Investigation of the Neuroprotective Impact of Nimodipine on Neuro2a Cells by Means of a Surgery-Like Stress Model
Abstract
:1. Introduction
2. Results
2.1. Lactate Dehydrogenase (LDH) Assay
2.2. Necrosis and Apoptosis Analyses
2.3. Live/Dead Staining with FDA and PI
3. Discussion
4. Experimental Section
4.1. Cell Culture
- (1)
- Ethanol: nimodipine pre-treated and control cells were treated with 1.8% EtOH.
- (2)
- Osmotic stress: nimodipine pre-treated and control cells were treated with 100, 125, 150, 175 or 200 mM NaCl.
- (3)
- Heat: nimodipine pre-treated and control cells have been incubated at 42 °C for 2, 4 or 6 h and then returned to 37 °C until 24 h.
- (4)
- Mechanical stress: pre-treated and control cells were shaken with two 2-mm steel beads at 500 rpm for 30 s. Afterwards, the steel beads were magnetically removed.
4.2. LDH Assay
4.3. Necrosis and Apoptosis Analysis
4.4. Live/Dead Staining with FDA and PI
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Supplementary Files
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interest
References
- Langley, M.S.; Sorkin, E.M. Nimodipine: A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in cerebrovascular disease. Drugs 1989, 37, 669–699. [Google Scholar] [CrossRef] [PubMed]
- Dorhout Mees, S.M.; Rinkel, G.J.; Feigin, V.L.; Algra, A.; van den Bergh, W.M.; Vermeulen, M.; van Gijn, J. Calcium antagonists for aneurysmal subarachnoid haemorrhage. Cochrane Database Syst. Rev. 2007, 18, CD000277. [Google Scholar]
- Rabinstein, A.A.; Lanzino, G.; Wijdicks, E.F. Multidisciplinary management and emerging therapeutic strategies in aneurysmal subarachnoid haemorrhage. Lancet Neurol. 2010, 9, 504–519. [Google Scholar] [CrossRef] [PubMed]
- Hydman, J.; Remahl, S.; Björck, G.; Svensson, M.; Mattsson, P. Nimodipine improves reinnervation and neuromuscular function after injury to the recurrent laryngeal nerve in the rat. Ann. Otol. Rhinol. Laryngol. 2007, 116, 623–630. [Google Scholar] [CrossRef] [PubMed]
- Nishimoto, K.; Kumai, Y.; Sanuki, T.; Minoda, R.; Yumoto, E. The impact of nimodipine administration combined with nerve-muscle pedicle implantation on long-term denervated rat thyroarytenoid muscle. Laryngoscope 2013, 123, 952–959. [Google Scholar] [CrossRef] [PubMed]
- Scheller, C.; Strauss, C.; Fahlbusch, R.; Romstöck, J. Delayed facial nerve paresis following acoustic neuroma resection and postoperative vasoactive treatment. Zentralbl. Neurochir. 2004, 65, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Scheller, C.; Richter, H.P.; Engelhardt, M.; Köenig, R.; Antoniadis, G. The influence of prophylactic vasoactive treatment on cochlear and facial nerve functions after vestibular schwannoma surgery: A prospective and open-label randomized pilot study. Neurosurgery 2007, 61, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Scheller, K.; Scheller, C. Nimodipine promotes regeneration of peripheral facial nerve function after traumatic injury following maxillofacial surgery: An off label pilot-study. J. Craniomaxillofac. Surg. 2012, 40, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Nuglisch, J.; Karkoutly, C.; Mennel, H.D.; Roßberg, C.; Krieglstein, J. Protective effect of nimodipine against ischemic neuronal damage in rat hippocampus without changing postischemic cerebral blood flow. J. Cereb. Blood Flow Metab. 1990, 10, 654–659. [Google Scholar] [CrossRef] [PubMed]
- Horn, J.; de Haan, R.J.; Vermeulen, M.; Limburg, M. Very early nimodipine use in stroke (VENUS): A randomized, double-blind, placebo-controlled trial. Stroke 2001, 32, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Kurita, M.; Okazaki, M.; Ozaki, M.; Miyamato, S.; Takushima, A.; Harii, K. Thermal effect of illumination on microsurgical transfer of free flaps: Experimental study and clinical implications. Scand. J. Plast. Reconstr. Surg. Hand. Surg. 2008, 42, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, R.G.; Sikorska, M.; Sandhu, J.K.; Lanthier, P.; Ribecco-Lutkiewicz, M.; Bani-Yaghoub, M. Differentiation of mouse Neuro2a cells into dopamine neurons. J. Neurosci. Methods 2010, 186, 60–67. [Google Scholar] [CrossRef]
