Development of Drug Delivery Systems Based on Layered Hydroxides for Nanomedicine
Abstract
:1. Introduction
2. Structure of Layered Hydroxides
3. Synthesis Methods of Layered Hydroxides
3.1. Synthesis Methods of Layered Double Hydroxides
3.1.1. Co-Precipitation Method
Precipitation at High Supersaturation
Precipitation at Low Supersaturation
3.1.2. Ion Exchange Method
- Incoming anion affinity.The ion exchange process will be alleviated if the incoming anion has a higher charge and smaller size (smaller ionic radius) [14].
- Exchange mediaThe organic solvent favors the exchange by organic anions, whereas the aqueous medium favors the exchange by inorganic anions [15].
- pH valuepH value affects the interaction between the LDH layers and interlayer conjugated base anions. At low pH, this interaction is weak because the LDH is not stable in acidic media (lower than pH 4) and this will result in the fact that the LDH dissolves.
- Chemical compositionThe hydration state and charge density have an effect on the ion-exchange process and the charge density and hydration state of the LDH’s interlayer can be affected by the chemical composition of the layers in LDH [16].
3.1.3. Hydrothermal Method
3.1.4. Urea Hydrolysis Method
3.1.5. Reconstruction/Rehydration Method
3.2. Synthesis Methods of Layered Hydroxide Salts
3.2.1. Urea Hydrolysis
3.2.2. Solid State Reaction
3.2.3. Precipitation Method
3.2.4. Hydrolysis of Salts and Oxides
4. Characterization of Layered Hydroxides
5. Applications of Layered Hydroxides
6. Layered Hydroxides in Drug Delivery Systems
6.1. Anticancer Drug Therapy Using Layered Hydroxides
6.1.1. Protocatechuic Acid
6.1.2. Etoposide
6.1.3. Methotrexate
6.1.4. Camptothecin
6.1.5. Gallic Acid
6.1.6. 5-Fluorouracil
6.1.7. Fenbufen
6.1.8. Ellagic Acid
6.1.9. Hippuric Acid
6.1.10. Prednisone
6.1.11. Carnosine and Gallic Acid
6.1.12. Chlorogenic Acid
6.2. Anti-Hypertensive Drug Therapy by Layered Hydroxides
6.2.1. Perindopril Erbumine
6.2.2. Enalapril, Lisinopril, Captopril, and Ramipril
6.3. Anti-Inflamatory Drug Therapy by Layered Hydroxides
6.3.1. Salicylic Acid
6.3.2. Diclofenac
6.3.3. Sodium Indomethacin
6.4. Anti-Histamine Drug Therapy by Layered Hydroxides
Cetirizine
6.5. Sunscreen Drug Therapy by Layered Hydroxides
6.5.1. Cinnamic Acid
6.5.2. Caffeic Acid
6.6. Anti-Tuberculosis Drug Therapy by Layered Hydroxides
4-Amino Salicylic Acid
6.7. Anti-Parkinsonian Drug Therapy by Layered Hydroxides
Levodopa
6.8. Vitamins Storage and Delivery by Layered Hydroxides
6.8.1. Folic Acid
6.8.2. Ascorbic Acid
6.9. Antibiotic Drug Therapy by Layered Hydroxides
6.9.1. Ciprofloxacin
6.9.2. Paracetamol
6.9.3. Chloramphenicol
7. Toxicology Studies of Layered Hydroxides and Layered Hydroxide Nanodelivery Systems
8. The Effect of Physicochemical Properties on Layered Hydroxide Cytotoxicity
9. Cellular Uptake Pathway of Layered Hydroxides
10. Conclusions
Acknowledgments
Conflicts of Interest
- Author ContributionsFarahnaz Barahuie is a PhD student served as the key planner in collecting all the materials and literatures and drafted this review. The supervisor committee members composed of Mohd Zobir Hussein as the supervisor, Sharida Fakurazi and Zulkarnian Zainal as the co-supervisors provided constructive ideas for the draft of the review manuscript. All authors had read and approved the final manuscript. Mohd Zobir Hussein, the corresponding author of the manuscript was finally finalized the review manuscript.
