Interferons and Their Receptors in Birds: A Comparison of Gene Structure, Phylogenetic Analysis, and Cross Modulation
Abstract
:1. Introduction
Taxonomy | Gene Name | Species | Accession Number | Reference |
---|---|---|---|---|
Type I IFN | IFNα | Mouse | X01969 | [15] |
Giant panda | DQ392967 | [20] | ||
IFNβ | Ferret | KJ831215 | [18] | |
IFNε | Canine | KC527684 | [23] | |
Type II IFN | IFNγ | Mouse | K00083 | [16] |
Asian elephant | EF203241 | [19] | ||
Ferret | Y11647 | [21] | ||
Porcine | X53085 | [17] | ||
Type III IFN | IFNλ | Bovine | XM002695050 | [22] |
Taxonomy | Gene name | Species | Ligand | Accession Number | Reference |
---|---|---|---|---|---|
Type I IFN receptor | IFNAR1 | Woodchuck | IFNα/IFNβ | JN379357 | [28] |
Ovis aries | IFNα/IFNβ | U65978 | [27] | ||
IFNAR2 | Bos taurus | IFNα/IFNβ | U75304 | [27] | |
Ovis aries | IFNα/IFNβ | U65979 | [27] | ||
Feline | IFNα/IFNβ | JN797630 | [26] | ||
Woodchuck | IFNα/IFNβ | JN379359 | [28] | ||
Type II IFN receptor | IFNGR1 | Mouse | IFNγ | NM010511 | [24] |
IFNGR2 | Mouse | IFNγ | NM008338 | [25] | |
Type III IFN receptor | IFNLR1 | Mouse | IFNλ | NM174851 | [3] |
2. Interferon
Taxonomy | Gene Name | Species | Accession Number | Reference |
---|---|---|---|---|
Type I IFN | IFNα | Chicken | U07868 | [29] |
Duck | X84764 | [30] | ||
Goose | AY524422 | [31] | ||
Turkey | U28140 | [32] | ||
IFNβ | Chicken | X92479 | [33] | |
Type II IFN | IFNγ | Chicken | U27465 | [34] |
Duck | AF087134 | [35] | ||
Goose | AY524421 | [36] | ||
Turkey | AJ000725 | [37] | ||
Pigeon | DQ479967 | [38] | ||
Pheasant | AJ001289 | [37] | ||
Quail | AJ001678 | [37] | ||
Guinea Fowl | AJ001263 | [37] | ||
Type III IFN | IFNλ | Chicken | EF587763 | [39] |
Duck | KJ206897 | [40] |
2.1. Type I Interferon (IFN)
2.2. Type II IFN
2.3. Type III IFN
2.4. Ontogeny of Avian Interferons
3. Interferon Receptors
Taxonomy | Gene Name | Species | Ligand | Accession Number | Reference |
---|---|---|---|---|---|
Type I IFN receptor | IFNAR1 | Chicken | IFNα/IFNβ | AF082664 | [76] |
IFNAR2 | Chicken | IFNα/IFNβ | AF082665 | [76] | |
Type II IFN receptor | IFNGR1 | Chicken | IFNγ | EU057149 | [77] |
IFNGR2 | Chicken | IFNγ | AY957508 | [78] | |
Type III IFN receptor | IFNLR1 | Chicken | IFNλ | 419694(Gene ID) | [79] |
IL10R2 | Chicken | IFNλ | AF082666 | [76] |
3.1. Type I IFN Receptors
3.2. Type II IFN Receptors
3.3. Type III IFN Receptors
3.4. Ontogeny of Avian Interferon Receptors
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sadler, A.J.; Williams, B.R. Interferon-inducible antiviral effectors. Nat. Rev. Immunol. 2008, 8, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, P.; Kindsvogel, W.; Xu, W.; Henderson, K.; Schlutsmeyer, S.; Whitmore, T.E.; Kuestner, R.; Garrigues, U.; Birks, C.; Roraback, J.; et al. IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat. Immunol. 2003, 4, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Kotenko, S.V.; Gallagher, G.; Baurin, V.V.; Lewis-Antes, A.; Shen, M.; Shah, N.K.; Langer, J.A.; Sheikh, F.; Dickensheets, H.; Donnelly, R.P. IFN-λs mediate antiviral protection through a distinct class II cytokine receptor complex. Nat. Immunol. 2003, 4, 69–77. [Google Scholar] [CrossRef] [PubMed]
- De Weerd, N.A.; Nguyen, T. The interferons and their receptors—Distribution and regulation. Immunol. Cell. Biol. 2012, 90, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Langer, J.A.; Cutrone, E.C.; Kotenko, S. The Class II cytokine receptor (CRF2) family: Overview and patterns of receptor-ligand interactions. Cytokine Growth Factor Rev. 2004, 15, 33–48. [Google Scholar] [CrossRef] [PubMed]
