Bacterial Cellulose Membranes Used as Artificial Substitutes for Dural Defection in Rabbits
Abstract
:1. Introduction
2. Results and Discussion
2.1. General Observations
2.2. Pathological Observations
2.3. Effects of BC on Inflammation
2.4. Discussion
3. Experimental Section
3.1. Preparation of Artificial Dura Mater
3.2. Experimental Animals and Grouping
3.3. Surgical Procedures
3.4. Treatment Following Operation
3.5. Sample Processing
3.6. Histological Examination
3.7. Real-Time Fluorescent Quantitative PCR
Primers | Primer Sequence | Product (bp) |
---|---|---|
GAPDH-F | 5'-CTGCACTTCAGGGTGATCG-3' | 90 |
GAPDH-R | 5'-CCACAGGGTTGACTAGATGGA-3' | |
TNF-α-F | 5'-GGTGGTGGCTACCGCTTT-3' | 70 |
TNF-α-R | 5'-CGCCAGTGCCTCCTTTCT-3' | |
IL-6-F | 5'-GGTGTTGTCTGGCACGTATG-3' | 196 |
IL-6-R | 5'-TGGAGAACACCACTTGTTGG-3' | |
IL-1β-F | 5'-TGTTTGTGATGGGCGTGAA-3' | 77 |
IL-1β-R | 5'-GGGGGGCTAAGCAGTTGGT-3' |
3.8. Western Blot Analysis
3.9. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Jackson, N.; Muthuswamy, J. Artificial dural sealant that allows multiple penetrations of implantable brain probes. J. Neurosci. Methods 2008, 171, 147–152. [Google Scholar] [CrossRef]
- Nurata, H.; Cemil, B.; Kurt, G.; Uçankuş, N.L.; Dogulu, F.; Ömeroğlu, S. The role of fibroblast growth factor-2 in healing the dura mater after inducing cerebrospinal fluid leakage in rats. J. Clin. Neurosci. 2009, 16, 542–544. [Google Scholar]
- Sugawara, T.; Itoh, Y.; Higashiyama, N.; Shimada, Y.; Kinouchi, H.; Mizoi, K. Novel dural closure technique using polyg-lactin acid sheet prevents cerebrospinal fluid leakage after spinal surgery. Neurosurgery 2005, 57, 209–294. [Google Scholar] [CrossRef]
- Brown, A.J. On an acetic ferment forms cellulose. J. Chem. Soc. 1886, 49, 432–439. [Google Scholar] [CrossRef]
- Kabel, M.A.; van den Borne, H.; Vincken, J.P.; Voragen, A.G.; Schols, H.A. Structural differences of xylans affect their interaction with cellulose. Carbohydr. Polym. 2007, 69, 94–105. [Google Scholar] [CrossRef]
- Hsieh, Y.C.; Yano, H.; Nogi, M.; Eichhorn, S.J. An estimation of the Young’s modulus of bacterial cellulose filaments. Cellulose 2008, 15, 507–513. [Google Scholar] [CrossRef]
- Charpentier, P.A.; Maguire, A.; Wan, W.-K. Surface modification of polyester to produce a bacterial cellulose-based vascular prosthetic device. Appl. Surf. Sci. 2006, 252, 6360–6367. [Google Scholar] [CrossRef]
- Svensson, A.; Nicklasson, E.; Harrah, T.; Panilaitis, B.; Kaplan, D.L.; Brittberg, M.; Gatenholm, P. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 2005, 26, 419–431. [Google Scholar] [CrossRef]
- Ciechanska, D. Multifunctional bacterial cellulose/chitosan composite materials for medical applications. Fibers Text East Eur. 2004, 12, 69–72. [Google Scholar]
- Yu, H.H.; Wu, F.L.; Lin, S.E.; Shen, S.J. Recombinant arginine deiminase reduces inducible nitric oxide synthase iNOS-mediated neurotoxicity in a coculture of neurons and microglia. J. Neurosci. Res. 2008, 86, 2963–2972. [Google Scholar] [CrossRef]