- LePage, K.T.; Dickey, R.W.; Gerwick, W.H.; Jester, E.L.; Murray, T.F. On the use of neuro-2a neuroblastoma cells versus intact neurons in primary culture for neurotoxicity studies. Crit. Rev. Neurobiol. 2005, 17, 27–50. [Google Scholar] [CrossRef] [PubMed]
- Ljunggren, B.; Brandt, L.; Säveland, H.; Nilsson, P.E.; Cronqvist, S.; Andersson, K.E.; Vinge, E. Outcome in 60 consecutive patients treated with early aneurysm operation and intravenous nimodipine. J. Neurosurg. 1984, 61, 864–873. [Google Scholar] [CrossRef] [PubMed]
- Nowycky, M.C.; Fox, A.P.; Tsien, R.W. Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature 1985, 316, 440–443. [Google Scholar] [CrossRef] [PubMed]
- Allen, G.S.; Ahn, H.S.; Preziosi, T.J.; Battye, R.; Boone, S.C.; Boone, S.C.; Chou, S.N.; Kelly, D.L.; Weir, B.K.; Crabbe, R.A.; et al. Cerebral arterial spasm—A controlled trial of nimodipine in patients with subarachnoid hemorrhage. N. Engl. J. Med. 1983, 308, 619–624. [Google Scholar] [CrossRef]
- Lipton, P. Ischemic cell death in brain neurons. Physiol. Rev. 1999, 79, 1431–1468. [Google Scholar] [PubMed]
- Berridge, M.J.; Lipp, P.; Bootmann, M.D. The versatility and universality of calcium signaling. Nat. Rev. Mol. Cell Biol. 2000, 1, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Auriel, E.; Bornstein, N.M. Neuroprotection in acute ischemic stroke—Current status. J. Cell. Mol. Med. 2010, 14, 2200–2202. [Google Scholar] [CrossRef] [PubMed]
- Horn, J.; de Haan, R.J.; Vermeulen, M.; Luiten, P.G.; Limburg, M. Nimodipine in animal model experiments of focal cerebral ischemia: A systematic review. Stroke 2001, 32, 2433–2438. [Google Scholar] [CrossRef] [PubMed]
- Rami, A.; Krieglstein, J. Neuronal protective effects of calcium antagonists in cerebral ischemia. Life Sci. 1994, 55, 2105–2113. [Google Scholar] [CrossRef] [PubMed]
- Strauss, C.; Romstöck, J.; Fahlbusch, R.; Rampp, S.; Scheller, C. Preservation of facial nerve function after postoperative vasoactive treatment in vestibular schwannoma surgery. Neurosurgery 2006, 59, 577–584. [Google Scholar] [CrossRef]
- Scheller, C.; Vogel, A.S.; Simmermacher, S.; Rachinger, J.C.; Prell, J.; Strauss, C.; Reinsch, M.; Kunter, U.; Wienke, A.; Neumann, J.; et al. Prophylactic intravenous nimodipine treatment in skull base surgery: Pharmacokinetic aspects. J. Neurol. Surg. A Cent. Eur. Neurosurg. 2012, 73, 153–159. [Google Scholar] [CrossRef]
- Lecht, S.; Rotfeld, E.; Arien-Zakay, H.; Tabakman, R.; Matzner, H.; Yaka, R.; Lelkes, P.I.; Lazarovici, P. Neuroprotective effects of nimodipine and nifedipine in the NGF-differentiated PC12 cells exposed to oxygen-glucose deprivation or trophic withdrawal. Int. J. Dev. Neurosci. 2012, 30, 465–469. [Google Scholar] [CrossRef] [PubMed]
- Gepdiremen, A.; Büyükokuroglu, M.E.; Düzenli, S. Dantrolene exerts protective actitvity in double and triple combination with nimodipine, ruthenium red and basileneblue in bilirubin-induced neurotoxicity in cell culture of rats. Int. J. Neurosci. 2009, 119, 1602–1614. [Google Scholar] [CrossRef] [PubMed]
- Düzenli, S.; Bakuridze, K.; Gepdiremen, A. The effects of ruthenium red, dantrolene and nimodipine, alone or in combination, in NMDA induced neurotoxicity of cerebellar granular celll culture of rats. Toxicol. in Vitro 2005, 19, 589–594. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Hu, X.; Liu, Y.; Bao, Y.; Ana, L. Nimodipine protects dopaminergic neurons against inflammation-mediated degeneration through inhibition of microglial activation. Neuropharmacology 2009, 56, 580–589. [Google Scholar] [CrossRef] [PubMed]
- Scheller, C.; Wienke, A.; Wurm, F.; Simmermacher, S.; Rampp, S.; Prell, J.; Rachinger, J.; Scheller, K.; Koman, G.; Strauss, C.; et al. Neuroprotective efficacy of prophylactic enteral and parenteralnimodipine treatment in vestibular schwannoma surgery—A comparative study. J. Neurol. Surg. A Cent. Eur. Neurosurg. 2014, 75, 251–258. [Google Scholar] [PubMed]
- Galea, L.A. Gonadal hormone modulation of neurogenesis in the dentate gyrus of adult male and female rodents. Brain Res. Rev. 2008, 57, 332–341. [Google Scholar] [CrossRef] [PubMed]