References
- Sampath Kumar, K.; Bhowmik, D.; Chiranjib, B.; Chandira, M.; Tripathi, K.K. Innovations in sustained release drug delivery system and its market opportunities. J. Chem. Pharm. Res 2010, 2, 349–360. [Google Scholar]
- Trikeriotis, M.; Ghanotakis, D.F. Intercalation of hydrophilic and hydrophobic antibiotics in layered double hydroxides. Int. J. Pharm 2007, 332, 176–184. [Google Scholar]
- Yang, Q.Z.; Yang, J.; Zhang, C.K. Synthesis and properties of cordycepin intercalates of Mg-Al-nitrate layered double hydroxides. Int. J. Pharm 2006, 326, 148–152. [Google Scholar]
- Mangiacapra, P.; Raimondo, M.; Tammaro, L.; Vittoria, V.; Malinconico, M.; Laurienzo, P. Nanometric dispersion of a Mg/Al layered double hydroxide into a chemically modified polycaprolactone. Biomacromolecules 2007, 8, 773–779. [Google Scholar]
- Alberti, G.; Constantino, U. Comprehensive Supramolecular Chemistry: Solid-State Supramolecular Chemistry: Two- and Three-Dimensional Inorganic Networks; Alberti, G., Bein, T., Eds.; Pergamon-Elsevier: Oxford, UK, 1996; Volume 7, pp. 1–23. [Google Scholar]
- Carlino, S. The intercalation of carboxylic acids into layered double hydroxides: A critical evaluation and review of the different methods. Solid State Ion 1997, 98, 73–84. [Google Scholar]
- Cavani, F.; Trifiro, F.; Vaccari, A. Hydrotalcite-type anionic clays: Preparation, properties and applications. Catal. Today 1991, 11, 173–301. [Google Scholar]
- Arizaga, G.G.C.; Satyanarayana, K.G.; Wypych, F. Layered hydroxide Salts: Synthesis, properties and potential applications. Solid State Ion 2007, 178, 1143–1162. [Google Scholar]
- Louer, M.; Louer, D.; Grandjean, D. Etude structurale des hydroxynitrates de nickel et de zinc. I. Classification structural [Structural studies of hydroxynitrates nickel and zinc. I. structural classification]. Acta Crystallogr. Sect. B 1973, 29, 1696–1703. [Google Scholar]
- Rives, V. Layered Double Hydroxides: Present and Future; Nova Science Pub Incorporated: New York, NY, USA, 2001. [Google Scholar]
- Ladewig, K.; Xu, Z.P.; Lu, G.Q. Layered double hydroxide nanoparticles in gene and drug delivery. Expert Opin. Drug Deliv 2009, 6, 907–922. [Google Scholar]
- Zhang, W.H.; Guo, X.D.; He, J.; Qian, Z.Y. Preparation of Ni(II)/Ti(IV) layered double hydroxide at high supersaturation. J. Eur. Ceram. Soc 2008, 28, 1623–1629. [Google Scholar]
- Morel-Desrosiers, N.; Pisson, J.; Israëli, Y.; Taviot-Guého, C.; Besse, J.P.; Morel, J.P. Intercalation of dicarboxylate anions into a Zn-Al-Cl layered double hydroxide: Microcalorimetric determination of the enthalpies of anion exchange. J. Mater. Chem 2003, 13, 2582–2585. [Google Scholar]
- Bontchev, R.P.; Liu, S.; Krumhansl, J.L.; Voigt, J.; Nenoff, T.M. Synthesis, characterization, and ion exchange properties of hydrotalcite Mg6Al2(OH)16(A)x(A))2−x,4H2O(A, A( = Cl−, Br−, I−, and NO3−, 2 ≥ x ≥ 0) derivatives. Chem. Mater 2003, 15, 3669–3675. [Google Scholar]
- Newman, S.P.; Jones, W. Synthesis, characterization and applications of layered double hydroxides containing organic guests. New J. Chem 1998, 22, 105–115. [Google Scholar]
- Chao, Y.F.; Chen, P.C.; Wang, S.L. Adsorption of 2,4-D on Mg/Al-NO3 layered double hydroxides with varying layer charge density. Appl. Clay Sci 2008, 40, 193–200. [Google Scholar]
- Dang, S.; Yan, D.; Lu, J. 8-Hydroxypyrene-1,3,6-trisulphonate and octanesulphonate co-assembled layered double hydroxide and its controllable solid-state luminescence by hydrothermal synthesis. J. Solid State Chem 2012, 185, 219–224. [Google Scholar]
- Hibino, T.; Ohya, H. Synthesis of crystalline layered double hydroxides: Precipitation by using urea hydrolysis and subsequent hydrothermal reactions in aqueous solutions. Appl. Clay Sci 2009, 45, 123–132. [Google Scholar]
- Kovanda, F.; Maryskova, Z.; Kovar, P. Intercalation of paracetamol into the hydrotalcite-like host. J. Solid State Chem 2011, 184, 3329–3335. [Google Scholar]
- Stahlin, W.; Oswald, H.R. The crystal structure of zinc hydroxide nitrate, Zn5(OH)8(NO3)2·2H2O. Acta Cryst 1970, B26, 860–863. [Google Scholar]
- Rajamathi, M.; Kamath, P.V. Urea hydrolysis of cobalt(II) nitrate melts: Synthesis of novel hydroxides and hydroxynitrates. Int. J. Inorg. Mater 2001, 3, 901–906. [Google Scholar]
- Arizaga, G.G.C. Intercalation studies of zinc hydroxide chloride: Ammonia and amino acids. J. Solid State Chem 2012, 185, 150–155. [Google Scholar]
- Meyn, M.; Beneke, K.; Lagaly, C. Anion-exchange reactions of hydroxy double salts. Inorg. Chem 1993, 32, 1209–1215. [Google Scholar]
- Rojas, R.M.; Kovacheva, D.; Petrov, K. Synthesis and cation distribution of the spinel cobaltites Cux MyCo3−(x + y)O4(M = Ni), Zn obtained by pyrolysis of layered hydroxide nitrate solid solutions. Chem. Mater 1999, 11, 3263–3267. [Google Scholar]