- Chelbi-Alix, M.K.; Wietzerbin, J. Interferon, a growing cytokine family: Fifty years of interferon research. Biochimie 2007, 89, 713–718. [Google Scholar] [CrossRef] [PubMed]
- Shoji, M.; Tachibana, M.; Katayama, K.; Tomita, K.; Tsuzuki, S.; Sakurai, F.; Kawabata, K.; Ishii, K.J.; Akira, S.; Mizuguchi, H. Type-I IFN signaling is required for the induction of antigen-specific CD8+ T cell responses by adenovirus vector vaccine in the gut-mucosa. Biochem. Biophys. Res. Commun. 2012, 425, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Stark, G.R.; Darnell, J.E., Jr. The JAK-STAT pathway at twenty. Immunity 2012, 36, 503–514. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Hamming, O.J.; Ank, N.; Paludan, S.R.; Nielsen, A.L.; Hartmann, R. Type III interferon (IFN) induces a type I IFN-like response in a restricted subset of cells through signaling pathways involving both the JAK-STAT pathway and the mitogen-activated protein kinases. J. Virol. 2007, 81, 7749–7758. [Google Scholar] [CrossRef] [PubMed]
- Ank, N.; West, H.; Bartholdy, C.; Eriksson, K.; Thomsen, A.R.; Paludan, S.R. λ Interferon (IFN-λ), a type III IFN, is induced by viruses and IFNs and displays potent antiviral activity against select virus infections in vivo. J. Virol. 2006, 80, 4501–4509. [Google Scholar] [CrossRef] [PubMed]
- Farrar, M.A.; Schreiber, R.D. The molecular cell biology of interferon-γ and its receptor. Annu. Rev. Immunol. 1993, 11, 571–611. [Google Scholar] [CrossRef] [PubMed]
- Odorizzi, P.M.; Wherry, E.J. Immunology an interferon paradox. Science 2013, 340, 155–1556. [Google Scholar] [CrossRef] [PubMed]
- Takaoka, A.; Yanai, H. Interferon signalling network in innate defence. Cell Microbiol. 2006, 8, 907–922. [Google Scholar] [CrossRef] [PubMed]
- Levy, D.E.; Marie, I.; Smith, E.; Prakash, A. Enhancement and diversification of IFN induction by IRF-7-mediated positive feedback. J. Interferon Cytokine Res. 2002, 22, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Shaw, G.D.; Boll, W.; Taira, H.; Mantei, N.; Lengyel, P.; Weissmann, C. Structure and expression of cloned murine IFN-α genes. Nucl. Acids Res. 1983, 11, 555–573. [Google Scholar] [CrossRef] [PubMed]
- Gray, P.W.; Goeddel, D.V. Cloning and expression of murine immune interferon cDNA. Proc. Natl. Acad. Sci. USA 1983, 80, 5842–5846. [Google Scholar] [CrossRef] [PubMed]
- Dijkmans, R.; Vandenbroeck, K.; Beuken, E.; Billiau, A. Sequence of the porcine interferon-γ (IFN-γ) gene. Nucl. Acids Res. 1990, 18, 4259. [Google Scholar] [CrossRef] [PubMed]
- Carolan, L.A.; Butler, J.; Rockman, S.; Guarnaccia, T.; Hurt, A.C.; Reading, P.; Kelso, A.; Barr, I.; Laurie, K.L. TaqMan real time RT-PCR assays for detecting ferret innate and adaptive immune responses. J. Virol. Methods 2014, 205C, 38–52. [Google Scholar] [CrossRef]
- Sreekumar, E.; Janki, M.B.; Arathy, D.S.; Hariharan, R.; Premraj, C.A.; Rasool, T.J. Molecular characterization and expression of interferon-gamma of Asian elephant (Elephas maximus). Vet. Immunol. Immunopathol. 2007, 118, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.M.; Tang, Y.; Yang, Y.F.; Song, H.M.; Zhang, Y.Z. Gene cloning, sequencing, expression and biological activity of giant panda (Ailuropoda melanoleuca) interferon-α. Mol. Immunol. 2007, 44, 3061–3069. [Google Scholar] [CrossRef] [PubMed]