- Tanapat, P.; Hastings, N.B.; Reeves, A.J.; Gould, E. Estrogen stimulates a transient increase in the number of new neurons in the dentate gyrus of the adult female rat. J. Neurosci. 1999, 19, 5792–5801. [Google Scholar] [PubMed]
- Pieper, A.A.; Xie, S.; Capota, E.; Estill, S.J.; Zhong, J.; Long, J.M.; Becker, G.L.; Huntington, P.; Goldman, S.E.; Shen, C.H.; et al. Discovery of a proneurogenic, neuroprotective chemical. Cell 2010, 142, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Zhang, F.; Leak, R.K.; Zhang, W.; Iwai, M.; Stetler, R.A.; Dai, Y.; Zhao, A.; Gao, Y.; Chen, J. Transgenic overproduction of omega-3 polyunsaturated fatty acids provides neuroprotection and enhances endogenous neurogenesis after stroke. Curr. Mol. Med. 2013, 13, 1465–1473. [Google Scholar] [CrossRef] [PubMed]
- Gahm, C.; Holmin, S.; Rudehill, S.; Mathiesen, T. Neuronal degeneration and iNOS expression in experimental brain contusion following treatment with colchicine, dexamethasone, tirilazad mesylate and nimodipine. Acta Neurochir. (Wien) 2005, 147, 1071–1084. [Google Scholar] [CrossRef]
- Wada, K.; Chatzipanteli, K.; Kraydieh, S.; Busto, R.; Dietrich, W.D. Inducible nitric oxide synthase expression after traumatic brain injury and neuroprotection with aminoguanidine treatment in rats. Neurosurgery 1998, 43, 1427–1436. [Google Scholar] [PubMed]
- Iadecola, C. Brigth and dark sides of nitric oxide in ischemic brain injury. TINS 1997, 20, 132–139. [Google Scholar] [PubMed]
- Satoh, J.; Kim, S.U. HSP72 induction by heat stress in human neurons and glial cells in culture. Brain Res. 1994, 653, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Garrido, C.; Gurbuxani, S.; Ravagnan, L.; Kroemer, G. Heat shock proteins: Endogenous modulators of apoptotic cell death. Biochem. Biophys. Res. Commun. 2001, 286, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, I.J.; Millan, D.R. Stress (heat shock) proteins: Molecular chaperones in cardiovascular biology and disease. Circ. Res. 1998, 83, 117–132. [Google Scholar] [CrossRef] [PubMed]
- Mayr, M.; Hu, Y.; Hainaut, H.; Xu, Q. Mechanical stress-induced DNA damage and rac-p38MAPK signal pathways mediate p53-dependent apoptosis in vascular smooth muscle cells. FASEB J. 2002, 16, 1423–1425. [Google Scholar] [PubMed]
- Song, W.; Liu, M.; Li, P.; Zhou, G.; Fan, Y. SIRT1 protects cortical neurons from shear stress induced mechanical injury. In Proceedings of the World Congress on Medical Physics and Biomedical Engeneering, Beijing, China, 26–31 May 2012; Volume 39, pp. 199–202.
- He, Z.; Ostrowski, R.P.; Sun, X.; Ma, Q.; Huang, B.; Zhan, Y.; Zhang, J.H. CHOP silencing reduces acute brain injury in the rat model of subarachnoid hemorrhage. Stroke 2012, 43, 484–490. [Google Scholar] [CrossRef] [PubMed]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herzfeld, E.; Strauss, C.; Simmermacher, S.; Bork, K.; Horstkorte, R.; Dehghani, F.; Scheller, C. Investigation of the Neuroprotective Impact of Nimodipine on Neuro2a Cells by Means of a Surgery-Like Stress Model. Int. J. Mol. Sci. 2014, 15, 18453-18465. https://doi.org/10.3390/ijms151018453
Herzfeld E, Strauss C, Simmermacher S, Bork K, Horstkorte R, Dehghani F, Scheller C. Investigation of the Neuroprotective Impact of Nimodipine on Neuro2a Cells by Means of a Surgery-Like Stress Model. International Journal of Molecular Sciences. 2014; 15(10):18453-18465. https://doi.org/10.3390/ijms151018453
Chicago/Turabian StyleHerzfeld, Eva, Christian Strauss, Sebastian Simmermacher, Kaya Bork, Rüdiger Horstkorte, Faramarz Dehghani, and Christian Scheller. 2014. "Investigation of the Neuroprotective Impact of Nimodipine on Neuro2a Cells by Means of a Surgery-Like Stress Model" International Journal of Molecular Sciences 15, no. 10: 18453-18465. https://doi.org/10.3390/ijms151018453
APA StyleHerzfeld, E., Strauss, C., Simmermacher, S., Bork, K., Horstkorte, R., Dehghani, F., & Scheller, C. (2014). Investigation of the Neuroprotective Impact of Nimodipine on Neuro2a Cells by Means of a Surgery-Like Stress Model. International Journal of Molecular Sciences, 15(10), 18453-18465. https://doi.org/10.3390/ijms151018453