- Zhang, J.; Li, Y.; Zhou, J.; Chen, D.; Qian, G. Chromium (VI) and zinc (II) waste water co-treatment by forming layered double hydroxides: Mechanism discussion via two different processes and application in real plating water. J. Hazard. Mater 2012, 205–206, 111–117. [Google Scholar]
- Zhang, T.; Li, Q.; Xiao, H.; Lu, H.; Zhou, Y. Synthesis of Li-Al layered double hydroxides (LDHs) for efficient fluoride removal. Ind. Eng. Chem. Res 2012, 51, 11490–11498. [Google Scholar]
- Elkhattabi, E.H.; Lakraimi, M.; Badreddine, M.; Legrouri, A.; Cherkaoui, O.; Berraho, M. Removal of Remazol Blue 19 from wastewater by zinc-aluminium-chloride-layered double hydroxides. Appl. Water Sci 2013, 3, 431–438. [Google Scholar]
- Wang, Y.; Zhang, D. Synthesis, characterization, and controlled release anticorrosion behavior of benzoate intercalated Zn-Al layered double hydroxides. Mater. Res. Bull 2011, 46, 1963–1968. [Google Scholar]
- Yang, Z.; Fischer, H.; Cerezo, J.; Mol, J.M.C.; Polder, R. Aminobenzoate modified Mg-Al hydrotalcites as a novel smart additive of reinforced concrete for anticorrosion applications. Constr. Build. Mater 2013, 47, 1436–1443. [Google Scholar]
- Boshkov, N.; Petrovb, K.; Vitkovaa, S.; Raichevsky, G. Galvanic alloys Zn-Mn—Composition of the corrosion products and their protective ability in sulfate containing medium. Surf. Coat. Technol 2005, 194, 276–282. [Google Scholar]
- Baikousi, M.; Stamatis, A.; Louloudi, M.; Karakassides, M.A. Thiamine pyrophosphate intercalation in layered double hydroxides (LDHs): An active bio-hybrid catalyst for pyruvate decarboxylation. Appl. Clay Sci 2013, 76, 126–133. [Google Scholar]
- Lei, X.; Lu, W.; Peng, Q.; Li, H.; Chen, T.; Xu, S.; Zhang, F. Activated MgAl-layered double hydroxide as solid base catalysts for the conversion of fatty acid methyl esters to monoethanolamides. Appl. Catal. A: Gen 2011, 399, 87–92. [Google Scholar]
- Machado, G.S.; Arizaga, G.G.C.; Wypych, F.; Nakagaki, S. Immobilization of anionic metalloporphyrins on zinc hydroxide nitrate and study of an unusual catalytic activity. J. Catal 2010, 274, 130–141. [Google Scholar]
- Xu, S.; Zhang, L.; Lin, Y.; Li, R.; Zhang, F. Layered double hydroxides used as flame retardant for engineering plastic acrylonitrile-butadiene-styrene (ABS). J. Phys. Chem. Solids 2012, 73, 1514–1517. [Google Scholar]
- Wang, D.Y.; Leuteritz, A.; Wang, Y.Z.; Wagenknecht, U.; Heinrich, G. Preparation and burning behaviors of flame retarding biodegradable poly (lactic acid) nanocomposite based on zinc aluminum layered double hydroxide. Polym. Degrad. Stab 2010, 95, 2474–2480. [Google Scholar]
- Costa, F.R.; Wagenknecht, U.; Heinrich, G. LDPE/Mg-Al layered double hydroxide nanocomposite: Thermal and flammability properties. Polym. Degrad. Stab 2007, 92, 1813–1823. [Google Scholar]
- Zhang, L.; Chen, Y.; Zhang, Z.; Lu, C. Highly selective sensing of hydrogen peroxide based oncobalt-ethylenediaminetetraacetate complex intercalated layereddouble hydroxide-enhanced luminol chemiluminescene. Sens. Actuators B Chem 2014, 193, 752–758. [Google Scholar]
- Zhang, F.T.; Long, X.; Zhang, D.W.; Sun, Y.L.; Zhou, Y.L.; Ma, Y.R.; Qi, L.M.; Zhang, X.X. Layered double hydroxide-hemin nanocomposite as mimeticperoxidase and its application in sensing. Sens. Actuators B Chem 2014, 192, 150–156. [Google Scholar]
- Lu, Y.; Zhao, Y. Synthesis of layered cathode materials Li[CoxNiyMn1−x−y]O2 from layered double hydroxide precursors. Particuology 2010, 8, 202–206. [Google Scholar]
- Wang, Q.; Wu, J.; Gao, Y.; Zhang, Z.; Wang, J.; Zhang, X.; Yan, X.; Umar, A.; Guo, Z.; O’Hare, D. Polypropylene/Mg3Al-tartrazine LDH nanocomposites with enhanced thermal stability, UV absorption, and rheological properties. RSC Adv 2013, 3, 26017–26024. [Google Scholar]
- Yang, W.; Ma, L.; Song, L.; Hu, Y. Fabrication of thermoplastic polyester elastomer/layered zinc hydroxide nitrate nanocomposites with enhanced thermal, mechanical and combustion properties. Mater. Chem. Phys 2013, 141, 582–588. [Google Scholar]
- Li, S.; Bai, H.; Wang, J.; Jing, X.; Liu, Q.; Zhang, M.; Chen, R.; Liu, L.; Jiao, C. In situ grown of nano-hydroxyapatite on magnetic CaAl-layered double hydroxides and its application in uranium removal. Chem. Eng. J 2012, 193–194, 372–380. [Google Scholar]
- Auerbach, S.M.; Carrado, K.A.; Dutta, P.K. Layered Materials; CRC Press: New York, NY, USA, 2004. [Google Scholar]
- Xu, Z.P.; Zeng, Q.H.; Lu, G.Q.; Yu, A.B. Inorganic nanoparticles as carriers for efficient cellular delivery. Chem. Eng. Sci 2006, 61, 1027–1040. [Google Scholar]
- Choi, S.J.; Oh, J.M.; Choy, J.H. Human-related application and nanotoxicology of inorganic particles: Complementary aspects. J. Mater. Chem 2008, 18, 615–620. [Google Scholar]
