Novel Bioactive Antimicrobial Lignin Containing Coatings on Titanium Obtained by Electrophoretic Deposition
Abstract
:1. Introduction
2. Electrophoretic Deposition of Hydroxyapatite/Lignin (HAP/Lig) and Silver/Hydroxyapatite/Lignin (Ag/HAP/Lig) Coatings on Titanium
2.1. Materials
2.1.1. Alcell Lignin
2.1.2. Synthesis of Nanosized Hydroxyapatite and Silver Doped Hydroxyapatite Powders
2.1.3. Particle Size Distribution and Zeta (ζ) Potential
2.1.4. Titanium Surface Pretreatment
2.1.5. Electrophoretic Deposition of HAP/Lig and Ag/HAP/Lig Coatings on Titanium
2.2. Methods of Testing
2.2.1. Scanning Electron Microscopy (SEM)
2.2.2. X-ray Diffraction (XRD)
2.2.3. Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR)
2.2.4. X-ray Photoelectron Spectroscopy (XPS)
2.2.5. In Vitro Bioactivity Test
2.2.6. Electrochemical Impedance Spectroscopy (EIS)
2.2.7. Inductively Coupled Plasma Spectrometry (ICP)
2.2.8. Nanoindentation
2.2.9. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium Bromide (MTT) Test of Cytotoxicity
2.2.10. Antimicrobial Activity
3. Effect of Lignin Concentration on Non-Sintered and Sintered Hydroxyapatite/Lignin Coatings
3.1. Surface Morphology and Structural Analysis
3.2. XPS and ATR-FTIR Analyses
HAP/Lig, wt % Lig | Thermal Treatment | Ca | P | C | Ca/P |
---|---|---|---|---|---|
HAP | non-sintered | 19.4 | 11.3 | 7.2 | 1.72 |
sintered | 16.5 | 5.5 | 21.7 | 3.00 | |
0.5 | non-sintered | 19.1 | 11.3 | 8.2 | 1.69 |
sintered | 18.4 | 7.9 | 15.9 | 2.33 | |
1 | non-sintered | 19.3 | 10.8 | 10.5 | 1.79 |
sintered | 18.7 | 8.9 | 11.3 | 2.10 | |
3 | non-sintered | 18.4 | 12.0 | 11.7 | 1.53 |
sintered | 18.8 | 10.8 | 12.9 | 1.74 | |
10 | non-sintered | 15,8 | 10,3 | 21,3 | 1.53 |
sintered | 17,1 | 9,6 | 18,9 | 1.78 |
3.3. Nanoindentation Test
3.4. Biological Tests
3.4.1. Cytotoxicity—MTT Test
Cell Type | Peripheral Blood Mononuclear Cells (PBMC) |
Material | HAP/Lig coating, 1 wt % Lig |
Cell viability (S), % | 65.9 ± 18.3 |
Classification | Slightly cytotoxic |
PHA-Stimulated Peripheral Blood Mononuclear Cells (PBMC + PHA) | |
Material | HAP/Lig coating, 1 wt % Lig |
Cell viability (S), % | 90.4 ± 8.2 |
Classification | Non-cytotoxic |
3.4.2. Antimicrobial Activity
4. Electrophoretically Deposited Silver/Hydroxyapatite/Lignin Coatings
4.1. Bioactivity of Silver/Hydroxyapatite/Lignin Coatings
4.2. Surface and Structural Analysis of Ag/HAP/Lig Coating before and after Immersion in Simulated Body Fluid (SBF) Solution
4.3. Corrosion Stability of Ag/HAP/Lig Coatings in SBF
Sample | t/h | Rs/Ω cm2 | CPEox (Cox)/μF·cm−2 | nox | CPEc (Cc)/μF·cm−2 | nc | Rc/kΩ cm2 |
---|---|---|---|---|---|---|---|
Ag/HAP/Lig | 1 | 43.3 | 1030.0 | 0.76 | 745.2 | 0.88 | 4.3 |
3 | 44.5 | 1046.0 | 0.80 | 697.6 | 0.88 | 5.2 | |
6 | 44.5 | 1010.0 | 0.81 | 667.9 | 0.88 | 5.9 | |
8 | 44.1 | 880.1 | 0.77 | 655.8 | 0.88 | 6.1 | |
24 | 29.2 | 620.8 | 0.70 | 627.2 | 0.88 | 5.6 | |
72 | 23.1 | 821.3 | 0.76 | 588.2 | 0.88 | 6.4 | |