- Ochi, A.; Danesh, A.; Seneviratne, C.; Banner, D.; Devries, M.E.; Rowe, T.; Xu, L.; Ran, L.; Czub, M.; Bosinger, S.E.; et al. Cloning, expression and immunoassay detection of ferret IFN-γ. Dev. Comp. Immunol. 2008, 32, 890–897. [Google Scholar] [CrossRef] [PubMed]
- Diaz-San Segundo, F.; Weiss, M.; Perez-Martin, E.; Koster, M.J.; Zhu, J.; Grubman, M.J.; de los Santos, T. Antiviral activity of bovine type III interferon against foot-and-mouth disease virus. Virology 2011, 413, 283–292. [Google Scholar]
- Yang, L.; Xu, L.; Li, Y.; Li, J.; Bi, Y.; Liu, W. Molecular and functional characterization of canine interferon-ε. J. Interferon Cytokine Res. 2013, 33, 760–768. [Google Scholar] [CrossRef] [PubMed]
- Kumar, C.S.; Muthukumaran, G.; Frost, L.J.; Noe, M.; Ahn, Y.H.; Mariano, T.M.; Pestka, S. Molecular characterization of the murine interferon γ receptor cDNA. J. Biol. Chem. 1989, 264, 17939–17946. [Google Scholar] [PubMed]
- Hibino, Y.; Mariano, T.M.; Kumar, C.S.; Kozak, C.A.; Pestka, S. Expression and reconstitution of a biologically active mouse interferon γ receptor in hamster cells. Chromosomal location of an accessory factor. J. Biol. Chem. 1991, 266, 6948–6951. [Google Scholar] [PubMed]
- Xue, Q.; Yang, L.; Liu, X.; Liu, W. Molecular characterization of feline type I interferon receptor 2. J. Interferon Cytokine Res. 2010, 30, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Han, C.S.; Mathialagan, N.; Klemann, S.W.; Roberts, R.M. Molecular cloning of ovine and bovine type I interferon receptor subunits from uteri, and endometrial expression of messenger ribonucleic acid for ovine receptors during the estrous cycle and pregnancy. Endocrinology 1997, 138, 4757–4767. [Google Scholar] [PubMed]
- Fan, H.; Zhu, Z.; Wang, Y.; Zhang, X.; Lu, Y.; Tao, Y.; Fan, W.; Wang, Z.; Wang, H.; Roggendorf, M.; et al. Molecular characterization of the type I IFN receptor in two woodchuck species and detection of its expression in liver samples from woodchucks infected with woodchuck hepatitis virus (WHV). Cytokine 2012, 60, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Sekellick, M.J.; Ferrandino, A.F.; Hopkins, D.A.; Marcus, P.I. Chicken interferon gene: Cloning, expression, and analysis. J. Interferon Cytokine Res. 1994, 14, 71–79. [Google Scholar] [CrossRef]
- Schultz, U.; Kock, J.; Schlicht, H.J.; Staeheli, P. Recombinant duck interferon: A new reagent for studying the mode of interferon action against hepatitis B virus. Virology 1995, 212, 641–649. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-T.; Ma, B.; Mi, J.-W.; Jin, H.-Y.; Xu, L.-N.; Wang, J.-W. Cloning, in vitro expression and bioactivity of goose interferon-α. Cytokine 2006, 34, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Suresh, M.; Karaca, K.; Foster, D.; Sharma, J.M. Molecular and functional characterization of turkey interferon. J. Virol. 1995, 69, 8159–8163. [Google Scholar] [PubMed]
- Sick, C.; Schultz, U.; Staeheli, P. A family of genes coding for two serologically distinct chicken interferons. J. Biol. Chem. 1996, 271, 7635–7639. [Google Scholar] [CrossRef] [PubMed]
- Digby, M.R.; Lowenthal, J.W. Cloning and expression of the chicken interferon-γ gene. J. Interferon Cytokine Res. 1995, 15, 939–945. [Google Scholar] [CrossRef] [PubMed]
- Schultz, U.; Chisari, F.V. Recombinant duck interferon γ inhibits duck hepatitis B virus replication in primary hepatocytes. J. Virol. 1999, 73, 3162–3168. [Google Scholar] [PubMed]