- Panda, H.S.; Srivastava, R.; Bahadur, D. In-vitro release kinetics and stability of anticardiovascular drugs—Intercalated layered double hydroxide nanohybrids. J. Phys. Chem. B 2009, 113, 15090–15100. [Google Scholar]
- Dong, L.; Yan, L.; Hou, W.G.; Liu, S.J. Synthesis and release behavior of composites of camptothecin and layered double hydroxide. J. Solid State Chem 2010, 183, 1811–1816. [Google Scholar]
- Evans, D.G.; Duan, X. Preparation of layered double hydroxides and their applications as additives in polymers, as precursors to magnetic materials and in biology and medicine. Chem. Commun 2006, 7, 485–496. [Google Scholar]
- Martina, M.; Klaus, B.; Lagaly, G. Anion-exchange reaction of layered double hydroxide. Inorg. Chem 1990, 29, 5201–5207. [Google Scholar]
- Hussein, M.Z.; Hashim, N.; Yahaya, A.H.; Zainal, Z. Synthesis of an herbicides-inorganic nanohybrid compound by ion exchange-intercalation of 3(2-chlorophenoxy) propionate into layered double hydroxide. J. Exp. Nanosci 2010, 5, 548–558. [Google Scholar]
- Burzlaff, A.; Brethauer, S.; Kasper, C.; Jackisch, B.O.; Scheper, T. Flow cytometry: Interesting tool for studying binding behavior of DNA on inorganic layered double hydroxide (LDH). Cytom. Part A 2004, 62, 65–69. [Google Scholar]
- Peterson, C.L.; Perry, D.L.; Masood, H.; Lin, H.; White, J.L.; Hem, S.L.; Fritsch, C.; Haeusler, F. Characterization of antacid compounds containing both aluminum and magnesium. I. Crystalline powders. Pharm. Res 1993, 10, 998–1004. [Google Scholar]
- Choy, J.H.; Jung, J.S.; Oh, J.M.; Park, M.; Jeong, J.; Kang, Y.K.; Han, O.J. Layered double hydroxide as an efficient drug reservoir for folate derivatives. Biomaterials 2004, 25, 3059–3064. [Google Scholar]
- Choi, S.J.; Oh, J.M.; Choy, J.H. Biocompatible nanoparticles intercalated with anticancer drug for target delivery: Pharmacokinetic and biodistribution study. J. Nanosci. Nanotechnol 2010, 10, 2913–2916. [Google Scholar]
- Oh, J.M.; Choi, S.J.; Lee, G.E.; Han, S.H.; Choy, J.H. Inorganic drug-delivery nanovehicle conjugated with cancer cell specific ligand. Adv. Funct. Mater 2009, 19, 1617–1624. [Google Scholar]
- Delgado, R.R.; Vidaurre, M.A.; Pauli, C.P.; Ulibarri, M.A.; Avena, M.J. Surface-charging behavior of Zn-Cr layered double hydroxide. J. Colloid Interface Sci 2004, 280, 431–441. [Google Scholar]
- Desigaux, L.; Belkacem, M.B.; Richard, P.; Cellier, J.; Léone, P.; Cario, L.; Leroux, F.; Taviot-Guého, C.; Pitard, B. Self-assembly and characterization of layered double hydroxide/DNA hybrids. Nano Lett 2006, 6, 199–204. [Google Scholar]
- Qin, L.; Xue, M.; Wang, W.; Zhu, R.; Wang, S.; Sun, J.; Zhang, R.; Sun, X. The in vitro and in vivo anti-tumor effect of layered double hydroxides nanoparticles as delivery for podophyllotoxin. Int. J. Pharm 2010, 388, 223–230. [Google Scholar]
- Park, T.; Choi, S.J.; Oh, J.M.; Jung, J.S. Injectable drug carrier comprising layered double hydroxide. U.S. Patent 0276170A1, 25 February 2010. [Google Scholar]
- Yin, M.C.; Lin, C.C.; Wu, H.C.; Tsao, S.M.; Hsu, C.K. Apoptotic effects of protocatechuic acid in human breast, lung, liver, cervix, and prostate cancer cells: Potential mechanisms of action. J. Agric. Food Chem 2009, 57, 6468–6473. [Google Scholar]
- Barahuie, F.; Hussein, M.Z.; Al-Ali, S.H.H.; Arulselvan, P.; Fakurazi, S.; Zainal, Z. Preparation and controlled release studies of protocatechuic acid-magnesium/aluminium-layered double hydroxide nanocomposite. Int. J. Nanomed 2013, 8, 1975–1987. [Google Scholar]
- Ghotbi, M.Y.; Hussein, M.Z. Gallate-Zn-Al-layered double hydroxide as an intercalated compound with new controlled release formulation of anticarcinogenic agent. J. Phys. Chem. Solids 2010, 71, 1565–1570. [Google Scholar]
- Hussein AlAli, S.H.; Al-Qubaisi, M.; Hussein, M.Z.; Zainal, Z.; Hakim, M.N. Preparation of hippurate-zinc layered hydroxide nanohybrid and its synergistic effect with tamoxifen on HepG2 cell lines. Int. J. Nanomed 2011, 6, 3099–3111. [Google Scholar]
- Li, F.; Jin, L.; Han, J.; Wei, M.; Li, C. Synthesis and controlled release properties of prednisone intercalated Mg-Al layered double hydroxide composite. Ind. Eng. Chem. Res 2009, 48, 5590–5597. [Google Scholar]
- Hussein, M.Z.; AlAli, S.H.H.; Zainal, Z.; Hakim, M.N. Development of antiproliferative nanohybrid compound with controlled release property using ellagic acid as the active agent. Int. J. Nanomed 2011, 6, 1373–1383. [Google Scholar]
- Barahuie, F.; Hussein, M.Z.; Arulselvan, P.; Fakurazi, S.; Zainal, Z. Development of the anticancer potential of a chlorogenate-zinc layered hydroxide nanohybrid with controlled release property against various cancer cells. Sci. Adv. Mater 2013, 5, 1983–1993. [Google Scholar]