120 | 31.5 | 610.4 | 0.74 | 560.6 | 0.89 | 5.9 | |
168 | 18.8 | 782.4 | 0.77 | 559.3 | 0.88 | 5.8 | |
240 | 21.8 | 522.0 | 0.74 | 543.5 | 0.88 | 6.3 | |
288 | 21.3 | 475.8 | 0.70 | 529.0 | 0.88 | 6.9 | |
336 | 17.7 | 403.2 | 0.71 | 547.1 | 0.87 | 6.3 |
4.4. Nanoindentation Test
4.5. Biological Tests
4.5.1. Silver Release
4.5.2. Cytotoxicity—MTT Test
Cell Type | Peripheral Blood Mononuclear Cells (PBMC) |
Material | Ag/HAP/Lig coating, 1 wt % Lig |
Cell viability (S), % | 89.4 ± 3.5 |
Classification | Non-cytotoxic |
Cell Type | PHA-Stimulated Peripheral Blood Mononuclear Cells (PBMC + PHA) |
Material | Ag/HAP/Lig coating, 1 wt % Lig |
Cell viability (S), % | 83.8 ± 6.3 |
Classification | Non-cytotoxic |
4.5.3. Antimicrobial Activity
Bacteria Strain Type | S. aureus TL. | ||
---|---|---|---|
Initial | 1 h | 24 h | |
Control [CFU·mL−1] | 1.0 × 105 | 3.0 ×104 | 9.9 × 104 |
Ag/HAP/Lig [CFU·mL−1] | 2.5 × 104 | 2.0 × 103 | No bacteria |
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Manivasagam, G.; Dhinasekaran, D.; Rajamanickam, A. Biomedical implants: Corrosion and its Prevention—A review. Recent Pat. Corros. Sci. 2010, 2, 40–54. [Google Scholar]
- Eftekhari, S.; El Sawi, I.; Shaghayegh Bagheri, Z.; Turcotte, G.; Bougherara, H. Fabrication and characterization of novel biomimetic PLLA/cellulose/hydroxyapatite nanocomposite for bone repair applications. Mater. Sci. Eng. C 2014, 39, 120–125. [Google Scholar]
- Fidancevska, E.; Ruseska, G.; Bossert, J.; Lin, Y.-M.; Boccaccini, A.R. Fabrication and characterization of porous bioceramic composites based on hydroxyapatite and titania. Mater. Chem. Phys. 2007, 103, 95–100. [Google Scholar]
- Djošić, M.S.; Mišković-Stanković, V.B.; Milonjić, S.; Kačarević-Popović, Z.M.; Bibić, N.; Stojanović, J. Electrochemical synthesis and characterization of hydroxyapatite powders. Mater. Chem. Phys. 2008, 111, 137–142. [Google Scholar]
- Mišković-Stanković, V.B. Electrophoretic deposition of ceramic coatings on metal surfaces. In Electrodeposition and Surface Finishing; Stojan, S.D., Ed.; Modern Aspects of Electrochemistry: Springer Science + Business Media: New York, NY, USA, 2014; Volume 57, pp. 133–216. [Google Scholar]
- Rath, P.C.; Besra, L.; Singh, B.P.; Bhattacharjee, S. Titania/hydroxyapatite bi-layer coating on Ti metal by electrophoretic deposition: Characterization and corrosion studies. Ceram. Interfaces 2012, 38, 3209–3216. [Google Scholar]
- Geetha, M.; Singh, A.K.; Asokamani, R.; Gogi, A.K. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review. Prog. Mater. Sci. 2009, 54, 397–425. [Google Scholar] [CrossRef]
- Swetha, M.; Sahithi, K.; Moorthi, A.; Srinivasan, N.; Ramasamy, K.; Selvamurugan, N. Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. Int. J. Biol. Macromol. 2010, 47, 1–4. [Google Scholar] [CrossRef]