- Li, H.T.; Ma, B.; Mi, J.W.; Jin, H.Y.; Xu, L.N.; Wang, J.W. Molecular cloning and functional analysis of goose interferon gamma. Vet. Immunol. Immunopathol. 2007, 117, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, P.; Sonnemans, D.; Smith, L.M. Avian IFN-γ genes: Sequence analysis suggests probable cross-species reactivity among galliforms. J. Interferon Cytokine Res. 1998, 18, 711–719. [Google Scholar] [CrossRef] [PubMed]
- Fringuelli, E.; Urbanelli, L.; Tharuni, O.; Proietti, P.C.; Bietta, A.; Davidson, I.; Franciosini, M.P. Cloning and expression of pigeon IFN-γ gene. Res. Vet. Sci. 2010, 89, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Karpala, A.J.; Morris, K.R.; Broadway, M.M.; McWaters, P.G.; OʼNeil, T.E.; Goossens, K.E.; Lowenthal, J.W.; Bean, A.G. Molecular cloning, expression, and characterization of chicken IFN-λ. J. Interferon Cytokine Res. 2008, 28, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Yao, Q.; Fischer, K.P.; Arnesen, K.; Tyrrell, D.L.; Gutfreund, K.S. Molecular cloning, expression and characterization of Pekin duck interferon-λ. Gene 2014, 548, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Pestka, S.; Krause, C.D.; Walter, M.R. Interferons, interferon-like cytokines, and their receptors. Immunol. Rev. 2004, 202, 8–32. [Google Scholar] [CrossRef] [PubMed]
- Hertzog, P.J.; Williams, B.R. Fine tuning type I interferon responses. Cytokine Growth Factor Rev. 2013, 24, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Meng, S.; Yang, L.; Xu, C.; Qin, Z.; Xu, H.; Wang, Y.; Sun, L.; Liu, W. Recombinant chicken interferon-α inhibits H9N2 avian influenza virus replication in vivo by oral administration. J. Interferon Cytokine Res. 2011, 31, 533–538. [Google Scholar] [CrossRef] [PubMed]
- Qu, H.; Yang, L.; Meng, S.; Xu, L.; Bi, Y.; Jia, X.; Li, J.; Sun, L.; Liu, W. The differential antiviral activities of chicken interferon α (ChIFN-α) and ChIFN-β are related to distinct interferon-stimulated gene expression. PLoS One 2013, 8, e59307. [Google Scholar] [PubMed]
- Ziegler, R.E.; Joklik, W.K. Effect of interferon on multiplication of Avian sarcoma virus B77 in duck embryo fibroblasts. J. Interferon Cytokine Res. 1981, 1, 521–538. [Google Scholar] [CrossRef]
- Xu, L.; Yang, L.; Liu, W. Distinct evolution process among type I interferon in mammals. Protein Cell 2013, 4, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Woelk, C.H.; Frost, S.D.; Richman, D.D.; Higley, P.E.; Kosakovsky Pond, S.L. Evolution of the interferon α gene family in eutherian mammals. Gene 2007, 397, 38–50. [Google Scholar] [CrossRef] [PubMed]
- Radhakrishnan, R.; Walter, L.J.; Subramaniam, P.S.; Johnson, H.M.; Walter, M.R. Crystal structure of ovine interferon-т at 2.1 Å resolution. J. Mol. Biol. 1999, 286, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Karpusas, M.; Nolte, M.; Benton, C.B.; Meier, W.; Lipscomb, W.N.; Goelz, S. The crystal structure of human interferon β at 2.2-Å resolution. Proc. Natl. Acad. Sci. USA 1997, 94, 11813–11818. [Google Scholar] [CrossRef] [PubMed]
- Senda, T.; Shimazu, T.; Matsuda, S.; Kawano, G.; Shimizu, H.; Nakamura, K.T.; Mitsui, Y. Three-dimensional crystal structure of recombinant murine interferon-β. EMBO J. 1992, 11, 3193–3201. [Google Scholar] [PubMed]
- Schroder, K.; Hertzog, P.J.; Ravasi, T.; Hume, D.A. Interferon-γ: An overview of signals, mechanisms and functions. J. Leukoc. Biol. 2004, 75, 163–189. [Google Scholar] [CrossRef] [PubMed]
- He, T.; Tang, C.; Xu, S.; Moyana, T.; Xiang, J. Interferon γ stimulates cellular maturation of dendritic cell line DC2.4 leading to induction of efficient cytotoxic T cell responses and antitumor immunity. Cell Mol. Immunol. 2007, 4, 105–111. [Google Scholar] [PubMed]