- Al Ali, S.H.H.; Al-Qubaisi, M.; Hussein, M.Z.; Ismail, M.; Zainal, Z.; Hakim, M.N. Controlled release and angiotensin-converting enzyme inhibition properties of an antihypertensive drug based on a perindopril erbumine-layered double hydroxide nanocomposite. Int. J. Nanomed 2012, 7, 2129–2141. [Google Scholar]
- Al Ali, S.H.H.; Al-Qubaisi, M.; Hussein, M.Z.; Ismail, M.; Zainal, Z.; Hakim, M.N. Comparative study of Mg/Al- and Zn/Al-layered double hydroxide-perindopril erbumine nanocomposites for inhibition of angiotensin-converting enzyme. Int. J. Nanomed 2012, 7, 4251–4262. [Google Scholar]
- Al Ali, S.H.H.; Al-Qubaisi, M.; Hussein, M.Z.; Ismail, M.; Zainal, Z.; Hakim, M.N. In vitro inhibition of histamine release behavior of cetirizine intercalated into Zn/Al- and Mg/Al-layered double hydroxides. Int. J. Mol. Sci 2012, 13, 5899–5916. [Google Scholar]
- Al Ali, S.H.H.; Al-Qubaisi, M.; Hussein, M.Z.; Ismail, M.; Zainal, Z.; Hakim, M.N. Controlled-release formulation of antihistamine based on cetirizine zinc-layered hydroxide nanocomposites and its effect on histamine release from basophilic leukemia (RBL-2H3) cells. Int. J. Nanomed 2012, 7, 3351–3363. [Google Scholar]
- Mohsin, S.M.; Hussein, M.Z.; Sarijo, S.H.; Fakurazi, S.; Arulselvan, P.; Yun Hin, T.Y. Synthesis of (cinnamate-zinc layered hydroxide) intercalation compound for sunscreen application. Chem. Cent. J 2013, 7, 26. [Google Scholar] [Green Version]
- Bullo, S.; Hussein, M.Z.; Al-Ali, S.H.H.; Arulselvan, P.; Fakurazi, S. Sustained release formulation of an anti-tuberculosis drug based on para-amino salicylic acid-zinc layered hydroxide nanocomposite. Chem. Cent. J 2013, 7, 72. [Google Scholar] [Green Version]
- Kura, A.U.; Al Ali, S.H.H.; Hussein, M.Z.; Fakurazi, S.; Arulselvan, P. Development of a controlled-release anti-parkinsonian nanodelivery system using levodopa as the active agent. Int. J. Nanomed 2013, 8, 1103–1110. [Google Scholar]
- Gasser, M.S. Inorganic layered double hydroxides as ascorbic acid (vitamin C) delivery system Intercalation and their controlled release properties. Colloids Surf. B 2009, 73, 103–109. [Google Scholar]
- Qin, L.; Wang, M.; Zhu, R.; You, S.; Zhou, P.; Wang, S. The in vitro sustained release profile and antitumor effect of etoposide-layered double hydroxide nanohybrids. Int. J. Nanomed 2013, 8, 2053–2064. [Google Scholar]
- Kong, X.; Jin, L.; Wei, M.; Duan, X. Antioxidant drugs intercalated into layered double hydroxide: Structure and in vitro release. Appl. Clay Sci 2010, 49, 324–329. [Google Scholar]
- Xiao, R.; Wang, W.; Pan, L.; Zhu, R.; Yu, Y.; Li, H.; Liu, H.; Wang, S.L. A sustained folic acid release system based on ternary magnesium/zinc/aluminum layered double hydroxides. J. Mater. Sci 2011, 46, 2635–2643. [Google Scholar]
- Chakraborty, J.; Roychowdhury, S.; Sengupta, S.; Ghosh, S. Mg-Al layered double hydroxide-methotrexate nanohybrid drug delivery system: Evaluation of efficacy. Mater. Sci. Eng. C Mater. Biol. Appl 2013, 33, 2168–2174. [Google Scholar]
- Chakraborty, M.; Dasgupta, S.; Soundrapandian, C.; Chakraborty, J.; Ghosh, S.K.; Mitra, M.K.; Basu, D. Methotrexate intercalated ZnAl-layered double hydroxide. J. Solid State Chem 2011, 184, 2439–2445. [Google Scholar]
- Perioli, L.; Posati, T.; Nocchetti, M.; Bellezza, F.; Costantino, U.; Cipiciani, A. Intercalation and release of antiinflammatory drug diclofenac into nanosized ZnAl hydrotalcite-like compound. Appl. Clay Sci 2011, 53, 374–378. [Google Scholar]
- Xia, S.J.; Ni, Z.M.; Xu, Q.; Hu, B.X.; Hu, J. Layered double hydroxides as supports for intercalation and sustained release of antihypertensive drugs. J. Solid State Chem 2008, 181, 2610–2619. [Google Scholar]
- Del Arco, M.; Fernandez, A.; Martin, C.; Rives, V. Solubility and release of fenbufen intercalated in Mg, Al and Mg, Al, Fe layered double hydroxides(LDH):The effect of Eudragits S 100 covering. J. Solid State Chem 2010, 183, 3002–3009. [Google Scholar]
- Jin, L.; Liu, Q.; Sun, Z.; Ni, X.; Wei, M. Preparation of 5-fluorouracil/-cyclodextrin complex intercalated in layered double hydroxide and the controlled drug release properties. Ind. Eng. Chem. Res 2010, 49, 11176–11181. [Google Scholar]
- Drewinko, B.; Barlogie, B. Survival and cycle-progression delay of human lymphoma cells in vitro exposed to VP-16–213. Cancer Treat. Rep 1976, 60, 1295–1306. [Google Scholar]
- Giovanella, B.; Hinz, H.; Kozielski, A.; Stehlin, J.; Silber, R.; Potmesil, M. Complete growth inhibition of human cancer xenografts in nude mice by treatment with 20-(S)-camptothecin. Cancer Res 1991, 51, 3052–3055. [Google Scholar]
- You, B.R.; Park, W.H. Gallic acid-induced lung cancer cell death is related to glutathione depletion as well as reactive oxygen species increase. Toxicol. in Vitro 2010, 24, 1356–1362. [Google Scholar]
- Hussein, M.Z.; Ghotbi, M.Y.; Yahaya, A.H.; Rahman, M.Z.A. Synthesis and characterization of (zinc-layered-gallate) nanohybrid using structural memory effect. Mater. Chem. Phys 2009, 113, 491–496. [Google Scholar]