- Wang, C.X.; Wang, M.; Zhou, X. Electrochemical impedance spectroscopy study of the nucleation and growth of apatite on chemically treated Titanium. Langmuir 2002, 18, 7641–7647. [Google Scholar] [CrossRef]
- García, C.; Ceré, S.; Durán, A. Bioactive coatings deposited on titanium alloys. J. Non-Cryst. Solids 2006, 352, 3488–3495. [Google Scholar]
- Kung, K.-C.; Lee, T.-M.; Lui, T.-S. Bioactivity and corrosion properties of novel coatings containing strontium by micro-arc oxidation. J. Alloys Compd. 2010, 508, 384–390. [Google Scholar] [CrossRef]
- Moseke, C.; Gbureck, U.; Elter, P.; Drechsler, P.; Zoll, A.; Thull, R.; Ewald, A. Hard implant coatings with antimicrobial properties. J. Mater. Sci. Mater. Med. 2011, 22, 2711–2720. [Google Scholar] [CrossRef]
- Stoch, A.; Brozek, A.; Kmita, G.; Stoch, J.; Jastrzebski, W.; Rakowska, A. Electrophoretic coating of hydroxyapatite on titanium implants. J. Mol. Struct. 2001, 596, 191–200. [Google Scholar] [CrossRef]
- Mourino, V.; Cattalini, J.P.; Boccaccini, A.R. Metallic ions as therapeutic agents in tissue engineering scaffolds: An overview of their biological applications and strategies for new developments. J. R. Soc. Interface 2012, 9, 401–419. [Google Scholar] [CrossRef]
- Rameshbabu, N.; Sampath Kumat, T.S.; Prabhakar, T.G.; Sastry, V.S.; Murty, K.V.G.K.; Prasad Rao, K. Antibacterial nanosized silver substituted hydroxyapatite: Synthesis and characterization. J. Biomed. Mater. Res. Part A 2007, 80A, 581–591. [Google Scholar] [CrossRef]
- Lee, I.-S.; Whang, C.-N.; Oh, K.-S.; Park, J.-C.; Lee, K.-Y.; Lee, G.-H.; Chung, S.-M.; Sun, X.-D. Formation of silver incorporated calcium phosphate film for medical applications. Nucl. Instrum. Methods Phys. Res. Sect. B 2006, 242, 45–47. [Google Scholar] [CrossRef]
- Pang, X.; Zhitomirsky, I. Electrodeposition of hydroxyapatite–silver–chitosan nanocomposite coatings. Surf. Coat. Technol. 2008, 202, 3815–3821. [Google Scholar] [CrossRef]
- Simchi, A.; Tamjid, E.; Pishbin, F.; Boccaccini, A.R. Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications. Nanomed. Nanotechnol. 2011, 7, 22–39. [Google Scholar] [CrossRef]
- Song, Y.W.; Shan, D.Y.; Han, E.H. Electrodeposition of hydroxyapatite coating on AZ91D magnesium alloy for biomaterial application. Mater. Lett. 2008, 62, 3276–3279. [Google Scholar] [CrossRef]
- Boccaccini, A.R.; Keim, S.; Ma, R.; Li, Y.; Zhitomirsky, I. Electrophoretic deposition of biomaterials. J. R. Soc. Interface 2010, 7, S581–S613. [Google Scholar] [CrossRef]
- Corni, I.; Ryan, M.P.; Boccaccini, A.R. Electrophoretic deposition: From traditional ceramics to nanotechnology. J. Eur. Ceram. Soc. 2008, 28, 1353–1367. [Google Scholar] [CrossRef]
- Boccaccini, A.R.; Cho, J.; Subhani, T.; Kaya, C.; Kaya, F. Electrophoretic deposition of carbon nanotube–ceramic nanocomposites. J. Eur. Ceram. Soc. 2010, 30, 1115–1129. [Google Scholar] [CrossRef]
- Kaya, C.; Singh, I.; Boccaccini, A.R. Multi-walled carbon nanotube-reinforced hydroxyapatite layers on Ti6Al4V medical implants by electrophoretic deposition (EPD). Adv. Eng. Mater. 2008, 10, 131–138. [Google Scholar] [CrossRef]