- Seibert, K.; Zhang, Y.; Leahy, K.; Hauser, S.; Masferrer, J.; Perkins, W.; Lee, L.; Isakson, P. Phamacological and biochemical demonstration of the role of cycloocygenase-2 in inflammation and pain. Proc. Natl. Acad. Sci. USA 1994, 91, 12013–12017. [Google Scholar]
- Vital, A.L.; Goncab, M.; Cruz, M.T.; Figueiredo, A.; Duarte, C.B.; Lopes, M.C. Dexamethasone prevents granulocyte-macrophage colony-stimulating factor-induced nuclear factor-κB activation, inducible nitric oxide synthase expression and nitric oxide production in a skin dendritic cell line. Mediat. Inflamm. 2003, 12, 71–78. [Google Scholar] [CrossRef]
- Chen, C.W.; Lee, S.T.; Wu, W.T.; Fu, W.M.; Ho, F.M.; Lin, W.W. Signal transduction for inhibition of inducible nitric oxide synthase and cyclooxygenase-2 induction by capsaicin and related analogs in macrophages. Br. J. Phaimacol. 2003, 140, 1077–1087. [Google Scholar]
- Fangkrathok, N.; Junlatat, J. In vivo and in vitro anti-inflammatory activity of Lentinus polychrous extract. J. Ethnopharmacol. 2013, 147, 631–637. [Google Scholar] [CrossRef]
- Kim, D.W.; Eum, W.S.; Kim, D.W.; Eum, W.S.; Jang, S.H.; Park, J.; Heo, D.H.; Sheen, S.H.; Lee, H.R.; Kweon, H.Y. A transparent artificial dura mater made of silk fibroin as an inhibitor of inflammation in craniotomized rats. J. Neurosurg. 2011, 114, 485–490. [Google Scholar] [CrossRef]
- Tomita, T.; Hayashi, N.; Okabe, M.; Yoshida, T.; Hamada, H.; Endo, S.; Nikaido, T. New dried human amniotic membrane is useful as a substitute for dural repair after skull base surgery. J. Neurol. Surg. B Skull Base 2012, 73, 302–307. [Google Scholar]
- Kawai, H.; Nakagawa, I.; Nishimura, F.; Motoyama, Y.; Park, Y.S.; Nakamura, M.; Nakase, H.; Suzuki, S.; Ikada, Y. Effectiveness of a new gelatin sealant system for dural closure. Neurol. Res. 2014. [Google Scholar] [CrossRef]
- Wan, Y.Z.; Huang, Y.; Yuan, C.D.; Raman, S.; Zhu, Y.; Jiang, H.J.; He, F.; Gao, C. Biomimetic synthesis of hydroxyapatite/bacterial cellulose nanocomposites for biomedical applications. Mater. Sci. Eng. C 2007, 27, 855–864. [Google Scholar]
- Yan, Z.; Chen, S.; Wang, H.P.; Wang, B.; Wang, C.S.; Jiang, J.M. Cellulose synthesized by Acetobacter xylinum in the presence of multi-walled carbon nanotubes. Carbohydr. Res. 2008, 343, 73–80. [Google Scholar] [CrossRef]
- Malliti, M.; Page, P.; Gury, C.; Chomette, E.; Nataf, F.; Roux, F.X. Comparison of deep wound infection rates using a synthetic dural substitute (neuro-patch) or pericranium graft for dural closure: A clinical review of 1 year. Neurosurgery 2004, 54, 599–603. [Google Scholar] [CrossRef]
- Leiggener, C.S.; Curtis, R.; Müller, A.A.; Pfluger, D.; Gogolewski, S.; Rahn, B.A. Influence of copolymer composition of polylactide implants on cranial bone regeneration. Biomaterials 2006, 27, 202–207. [Google Scholar] [CrossRef]