- Huan, S.; Pazdur, R.; Singhakowinta, A.; Samal, B.; Vaitkevicus, V.K. Low-dose continuous infusion 5-fluorouracil. Evaluation in advanced breast carcinoma. Cancer 1989, 63, 419–422. [Google Scholar]
- Su, Y.H.; Chiang, L.W.; Jeng, K.C.; Huang, H.L.; Chen, J.T.; Lin, W.J.; Huang, C.W.; Yu, C.S. Solution-phase parallel synthesis and screening of anti-tumor activities from fenbufen and ethacrynic acid libraries. Bioorg. Med. Chem. Lett 2011, 21, 1320–1324. [Google Scholar]
- Collins, R.; Fenwick, E.; Trowman, R.; Perard, R.; Norman, G.; Light, K.; Birtle, A.; Palmer, S.; Riemsma, R. A systematic review and economic model of the clinical effectiveness and cost-effectiveness of docetaxel in combination with prednisone or prednisolone for the treatment of hormone-refractory metastatic prostate cancer. Health Technol. Assess 2007, 11, 1–198. [Google Scholar]
- Renner, C.; Seyffarth, A.; Garcia de Arriba, S.; Meixensberger, J.; Gebhardt, R.; Gaunitz, F. Carnosine inhibits growth of cells isolated from human glioblastoma multiforme. Int. J. Pept. Res. Ther 2008, 14, 127–135. [Google Scholar]
- Belkaid, A.; Currie, J.C.; Desgagnés, J.; Annabi, B. The chemopreventive properties of chlorogenic acid reveal a potential new role for the microsomal glucose-6-phosphate translocase in brain tumor progression. Cancer Cell Int 2006, 6, 1–12. [Google Scholar]
- Opie, L.H. Angiotensin-Converting Enzyme Inhibitors: Scientific Basis for Clinical Use, 2nd ed; Wiley-Liss New York: New York, NY, USA, 1994. [Google Scholar]
- Takai, S.; Yamamoto, D.; Jin, D.; Inagaki, S.; Yoshikawa, K.; Tanaka, K.; Miyazaki, M. Inhibition of matrix metalloproteinase-9 activity by lisinopril after myocardial infarction in hamsters. Eur. J. Pharmacol 2007, 568, 231–233. [Google Scholar]
- Skowasch, D.; Viktor, A.; Schneider-Schmitt, M.; Luderitz, B.; Nickenig, G.; Bauriedel, G. Differential antiplatelet effects of angiotensin converting enzyme inhibitors: Comparison of ex vivo platelet aggregation in cardiovascular patients with ramipril, captopril and enalapril. Clin. Res. Cardiol 2006, 95, 212–216. [Google Scholar]
- Dagenais, G.R.; Pogue, J.; Fox, K.; Simoons, M.L.; Yusuf, S. Angiotensin-converting-enzyme inhibitors in stable vascular disease without left ventricular systolic dysfunction or heart failure: A combined analysis of three trials. Lancet 2006, 368, 581–588. [Google Scholar]
- Ramli, M.; Hussein, M.Z.; Yusoff, K. Preparation and characterization of an anti-inflammatory agent based on a zinc-layered hydroxide-salicylate nanohybrid and its effect on viability of Vero-3 cells. Int. J. Nanomed 2013, 8, 297–306. [Google Scholar]
- Mendieta, S.; Reyes Nuñez, P.; Olivad, M.; Péreza, C.; Fernándeza, J.; Crivello, M. Intercalation of anti-inflammatory drugs Sodium Indomethacin into nanocomposites of Mg-Al. Structural characterization. Procedia Mater. Sci 2012, 1, 580–587. [Google Scholar]
- Brown, V.; Ennis, M. Flow-cytometric analysis of basophil activation: Inhibition by histamine at conventional and homeopathic concentrations. Inflamm. Res 2001, 50, 47–48. [Google Scholar]
- Promkatkaew, M.; Suramitr, S.; Karpkird, T.; Ehara, M.; Hannongbua, S. Absorption and emission properties of various substituted cinnamic acids and cinnamates, based on TDDFT investigation. Int. J. Quantum Chem 2013, 113, 542–554. [Google Scholar]
- Biswick, T.; Park, D.H.; Choy, J.H. Enhancing the UV A1 screening ability of caffeic acid by encapsulation in layered basic zinc hydroxide matrix. J. Phys. Chem. Solids 2012, 73, 1510–1513. [Google Scholar]
- Wei, Y.; Gao, Y.; Zhang, K.; Ito, Y. Isolation of caffeic acid from Eupatorium adenophorum spreng by high speed counter current chromatography and synthes is of caffeic acid intercalated layered double hydroxide. J. Liq. Chromatogr. Relat. Technol 2010, 33, 837–845. [Google Scholar]
- Mitchison, D.A. Role of individual drugs in the chemotherapy of tuberculosis. Int. J. Tuberc. Lung Dis 2000, 4, 796–806. [Google Scholar]
- Poewe, W.; Antonini, A.; Zijlmans, J.C.M.; Burkhard, P.R.; Vingerhoets, F. Levodopa in the treatment of Parkinson’s disease: An old drug still going strong. Clin. Interv. Aging 2010, 5, 229–238. [Google Scholar]
- Wei, M.; Pu, M.; Guo, J.; Han, J.; Li, F.; He, J.; Evans, D.J.; Duan, X. Intercalation of l-Dopa into layered double hydroxides: Enhancement of both chemical and stereochemical stabilities of a drug through host-guest interactions. Chem. Mater 2008, 20, 5169–5180. [Google Scholar]
- Qin, L.; Wang, S.; Zhang, R.; Zhu, R.; Sun, X.; Yao, S. Two different approaches to synthesizing Mg-Al-layered double hydroxides as folic acid carriers. J. Phys. Chem. Solids 2008, 69, 2779–2784. [Google Scholar]