- Boehm, U.; Klamp, T.; Groot, M.; Howard, J.C. Cellular responses to interferon-γ. Annu Rev. Immunol. 1997, 15, 749–795. [Google Scholar] [CrossRef] [PubMed]
- Young, H.A.; Hardy, K.J. Role of interferon-gamma in immune cell regulation. J. Leukoc Biol. 1995, 58, 373–381. [Google Scholar] [PubMed]
- Szabo, S.J.; Sullivan, B.M.; Peng, S.L.; Glimcher, L.H. Molecular mechanisms regulating Th1 immune responses. Annu. Rev. Immunol. 2003, 21, 713–758. [Google Scholar] [CrossRef] [PubMed]
- Susta, L.; Cornax, I.; Diel, D.G.; Garcia, S.C.; Miller, P.J.; Liu, X.; Hu, S.; Brown, C.C.; Afonso, C.L. Expression of interferon γ by a highly virulent strain of Newcastle disease virus decreases its pathogenicity in chickens. Microb. Pathog. 2013, 61–62, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Haq, K.; Wootton, S.K.; Barjesteh, N.; St Paul, M.; Golovan, S.; Bendall, A.J.; Sharif, S. Small interfering RNA-mediated knockdown of chicken interferon-γ expression. J. Interferon Cytokine Res. 2013, 33, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Lawson, S.; Rothwell, L.; Lambrecht, B.; Howes, K.; Venugopal, K.; Kaiser, P. Turkey and chicken interferon-γ, which share high sequence identity, are biologically cross-reactive. Dev. Comp. Immunol. 2001, 25, 69–82. [Google Scholar] [CrossRef] [PubMed]
- Savan, R.; Ravichandran, S.; Collins, J.R.; Sakai, M.; Young, H.A. Structural conservation of interferon γ among vertebrates. Cytokine Growth Factor Rev. 2009, 20, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.N.; Huang, B.; Zhang, X.W.; Li, Y.; Zhao, L.J.; Li, N.; Gao, Q.; Nie, P. IFN-γ and its receptors in a reptile reveal the evolutionary conservation of type II IFNs in vertebrates. Dev. Comp. Immunol. 2013, 41, 587–596. [Google Scholar] [PubMed]
- Kotenko, S.V. IFN-λs. Curr. Opin. Immunol. 2011, 23, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Kempuraj, D.; Donelan, J.; Frydas, S.; Iezzi, T.; Conti, F.; Boucher, W.; Papadopoulou, N.G.; Madhappan, B.; Letourneau, L.; Cao, J.; et al. Interleukin-28 and 29 (IL-28 and IL-29): New cytokines with anti-viral activities. Int. J. Immunopathol. Pharmacol. 2004, 17, 103–106. [Google Scholar] [PubMed]
- Lasfar, A.; Abushahba, W.; Balan, M.; Cohen-Solal, K.A. Interferon λ: A new sword in cancer immunotherapy. Clin. Dev. Immunol. 2011, 2011, 349575. [Google Scholar] [CrossRef] [PubMed]
- Reuter, A.; Soubies, S.; Hartle, S.; Schusser, B.; Kaspers, B.; Staeheli, P.; Rubbenstroth, D. Antiviral activity of λ interferon in chickens. J. Virol. 2014, 88, 2835–2843. [Google Scholar] [CrossRef]
- Matsuyama, T.; Nakayasu, C.; Fujiwara, A.; Kurita, J.; Takano, T.; Ito, T.; Sano, M. Ontogeny of anti-viral hemorrhagic septicemia virus (VHSV) immunity in developing Japanese flounder. Dev. Comp. Immunol. 2012, 37, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Levraud, J.P.; Boudinot, P.; Colin, I.; Benmansour, A.; Peyrieras, N.; Herbomel, P.; Lutfalla, G. Identification of the zebrafish IFN receptor: Implications for the origin of the vertebrate IFN system. J. Immunol. 2007, 178, 4385–4394. [Google Scholar] [CrossRef] [PubMed]
- Sinkora, M.; Butler, J.E. The ontogeny of the porcine immune system. Dev. Comp. Immunol. 2009, 33, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Solana, R.; Tarazona, R.; Gayoso, I.; Lesur, O.; Dupuis, G.; Fulop, T. Innate immunosenescence: Effect of aging on cells and receptors of the innate immune system in humans. Semin Immunol. 2012, 24, 331–341. [Google Scholar] [CrossRef]