- Van der Biest, O.O.; Vandeperre, L.J. Electrophoretic deposition of materials. Annu. Rev. Mater. Sci. 1999, 9, 327–352. [Google Scholar] [CrossRef]
- Sun, L.; Berndt, C.C.; Gross, K.A. Hydroxyapatite/polymer composite flame-sprayed coatings for orthopedic applications. J. Biomat. Sci. Polym. E 2002, 13, 977–990. [Google Scholar] [CrossRef]
- Shuai, C.; Nie, Y.; Gao, C.; Lu, H.; Hu, H.; Wen, X.; Peng, S. Poly(l-lactide acid) improves complete nano-hydroxyapatite bone scaffolds through the microstructure rearrangement. Electron. J. Biotechn. 2012, 15, 1–13. [Google Scholar]
- Alves Cardoso, D.; Jansen, J.A.; Leeuwenburgh, S.C.G. Synthesis and application of nanostructured calcium phosphate ceramics for bone regeneration. J. Biomed. Mater. Res. Part B 2012, 100B, 2316–2326. [Google Scholar] [CrossRef]
- Raschip, I.E.; Vasile, C.; Ciolacu, D.; Cazacu, G. Semi-interpenetrating polymer networks containing polysaccharides. I Xanthan/Lignin networks. High Perform. Polym. 2007, 19, 603–620. [Google Scholar] [CrossRef]
- Park, Y.; Doherty, W.O.S.; Halley, P.J. Developing lignin-based resin coatings and composites. Ind. Crop. Prod. 2008, 27, 163–167. [Google Scholar] [CrossRef]
- Mansur, H.S.; Mansur, A.A.P.; Bicallho, S.M.C.M. Lignin-hydroxyapatite/tricalcium phosphate biocomposites: SEM/EDX and FTIR characterization. Key Eng. Mater. 2005, 284–286, 745–748. [Google Scholar] [CrossRef]
- Martinez, M.M.; Pacheco, A.; Vargas, V.M. Histological evaluation of the biocompatibility and bioconduction of a hydroxyapatite-lignin compound inserted in rabbits shinbones. Rev. MVZ Córdoba 2009, 14, 1624–1632. [Google Scholar]
- Erakovic, S.; Veljovic, D.; Diouf, P.N.; Stevanovic, T.; Mitric, M.; Milonjic, S.; Miskovic-Stankovic, V.B. Electrophoretic deposition of biocomposite lignin/hydroxyapatite coatings on Titanium. Int. J. Chem. React. Eng. 2009, 7, A62. [Google Scholar]
- Baurhoo, B.; Ruiz-Feria, C.A.; Zhao, X. Purified lignin: Nutritional and health impacts on farm animals—A review. Anim. Feed Sci. Tech. 2008, 144, 175–184. [Google Scholar] [CrossRef]
- Gosselink, R.J.A.; Abächerli, A.; Semke, H.; Malherbe, R.; Käuper, P.; Nadif, A.; van Dam, J.E.G. Analytical protocols for characterisation of sulphur-free lignin. Ind. Crop. Prod. 2004, 19, 271–281. [Google Scholar] [CrossRef]
- Domínguez, J.C.; Oliet, M.; Alonso, M.V.; Gilarranz, M.A.; Rodríguez, F. Thermal stability and pyrolysis kinetics of organosolv lignins obtained from Eucalyptus globulus. Ind. Crop. Prod. 2008, 27, 150–156. [Google Scholar] [CrossRef]
- Pan, X.; Kadla, J.F.; Ehara, K.; Gilkes, N.; Saddler, J.N. Organosolv ethanol lignin from hybrid poplar as a radical scavenger: Relationship between lignin structure, extraction conditions, and antioxidant activity. J. Agric. Food Chem. 2006, 54, 5806–5813. [Google Scholar] [CrossRef]