- Silion, M.; Popa, M.I.; Lisa, G.; Hritcu, D. New hybrids compounds containing intercalated ciprofloxacin into layered double hydroxides: Synthesis and characterization. Rev. Roum. Chim 2008, 53, 827–831. [Google Scholar]
- San Román, M.S.; Holgado, M.J.; Salinas, B.; Rives, V. Characterisation of Diclofenac, Ketoprofen or Chloramphenicol Succinate encapsulated in layered double hydroxides with the hydrotalcite-type structure. Appl. Clay Sci 2012, 55, 158–163. [Google Scholar]
- Kanduc, D.; Mittelman, A.; Serpico, R.; Sinigaglia, E.; Sinha, A.A.; Natale, C.; Santacroce, R.; di Corcia, M.G.; Lucchese, A.; Dini, L.; et al. Cell death: Apoptosis versus necrosis. Int. J. Oncol 2002, 21, 165–70. [Google Scholar]
- Miret, S.; de Groene, E.M.; Klaffke, W. Comparison of in vitro assays of cellular toxicity in the human hepatic cell line HepG2. J. Biomol. Screen 2006, 11, 184–193. [Google Scholar]
- Milakovic, T.; Johnson, G.V.W. Mitochondrial respiration and ATP production are significantly impaired in striatal cells expressing mutant huntingtin. J. Biol. Chem 2005, 280, 30773–30782. [Google Scholar]
- Vega-Avila, E.; Pugsley, M.K. An overview of colorimetric assay methods used to assess survival or proliferation of mammalian cells. Proc. West. Pharmacol. Soc 2011, 54, 10–14. [Google Scholar]
- Strober, W. Trypan blue exclusion test of cell viability. Curr. Protoc. Immunol 2001. [Google Scholar] [CrossRef]
- Choi, S.J.; Oh, J.M.; Park, T.; Choy, J.H. Cellular toxicity of inorganic hydroxide nanoparticles. J. Nanosci. Nanotechnol 2007, 7, 4017–4020. [Google Scholar]
- Choi, S.J.; Oh, J.M.; Choy, J.H. Anticancer drug-layered hydroxide nanohybrids as potent cancer chemotherapy agents. J. Phys. Chem. Solids 2008, 69, 1528–1532. [Google Scholar]
- Kobayashi, J.; Kizu, R.; Sugiyama, H. Influence of polyaromatic hydrocarbons and heavy metals on a thyroid carcinoma cell line. J. Health Sci 2005, 51, 202–206. [Google Scholar]
- Zhu, X.; Zhu, L.; Duan, Z.; Qi, R.; Li, Y.; Lang, Y. Comparative toxicity of several metal oxide nanoparticle aqueous suspension to Zebrafish (Danio rerio) early development stage. J. Environ. Sci. Health Part A Toxic Hazard. Subst. Environ. Eng 2008, 43, 278–284. [Google Scholar]
- Lanone, S.; Rogerieux, F.; Geys, J.; Dupont, A.; Maillot-Marechal, E.; Boczkowski, J.; Lacroix, G.; Hoet, P. Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophang cell line. Part. Fibre Toxicol 2009, 6, 14. [Google Scholar]
- Choi, S.J.; Oh, J.M.; Choy, J.H. Safety aspect of inorganic layered nanoparticles: Size-dependency in vitro and in vivo. J. Nanosci. Nanotechnol 2008, 8, 5297–5301. [Google Scholar]
- Baek, M.; Kim, I.S.; Yu, J.; Chung, H.E.; Choy, J.H.; Choi, S.J. Effect of different forms of anionic nanoclays on cytotoxicity. J. Nanosci. Nanotechnol 2011, 11, 1803–1806. [Google Scholar]
- Tongamp, W.; Zhang, Q.; Saito, F. Mechanochemical route for synthesizing nitrate form of layered double hydroxide. Powder Technol 2008, 185, 43–48. [Google Scholar]
- Tronto, J.; Reis, M.J.D.; Silverio, F.; Balbo, V.R.; Marchetti, J.M.; Valin, J.B. In vitro release of citrate anions intercalated in magnesium aluminium layered double hydroxides. J. Phys. Chem. Solids 2004, 65, 475–480. [Google Scholar]
- Choy, J.H.; Kwak, S.Y.; Park, J.S.; Jeong, Y.J. Cellular uptake behavior of [[gamma]-p] labeled ATP-LDH nanohybrids. J. Mater. Chem 2001, 11, 1671–1674. [Google Scholar]
- Xu, Z.P.; Niebert, M.; Porazik, K.; Walker, T.L.; Cooper, H.M.; Middelberg, A.P.; Gray, P.P.; Bartlett, P.F.; Lu, G.Q. Subcellular compartment targeting of layered double hydroxide nanoparticles. J. Control. Release 2008, 130, 86–94. [Google Scholar]
- Oh, J.M.; Choi, S.J.; Lee, G.E.; Kim, J.E.; Choy, J.H. Inorganic metal hydroxide nanoparticles for targeted cellular uptake through clathrin-mediated endocytosis. Chem. Asian J 2009, 4, 67–73. [Google Scholar]
Application | Examples | References |
---|---|---|
Water treatment | CrO42− was removed from contaminated water by Ca38Al2(OH)11.6Cl2(H2O)5.8. The adsorption during the synthesis was used for removal of Zn2+/CrO42− from waste water. Cement, which contained Al2O3, was mixed with Ca(OH)2 to provide Ca/Al and then used to treat the mixture of Zn2+/CrO42−. The resulting product was a Zn/Al-CrO42− layered double hydroxide. | [25] |
Li-Al-LDH was synthesized through the co-precipitation and homogeneous precipitation methods and used for fluoride removal from water. Li-Al-LDH exhibited high fluoride adsorption capacity. | [26] | |
Zn/Al-Cl-LDH was used to remove RB19 [2-(3-(4-Amino-9,10-dihydro-3- sulpho-9,10-dioxoanthracen-4-yl) aminobenzenesulphonyl) vinyl) disodiumsulphate] dye from contaminated water. Zn/Al-Cl-LDH showed excellent RB19 adsorption from the aqueous solution. | [27] | |
