B.; Meitinger, T.; et al. Mutations of the mitochondrial-tRNA modifier MTO1 cause hypertrophic cardiomyopathy and lactic acidosis. Am. J. Hum. Genet. 2012, 90, 1079–1087. [Google Scholar]
- Gene Expression Omnibus. Available online: http://www.ncbi.nlm.nih.gov/geo (accessed on 9 October 2014).
- Chaturongakul, S.; Raengpradub, S.; Wiedmann, M.; Boor, K.J. Modulation of stress and virulence in Listeria monocytogenes. Trends Microbiol. 2008, 16, 388–396. [Google Scholar]
- Runkel, S.; Wells, H.C.; Rowley, G. Living with stress: A lesson from the enteric pathogen Salmonella enterica. Adv. Appl. Microbiol. 2013, 83, 87–144. [Google Scholar]
- Cronin, D.; Moenne-Loccoz, Y.; Fenton, A.; Dunne, C.; Dowling, D.N.; O’Gara, F. Role of 2,4-diacetylphloroglucinol in the interactions of the biocontrol pseudomonad strain F113 with the potato cyst nematode Globodera rostochiensis. Appl. Environ. Microbiol. 1997, 63, 1357–1361. [Google Scholar]
- Phillips, D.A.; Fox, T.C.; King, M.D.; Bhuvaneswari, T.V.; Teuber, L.R. Microbial products trigger amino acid exudation from plant roots. Plant Physiol. 2004, 136, 2887–2894. [Google Scholar]
- Brazelton, J.N.; Pfeufer, E.E.; Sweat, T.A.; Gardener, B.B.; Coenen, C. 2,4-Diacetylphloroglucinol alters plant root development. Mol. Plant Microb. Interact. 2008, 21, 1349–1358. [Google Scholar]
- Hrabak, E.M.; Willis, D.K. The lemA gene required for pathogenicity of Pseudomonas syringae pv. Syringae on bean is a member of a family of two-component regulators. J. Bacteriol. 1992, 174, 3011–3020. [Google Scholar]
- Rich, J.J.; Kinscherf, T.G.; Kitten, T.; Willis, D.K. Genetic evidence that the gacA gene encodes the cognate response regulator for the lemA sensor in Pseudomonas syringae. J. Bacteriol 1994, 176, 7468–7475. [Google Scholar]
- Rich, J.J.; Willis, D.K. Multiple loci of Pseudomonas syringae pv. Syringae are involved in pathogenicity on bean: Restoration of one lesion-deficient mutant requires two tRNA genes. J. Bacteriol. 1997, 179, 2247–2258. [Google Scholar]
- Gupta, R.; Gobble, T.R.; Schuster, M. GidA posttranscriptionally regulates rhl quorum sensing in Pseudomonas aeruginosa. J. Bacteriol. 2009, 191, 5785–5792. [Google Scholar]
- Scrima, A.; Vetter, I.R.; Armengod, M.E.; Wittinghofer, A. The structure of the TrmE GTP-binding protein and its implications for tRNA modification. EMBO J. 2005, 24, 23–33. [Google Scholar]
- Meyer, S.; Böhme, S.; Kruger, A.; Steinhoff, H.J.; Klare, J.P.; Wittinghofer, A. Kissing G domains of MnmE monitored by X-ray crystallography and pulse electron paramagnetic resonance spectroscopy. PLoS Biol. 2009, 7, e1000212. [Google Scholar]
- Meyer, S.; Scrima, A.; Versees, W.; Wittinghofer, A. Crystal structures of the conserved tRNA-modifying enzyme GidA: Implications for its interaction with MnmE and substrate. J. Mol. Biol. 2008, 380, 532–547. [Google Scholar]
- Prado, S.; Villarroya, M.; Medina, M.; Armengod, M.E. The tRNA-modifying function of MnmE is controlled by post-hydrolysis steps of its GTPase cycle. Nucleic Acids Res. 2013, 41, 6190–6208. [Google Scholar]