- Wang, J.; de Boer, J.; de Groot, K. Preparation and characterization of electrodeposited calcium phosphate/chitosan coating on Ti6Al4V plates. J. Dent. Res. 2004, 83, 296–301. [Google Scholar] [CrossRef]
- Eraković, S.; Veljović, D.J.; Diouf, P.N.; Stevanović, T.; Mitrić, M.; Janaćković, D.J.; Matić, I.Z.; Juranić, Z.D.; Mišković-Stanković, V.B. The effect of lignin on the structure and characteristics of composite coatings electrodeposited on titanium. Prog. Org. Coat. 2012, 75, 275–283. [Google Scholar] [CrossRef]
- Eraković, S.; Janković, A.; Veljović, D.J.; Palcevskis, E.; Mitrić, M.; Stevanović, T.; Janaćković, D.J.; Mišković-Stanković, V. Corrosion stability and bioactivity in simulated body fluid of silver/hydroxyapatite and silver/hydroxyapatite/lignin coatings on titanium obtained by electrophoretic deposition. J. Phys. Chem. B 2013, 117, 1633–1643. [Google Scholar] [CrossRef]
- Eraković, S.; Janković, A.; Matić, I.Z.; Juranić, Z.D.; Vukašinoć-Sekulić, M.; Stevanović, T.; Mišković-Stanković, V.B. Investigation of silver impact on hydroxyapatite/lignin coatings electrodeposited on titanium. Mater. Chem. Phys. 2013, 142, 521–530. [Google Scholar] [CrossRef]
- Palcevskis, E.; Dindune, A.; Kuznecova, L.; Lipe, A.; Kanepe, Z. Granulated composite powders on basis of hydroxyapatite and plasma-processed zirconia and alumina nanopowders. Latvian J. Chem. 2005, 2, 128–138. [Google Scholar]
- Veljovic, D.J.; Jokic, B.; Petrovic, R.; Palcevskis, E.; Dindune, A.; Mihailescu, I.N.; Janackovic, D.J. Processing of dense nanostructured HAP ceramics by sintering and hot pressing. Ceram. Int. 2009, 35, 1407–1413. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Ohno, M.; Abe, T. Rapid colorimetric assay for the quantification of leukemia inhibitory factor (LIF) and interleukin-6 (IL-6). J. Immunol. Methods 1991, 145, 199–203. [Google Scholar] [CrossRef]
- Kwok, C.T.; Wong, P.K.; Cheng, F.T.; Man, H.C. Characterization and corrosion behavior of hydroxyapatite coatings on Ti6Al4V fabricated by electrophoretic deposition. Appl. Surf. Sci. 2009, 255, 6736–6744. [Google Scholar] [CrossRef]
- Landi, E.; Tampieri, A.; Celotti, G.; Sprio, S. Densification behaviour and mechanisms of synthetic hydroxyapatites. J. Eur. Ceram. Soc. 2000, 20, 2377–2387. [Google Scholar] [CrossRef]
- Mostafa, N.Y. Characterization, thermal stability and sintering of hydroxyapatite powders prepared by different routes. Mater. Chem. Phys. 2005, 94, 333–341. [Google Scholar] [CrossRef]
- Ma, J.; Liang, C.H.; Kong, L.B.; Wang, C. Colloidal characterization and electrophoretic deposition of hydroxyapatite on titanium substrate. J. Mater. Sci. Mater. Med. 2003, 14, 797–801. [Google Scholar]
- Ye, H.Z.; Liu, X.Y.; Hong, H.P. Characterization of sintered titanium/hydroxyapatite biocomposite using FTIR spectroscopy. J. Mater. Sci. Mater. Med. 2009, 20, 843–850. [Google Scholar] [CrossRef]