Anticorrosion agent | Intercalation of the corrosion protection agent, benzoate anion into the Zn/Al-LDH enhanced its anti-corrosion property so that the resulting LDH materials significantly decreased corrosion rate in Q235 carbon. | [28] |
P-aminobenzoate (pAB) was intercalated into Mg2Al-CO3-LDH to produce Mg2Al-pAB, which can remarkably reduce corrosion in simulated concrete by decreasing the free chloride concentration in simulated concrete solution through ion-exchange between free chloride anions and pAB anions in the Mg2Al-pAB structure. | [29] | |
The layered zinc hydroxide with sulphate as the counter anion showed high protective ability and corrosion resistance of steel and iron substrates. The zinc hydroxide sulphate layer is generated by exposing galvanic Zn and Zn-Mn alloys to a freely aerated solution of Na2SO4. | [30] | |
Catalyst | Thiamine pyrophosphate-Mg/Al and Thiamine pyrophosphate-Zn/Al-LDH nanocomposites were used as heterogeneous catalysts for decarboxylation of pyruvic acid and enhanced catalytic activity of thiamine pyrophosphate (TPP) due to the incorporation of thiamine pyrophosphate into the interlayer gallery of LDH. | [31] |
Mg/Al-LDH synthesised at a Mg/Al ratio (R) of 2 exhibited higher catalytic efficiency in the conversion of fatty acid methyl esters to monoethanolamides compared to Mg/Al synthesized at R of 3 prepared by the same method. | [32] | |
Zinc hydroxide nitrate (Zn5(OH)8(NO3)2·2H2O) was intercalated with anionic iron porphyrin [Fe(TDFSPP)], and the resulting nanocomposite showed significant catalytic activity for the oxidation of cyclohexane to tert-butyl alcohol. | [33] | |
Flame retardants | Incorporation of acrylonitrile-butadiene-styrene (ABS) resin into Mg/Aland ZnMg/Al-LDHs leads to significant improvement in smoke suppression and reduction in flammability rate. | [34] |
Intercalation of flame retardants, namely ammonium polyphosphate, pentaerythritol, or melamine cyanurate, into Zn/Al-LDH enhanced the fire retardant property of polylactic acid (PLA) and the PLA-FR-Zn/Al-LDH nanocomposite showed higher flame retardant efficiency. | [35] | |
Low-density polyethylene (LDPE) has been intercalated into Mg/Al-LDH, which improved flame retardant property of LDPE. | [36] | |
Sensors and electrodes | Mg/Al-LDH intercalated with cobalt-ethylenediaminetetraacetate (Co(II)-EDTA) complex was used as a chemical/biological sensor for H2O2 detection and showed great selectivity for H2O2. | [37] |
Hemin-Fe/Ni-LDH nanocomposite-modified electrodes could accomplish the role of the natural enzyme, peroxidase, and could also be used in H2O2 detection. | [38] | |
LDHs were used for preparation of cathode materials, Li[CoxNiyMn1−x−y]O2 for lithium secondary battery applications. | [39] | |
Other applications | Enhancement of thermal stability and uv-absobance of polypropylene (PP) were observed with Mg3Al-tartrazine LDH nanocomposite. | [40] |
Enhancement in thermal stability and mechanical properties of thermoplastic polyester elastomers were observed by encapsulation of benzoate into zinc hydroxide nitrate. | [41] | |
Uranium ions were removed from aqueous solution using in situ grow of a nanohydroxide on magnetic Ca/Al-LDH followed by calcination. | [42] |
Kinetics Models | Equation | Reference |
---|---|---|
1. Pseudo-first order | ln(qe − qt) = ln qe − kt | [61–64] |
2. Pseudo- second order | t/qt =1/kqe2 + t/qe | [19,47,61,63,65–74] |
3. parabolic diffusion | (1 − Mt/Mo)/t = kt−0.5 + a | [61,75–77] |
4. modified Freundlich | 1 − Mt/Mo = kta | [75] |
5. Ritger–Peppas | X = k(t − R)n | [78,79] |
6. Bhaskar | ln(1 − X) = −1.59(6/dp)1.3 D0.65t0.65 | [64,80] |
7. Higuchi | X = k(t − R)1/2 | [81] |
8. Wei bull | M = M∞[1 − e − ((t − to)/td)β] | [82] |
9. Korsmeyer-Peppas | Mr/Mf = ktn + a | [83] |
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Barahuie, F.; Hussein, M.Z.; Fakurazi, S.; Zainal, Z. Development of Drug Delivery Systems Based on Layered Hydroxides for Nanomedicine. Int. J. Mol. Sci. 2014, 15, 7750-7786. https://doi.org/10.3390/ijms15057750
Barahuie F, Hussein MZ, Fakurazi S, Zainal Z. Development of Drug Delivery Systems Based on Layered Hydroxides for Nanomedicine. International Journal of Molecular Sciences. 2014; 15(5):7750-7786. https://doi.org/10.3390/ijms15057750
Chicago/Turabian StyleBarahuie, Farahnaz, Mohd Zobir Hussein, Sharida Fakurazi, and Zulkarnain Zainal. 2014. "Development of Drug Delivery Systems Based on Layered Hydroxides for Nanomedicine" International Journal of Molecular Sciences 15, no. 5: 7750-7786. https://doi.org/10.3390/ijms15057750
APA StyleBarahuie, F., Hussein, M. Z., Fakurazi, S., & Zainal, Z. (2014). Development of Drug Delivery Systems Based on Layered Hydroxides for Nanomedicine. International Journal of Molecular Sciences, 15(5), 7750-7786. https://doi.org/10.3390/ijms15057750