- El Yacoubi, B.; Bailly, M.; de Crecy-Lagard, V. Biosynthesis and function of posttranscriptional modifications of transfer RNAs. Annu. Rev. Genet. 2012, 46, 69–95. [Google Scholar]
- Agris, P.F. Bringing order to translation: The contributions of transfer RNA anticodon-domain modifications. EMBO Rep. 2008, 9, 629–635. [Google Scholar]
- Phizicky, E.M.; Hopper, A.K. tRNA biology charges to the front. Genes Dev. 2010, 24, 1832–1860. [Google Scholar]
- Chan, C.T.; Pang, Y.L.; Deng, W.; Babu, I.R.; Dyavaiah, M.; Begley, T.J.; Dedon, P.C. Reprogramming of tRNA modifications controls the oxidative stress response by codon-biased translation of proteins. Nat. Commun. 2012, 3, 937. [Google Scholar]
- Chen, C.; Huang, B.; Eliasson, M.; Ryden, P.; Bystrom, A.S. Elongator complex influences telomeric gene silencing and DNA damage response by its role in wobble uridine tRNA modification. PLoS Genet. 2011, 7, e1002258. [Google Scholar]
- Urbonavicius, J.; Qian, Q.; Durand, J.M.; Hagervall, T.G.; Björk, G.R. Improvement of reading frame maintenance is a common function for several tRNA modifications. EMBO J. 2001, 20, 4863–4873. [Google Scholar]
- Gielow, A.; Kucherer, C.; Kolling, R.; Messer, W. Transcription in the region of the replication origin, oriC, of Escherichia coli: Termination of asnC transcripts. Mol. Gen. Genet. 1988, 214, 474–481. [Google Scholar]
- Kolling, R.; Gielow, A.; Seufert, W.; Kucherer, C.; Messer, W. Asnc, a multifunctional regulator of genes located around the replication origin of Escherichia coli, oriC. Mol. Gen. Genet. 1988, 212, 99–104. [Google Scholar]
- Ogawa, T.; Okazaki, T. Concurrent transcription from the gid and mioC promoters activates replication of an Escherichia coli minichromosome. Mol. Gen. Genet. 1991, 230, 193–200. [Google Scholar]
- Zhou, P.; Bogan, J.A.; Welch, K.; Pickett, S.R.; Wang, H.J.; Zaritsky, A.; Helmstetter, C.E. Gene transcription and chromosome replication in Escherichia coli. J. Bacteriol. 1997, 179, 163–169. [Google Scholar]
- Shippy, D.C.; Fadl, A.A. Immunological characterization of a gidA mutant strain of Salmonella for potential use in a live-attenuated vaccine. BMC Microbiol. 2012, 12, 286. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shippy, D.C.; Fadl, A.A. tRNA Modification Enzymes GidA and MnmE: Potential Role in Virulence of Bacterial Pathogens. Int. J. Mol. Sci. 2014, 15, 18267-18280. https://doi.org/10.3390/ijms151018267
Shippy DC, Fadl AA. tRNA Modification Enzymes GidA and MnmE: Potential Role in Virulence of Bacterial Pathogens. International Journal of Molecular Sciences. 2014; 15(10):18267-18280. https://doi.org/10.3390/ijms151018267
Chicago/Turabian StyleShippy, Daniel C., and Amin A. Fadl. 2014. "tRNA Modification Enzymes GidA and MnmE: Potential Role in Virulence of Bacterial Pathogens" International Journal of Molecular Sciences 15, no. 10: 18267-18280. https://doi.org/10.3390/ijms151018267
APA StyleShippy, D. C., & Fadl, A. A. (2014). tRNA Modification Enzymes GidA and MnmE: Potential Role in Virulence of Bacterial Pathogens. International Journal of Molecular Sciences, 15(10), 18267-18280. https://doi.org/10.3390/ijms151018267