- Filiaggi, M.J.; Pilliar, R.M.; Coombs, N.A. Post-plasma-spraying heat treatment of the HA coating/Ti-6A1-4V implant system. J. Biomed. Mater. Res. 1993, 27, 191–198. [Google Scholar] [CrossRef]
- Yan, L.; Leng, Y.; Weng, L.-T. Characterization of chemical inhomogeneity in plasma-sprayed hydroxyapatite coatings. Biomaterials 2003, 24, 2585–2592. [Google Scholar] [CrossRef]
- Caroline Victoria, E.; Gnanam, F.D. Synthesis and characterisation of biphasic calcium phosphate. Trends Biomater. Artif. Organs 2002, 16, 12–14. [Google Scholar]
- El-Hendawy, A.-N.A. Variation in the FTIR spectra of a biomass under impregnation, carbonization and oxidation conditions. J. Anal. Appl. Pyrolysis 2006, 75, 159–166. [Google Scholar] [CrossRef]
- Scholze, B.; Meier, D. Characterization of the water-insoluble fraction from pyrolysis oil (pyrolytic lignin). Part I. PY–GC/MS, FTIR, and functional groups. J. Anal. Appl. Pyrolysis 2001, 60, 41–54. [Google Scholar] [CrossRef]
- Rodrigues, P.C.; Cantao, M.P.; Janissek, P.; Scarpa, P.C.N.; Mathias, A.L.; Ramos, L.P.; Gomes, M.A.B. Polyaniline/lignin blends: FTIR, MEV and electrochemical characterization. J. Eur. Polym. 2002, 38, 2213–2217. [Google Scholar] [CrossRef]
- Roop Kumar, R.; Wang, M. Modulus and hardness evaluations of sintered bioceramic powders and functionally graded bioactive composites by nano-indentation technique. Mater. Sci. Eng. A 2002, 338, 230–236. [Google Scholar] [CrossRef]
- Hahn, B.-D.; Lee, J.-M.; Park, D.-S.; Choi, J.-J.; Ryu, J.; Yoon, W.-H.; Lee, B.-K.; Shin, D.-S.; Kim, H.-E. Mechanical and in vitro biological performances of hydroxyapatite–carbon nanotube composite coatings deposited on Ti by aerosol deposition. Acta Biomater. 2009, 5, 3205–3214. [Google Scholar] [CrossRef]
- Kaya, C. Electrophoretic deposition of carbon nanotube-reinforced hydroxyapatite bioactive layers on Ti–6Al–4V alloys for biomedical applications. Ceram. Int. 2008, 34, 1843–1847. [Google Scholar] [CrossRef]
- Sjogren, G.; Sletten, G.; Dahl, J.E. Cytotoxicity of dental alloys, metals, and ceramics assessed by Millipore filter, agar overlay, and MTT tests. J. Prosthet. Dent. 2000, 84, 229–236. [Google Scholar] [CrossRef]
- Ugartondo, V.; Mitjans, M.; Pilar Vinardell, M. Comparative antioxidant and cytotoxic effects of lignins from different sources. Bioresour. Technol. 2008, 99, 6683–6687. [Google Scholar] [CrossRef]
- Sun, R.; Li, M.; Lu, Y.; Wang, A. Immersion behavior of hydroxyapatite (HA) powders before and after sintering. Mater. Charact. 2006, 56, 250–254. [Google Scholar] [CrossRef]
- Kim, H.-M.; Himeno, T.; Kokubo, T.; Nakamura, T. Process and kinetics of bonelike apatite formation on sintered hydroxyapatite in a simulated body fluid. Biomaterials 2005, 26, 4366–4373. [Google Scholar] [CrossRef]
- Ye, H.; Liu, X.Y.; Hong, H. Cladding of titanium/hydroxyapatite composites onto Ti6Al4V for load-bearing implant applications. Mater. Sci. Eng. C 2009, 29, 2036–2044. [Google Scholar] [CrossRef]