- Karpala, A.J.; Bagnaud-Baule, A.; Goossens, K.E.; Lowenthal, J.W.; Bean, A.G. Ontogeny of the interferon system in chickens. J. Reprod. Immunol. 2012, 94, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Careem, M.F.; Hunter, D.B.; Lambourne, M.D.; Barta, J.; Sharif, S. Ontogeny of cytokine gene expression in the chicken spleen. Poult. Sci. 2007, 86, 1351–1355. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Yu, S.; Duan, Y.; Hu, Y.; Qiu, X.; Tan, L.; Sun, Y.; Wang, M.; Cheng, A.; Ding, C. Effect of age on the pathogenesis of DHV-1 in Pekin ducks and on the innate immune responses of ducks to infection. Arch. Virol. 2013, 159, 905–914. [Google Scholar] [CrossRef] [PubMed]
- Renauld, J.C. Class II cytokine receptors and their ligands: Key antiviral and inflammatory modulators. Nat. Rev. Immunol. 2003, 3, 667–676. [Google Scholar] [CrossRef] [PubMed]
- De Weerd, N.A.; Samarajiwa, S.A.; Hertzog, P.J. Type I interferon receptors: Biochemistry and biological functions. J. Biol. Chem. 2007, 282, 20053–20057. [Google Scholar]
- Jabbar, T.K.; Calvo-Pinilla, E.; Mateos, F.; Gubbins, S.; Bin-Tarif, A.; Bachanek-Bankowska, K.; Alpar, O.; Ortego, J.; Takamatsu, H.H.; Mertens, P.P.; et al. Protection of IFNAR (−/−) mice against bluetongue virus serotype 8, by heterologous (DNA/rMVA) and homologous (rMVA/rMVA) vaccination, expressing outer-capsid protein VP2. PLoS One 2013, 8, e60574. [Google Scholar] [CrossRef]
- De la Poza, F.; Calvo-Pinilla, E.; Lopez-Gil, E.; Marin-Lopez, A.; Mateos, F.; Castillo-Olivares, J.; Lorenzo, G.; Ortego, J. Ns1 is a key protein in the vaccine composition to protect IFNAR (−/−) mice against infection with multiple serotypes of African horse sickness virus. PLoS One 2013, 8, e70197. [Google Scholar] [CrossRef] [PubMed]
- Reboul, J.; Gardiner, K.; Monneron, D.; Uzé, G.; Lutfalla, G. Comparative genomic analysis of the interferon/interleukin-10 receptor gene cluster. Genome Res. 1999, 9, 242–250. [Google Scholar] [PubMed]
- Han, X.; Chen, T.; Wang, M. Molecular cloning and characterization of chicken interferon-γ receptor α-chain. J. Interferon Cytokine Res. 2008, 28, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Han, C.L.; Zhang, W.; Dong, H.T.; Han, X.; Wang, M. A novel gene of β chain of the IFN-γ receptor of Huiyang chicken: Cloning, distribution, and CD assay. J. Interferon Cytokine Res. 2006, 26, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Hillier, L.W.; Miller, W.; Birney, E.; Warren, W.; Hardison, R.C.; Ponting, C.P.; Bork, P.; Burt, D.W.; Groenen, M.A.M.; et al. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 2004, 432, 695–716. [Google Scholar]
- Skorstengaard, K.; Jensen, M.S.; Sahl, P.; Petersen, T.E.; Magnusson, S. Complete primary structure of bovine plasma fibronectin. Eur. J. Biochem. 1986, 161, 441–453. [Google Scholar] [CrossRef] [PubMed]
- Karpala, A.J.; Lowenthal, J.W.; Bean, A.G. Identifying innate immune pathways of the chicken may lead to new antiviral therapies. Vet. Immunol. Immunopathol. 2012, 148, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Cheng, A.; Wang, M. Innate sensing of viruses by pattern recognition receptors in birds. Vet. Res. 2013, 44, 82. [Google Scholar] [CrossRef]
- Ivashkiv, L.B.; Donlin, L.T. Regulation of type I interferon responses. Nat. Rev. Immunol. 2014, 14, 36–49. [Google Scholar] [CrossRef] [PubMed]