- Montinaro, A.; Gianfreda, C.D.; Proto, P. Equine pericardium for dural grafts: Clinical results in 200 patients. J. Neurosurg. Sci. 2007, 51, 17–19. [Google Scholar]
- Foy, A.B.; Giannini, C.; Raffel, C. Allergic reaction to a bovine dura substitute following spinal cord untethering. J. Neurosurg. Pediatr. 2008, 1, 167–169. [Google Scholar] [CrossRef]
- Brzezicki, G.; Jankowski, R.; Blok, T.; Szymaś, J.; Huber, J.; Szukała, A.; Nowak, S.; Borejsza-Wysocki, M. Evaluation of epidural scar formation in lumbar spine after TachoComb application—An experimental study. Neurol. Neurochir. Pol. 2008, 42, 223–230. [Google Scholar]
- Reyes-Moreno, I.; Verheggen, R. Time-sparing and effective procedure for dural closure in the posterior fossa using a vicryl mesh (Ethisorb). Neurocirugia 2006, 17, 527–531. [Google Scholar]
- Preul, M.C.; Bichard, W.D.; Spetzler, R.F. Toward optimal tissue sealants for neurosurgery: Use of a novel hydrogel sealant in a canine durotomy repair model. Neurosurgery 2003, 53, 1189–1199. [Google Scholar] [CrossRef]
- De Cássia Sanchez e Oliveira, R.; Valente, P.R.; Abou-Jamra, R.C.; Araújo, A.; Saldiva, P.H.; Pedreira, D.A. Biosynthetic cellulose induces the formation of a neoduramater following pre-natal correction of meningomyelocele in fetal sheep. Acta Cir. Bras. 2007, 22, 174–181. [Google Scholar]
- Cosgrove, G.R.; Delashaw, J.B.; Grotenhuis, J.A.; Tew, J.M.; van Loveren, H.; Spetzler, R.F.; Payner, T.; Rosseau, G.; Shaffrey, M.E.; Hopkins, L.N.; et al. Safety and efficacy of a novel polyethylene glycol hydrogel sealant for watertight dural repair. J. Neurosurg 2007, 106, 52–58. [Google Scholar] [CrossRef]
- The Ministry of Science and Technology of the People’s Republic of China, Guidance Suggestionsfor the Care and Use of Laboratory Animals [EB/OL]. Available online: http://www.most.gov.cn/fggw/zfwj/zfwj2006/200609/t20060930_54389.htm (accessed on 30 September 2006).
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Xu, C.; Ma, X.; Chen, S.; Tao, M.; Yuan, L.; Jing, Y. Bacterial Cellulose Membranes Used as Artificial Substitutes for Dural Defection in Rabbits. Int. J. Mol. Sci. 2014, 15, 10855-10867. https://doi.org/10.3390/ijms150610855
Xu C, Ma X, Chen S, Tao M, Yuan L, Jing Y. Bacterial Cellulose Membranes Used as Artificial Substitutes for Dural Defection in Rabbits. International Journal of Molecular Sciences. 2014; 15(6):10855-10867. https://doi.org/10.3390/ijms150610855
Chicago/Turabian StyleXu, Chen, Xia Ma, Shiwen Chen, Meifeng Tao, Lutao Yuan, and Yao Jing. 2014. "Bacterial Cellulose Membranes Used as Artificial Substitutes for Dural Defection in Rabbits" International Journal of Molecular Sciences 15, no. 6: 10855-10867. https://doi.org/10.3390/ijms150610855
APA StyleXu, C., Ma, X., Chen, S., Tao, M., Yuan, L., & Jing, Y. (2014). Bacterial Cellulose Membranes Used as Artificial Substitutes for Dural Defection in Rabbits. International Journal of Molecular Sciences, 15(6), 10855-10867. https://doi.org/10.3390/ijms150610855