- Schoggins, J.W.; Wilson, S.J.; Panis, M.; Murphy, M.Y.; Jones, C.T.; Bieniasz, P.; Rice, C.M. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 2011, 472, 481–485. [Google Scholar] [CrossRef] [PubMed]
- Van Boxel-Dezaire, A.H.; Rani, M.R.; Stark, G.R. Complex modulation of cell type-specific signaling in response to type I interferons. Immunity 2006, 25, 361–372. [Google Scholar]
- Stark, G.R.; Kerr, I.M.; Williams, B.R.; Silverman, R.H.; Schreiber, R.D. How cells respond to interferons. Annu. Rev. Biochem. 1998, 67, 227–264. [Google Scholar] [CrossRef] [PubMed]
- Shuai, K.; Liu, B. Regulation of JAK-STAT signalling in the immune system. Nat. Rev. Immunol. 2003, 3, 900–911. [Google Scholar] [CrossRef] [PubMed]
- Owczarek, C.M.; Hwang, S.Y.; Holland, K.A.; Gulluyan, L.M.; Tavaria, M.; Weaver, B.; Reich, N.C.; Kola, I.; Hertzog, P.J. Cloning and characterization of soluble and transmembrane isoforms of a novel component of the murine type I interferon receptor, IFNAR 2. J. Biol. Chem. 1997, 272, 23865–23870. [Google Scholar] [CrossRef] [PubMed]
- Goodman, A.G.; Zeng, H.; Proll, S.C.; Peng, X.; Cilloniz, C.; Carter, V.S.; Korth, M.J.; Tumpey, T.M.; Katze, M.G. The α/β interferon receptor provides protection against influenza virus replication but is dispensable for inflammatory response signaling. J. Virol. 2010, 84, 2027–2037. [Google Scholar] [CrossRef] [PubMed]
- Piganis, R.A.; de Weerd, N.A.; Gould, J.A.; Schindler, C.W.; Mansell, A.; Nicholson, S.E.; Hertzog, P.J. Suppressor of cytokine signaling (SOCS) 1 inhibits type I interferon (IFN) signaling via the interferon α receptor (IFNAR1)-associated tyrosine kinase TYK2. J. Biol Chem. 2011, 286, 33811–33818. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.S.; Janssen, H.L.; Boonstra, A. IL-29 and IFNα differ in their ability to modulate IL-12 production by TLR-activated human macrophages and exhibit differential regulation of the IFNγ receptor expression. Blood 2011, 117, 2385–2395. [Google Scholar] [CrossRef] [PubMed]
- Magor, K.E.; Miranzo Navarro, D.; Barber, M.R.; Petkau, K.; Fleming-Canepa, X.; Blyth, G.A.; Blaine, A.H. Defense genes missing from the flight division. Dev. Comp. Immunol 2013, 41, 377–388. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Qi, Z.T.; Xu, Z.; Nie, P. Global characterization of interferon regulatory factor (IRF) genes in vertebrates: Glimpse of the diversification in evolution. BMC Immunol. 2010, 11, 22. [Google Scholar] [CrossRef] [PubMed]
- Gordien, E.; Rosmorduc, O.; Peltekian, C.; Garreau, F.; Brechot, C.; Kremsdorf, D. Inhibition of hepatitis B virus replication by the interferon-inducible MxA protein. J. Virol. 2001, 75, 2684–2691. [Google Scholar] [CrossRef] [PubMed]
- Stojdl, D.F.; Abraham, N.; Knowles, S.; Marius, R.; Brasey, A.; Lichty, B.D.; Brown, E.G.; Sonenberg, N.; Bell, J.C. The murine double-stranded RNA-dependent protein kinase PKR is required for resistance to vesicular stomatitis virus. J. Virol. 2000, 74, 9580–9585. [Google Scholar] [CrossRef] [PubMed]
- Samuel, M.A.; Whitby, K.; Keller, B.C.; Marri, A.; Barchet, W.; Williams, B.R.; Silverman, R.H.; Gale, M., Jr.; Diamond, M.S. PKR and RNase L contribute to protection against lethal West Nile virus infection by controlling early viral spread in the periphery and replication in neurons. J. Virol. 2006, 80, 7009–7019. [Google Scholar] [CrossRef]
- Turan, K.; Mibayashi, M.; Sugiyama, K.; Saito, S.; Numajiri, A.; Nagata, K. Nuclear MxA proteins form a complex with influenza virus NP and inhibit the transcription of the engineered influenza virus genome. Nucl. Acids Res. 2004, 32, 643–652. [Google Scholar] [CrossRef] [PubMed]
- Kochs, G.; Haller, O. Interferon-induced human MxA GTPase blocks nuclear import of Thogoto virus nucleocapsids. Proc. Natl. Acad. Sci. USA 1999, 96, 2082–2086. [Google Scholar] [CrossRef] [PubMed]
- Munir, M.; Berg, M. The multiple faces of proteinkinase R in antiviral defense. Virulence 2013, 4, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.Y.; Sanchez, D.J.; Cheng, G. New developments in the induction and antiviral effectors of type I interferon. Curr. Opin. Immunol. 2011, 23, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Daviet, S.; van Borm, S.; Habyarimana, A.; Ahanda, M.L.; Morin, V.; Oudin, A.; van Den Berg, T.; Zoorob, R. Induction of Mx and PKR failed to protect chickens from H5N1 infection. Viral Immunol. 2009, 22, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.E.; Gibson, M.S.; Wash, R.S.; Ferrara, F.; Wright, E.; Temperton, N.; Kellam, P.; Fife, M. Chicken interferon-inducible transmembrane protein 3 restricts influenza viruses and lyssaviruses in vitro. J. Virol. 2013, 87, 12957–12966. [Google Scholar] [CrossRef] [PubMed]
- Marie, I.; Durbin, J.E.; Levy, D.E. Differential viral induction of distinct interferon-α genes by positive feedback through interferon regulatory factor-7. EMBO J. 1998, 17, 6660–6669. [Google Scholar] [CrossRef] [PubMed]
- Ank, N.; Iversen, M.B.; Bartholdy, C.; Staeheli, P.; Hartmann, R.; Jensen, U.B.; Dagnaes-Hansen, F.; Thomsen, A.R.; Chen, Z.; Haugen, H.; et al. An important role for type III interferon (IFN-λ/IL-28) in TLR-induced antiviral activity. J. Immunol. 2008, 180, 2474–2485. [Google Scholar] [CrossRef] [PubMed]
- Thanthrige-Don, N.; Read, L.R.; Abdul-Careem, M.F.; Mohammadi, H.; Mallick, A.I.; Sharif, S. Marekʼs disease virus influences the expression of genes associated with IFN-γ-inducible MHC class II expression. Viral Immunol. 2010, 23, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Cowled, C.; Todd, S.; Crameri, G.; Virtue, E.R.; Marsh, G.A.; Klein, R.; Shi, Z.; Wang, L.F.; Baker, M.L. Type III IFNs in pteropid bats: Differential expression patterns provide evidence for distinct roles in antiviral immunity. J. Immunol. 2011, 186, 3138–3147. [Google Scholar] [CrossRef] [PubMed]
- Wilson, E.B.; Brooks, D.G. Interfering with type I interferon: A novel approach to purge persistent viral infection. Cell Cycle 2013, 12, 2919–2920. [Google Scholar] [CrossRef] [PubMed]
- Guo, P. Suppression of interferon-mediated antiviral immunity by hepatitis B virus: An overview of research progress. Scand. J. Immunol. 2013, 78, 230–237. [Google Scholar] [CrossRef] [PubMed]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, H.; Chen, S.; Wang, M.; Cheng, A. Interferons and Their Receptors in Birds: A Comparison of Gene Structure, Phylogenetic Analysis, and Cross Modulation. Int. J. Mol. Sci. 2014, 15, 21045-21068. https://doi.org/10.3390/ijms151121045
Zhou H, Chen S, Wang M, Cheng A. Interferons and Their Receptors in Birds: A Comparison of Gene Structure, Phylogenetic Analysis, and Cross Modulation. International Journal of Molecular Sciences. 2014; 15(11):21045-21068. https://doi.org/10.3390/ijms151121045
Chicago/Turabian StyleZhou, Hao, Shun Chen, Mingshu Wang, and Anchun Cheng. 2014. "Interferons and Their Receptors in Birds: A Comparison of Gene Structure, Phylogenetic Analysis, and Cross Modulation" International Journal of Molecular Sciences 15, no. 11: 21045-21068. https://doi.org/10.3390/ijms151121045