- Gu, Y.W.; Khor, K.A.; Cheang, P. Bone-like apatite layer formation on hydroxyapatite prepared by spark plasma sintering (SPS). Biomaterials 2004, 25, 4127–4134. [Google Scholar] [CrossRef]
- Pecheva, E.V.; Pramatarova, L.D.; Maitz, M.F.; Pham, M.T.; Kondyuirin, A.V. Kinetics of hydroxyapatite deposition on solid substrates modified by sequential implantation of Ca and P ions: Part I. FTIR and Raman spectroscopy study. Appl. Surf. Sci. 2004, 235, 176–181. [Google Scholar] [CrossRef]
- Mavropoulos, E.; Costa, A.M.; Costa, L.T.; Achete, C.A.; Mello, A.; Granjeiro, J.M.; Rossi, A.M. Adsorption and bioactivity studies of albumin onto hydroxyapatite surface. Colloids Surf. B 2011, 83, 1–9. [Google Scholar] [CrossRef]
- Liu, H.; Xi, P.; Xie, G.; Shi, Y.; Hou, F.; Huang, L.; Chen, F.; Zeng, Z.; Shao, C.; Wang, J. Simultaneous reduction and surface functionalization of graphene oxide for hydroxyapatite mineralization. J. Phys. Chem. C 2012, 116, 3334–3341. [Google Scholar]
- Stoch, A.; Jastrzebski, W.; Brozek, A.; Trybalska, B.; Cichocinska, M.; Szarawara, E. FTIR monitoring of the growth of the carbonate containing apatite layers from simulated and natural body fluids. J. Mol. Struct. 1999, 511–512, 287–294. [Google Scholar] [CrossRef]
- Wang, L.-N.; Luo, J.-L. Fabrication and formation of bioactive anodic zirconium oxide nanotubes containing presynthesized hydroxyapatite via alternative immersion method. Mater. Sci. Eng. C 2011, 31, 748–754. [Google Scholar] [CrossRef]
- Dong, Z.; Li, Y.; Zou, Q. Degradation and biocompatibility of porous nano-hydroxyapatite/polyurethane composite scaffold for bone tissue engineering. Appl. Surf. Sci. 2009, 255, 6087–6091. [Google Scholar] [CrossRef]
- Bai, X.; Sandukas, S.; Appleford, M.R.; Ong, J.L.; Rabiei, A. Deposition and investigation of functionally graded calcium phosphate coatings on titanium. Acta Biomater. 2009, 5, 3563–3572. [Google Scholar] [CrossRef]
- Popović, M.M.; Grgur, B.N.; Mišković-Stanković, V.B. Corrosion studies on electrochemically deposited PANI and PANI/epoxy coatings on mild steel in acid sulfate solution. Prog. Org. Coat. 2005, 52, 359–365. [Google Scholar] [CrossRef]
- Sluyters-Rehbach, M. Impedances of electrochemical systems: Terminology, nomenclature and representation—Part I: Cells with metal electrodes and liquid solutions. Pure Appl. Chem. 1994, 66, 1831–1891. [Google Scholar] [CrossRef]
- Jović, V.D.; Jović, B.M. EIS and differential capacitance measurements onto single crystal faces in different solutions: Part I: Ag (111) in 0. 01 M NaCl. J. Electroanal. Chem. 2003, 541, 1–11. [Google Scholar] [CrossRef]
- Orazem, M.E.; Tribollet, B. Electrochemical Impedance Spectroscopy; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008. [Google Scholar]
- Park, J.-H.; Lee, D.-Y.; Oh, K.-T.; Lee, Y.-K.; Kim, K.-M.; Kim, K.-N. Bioactivity of calcium phosphate coatings prepared by electrodeposition in a modified simulated body fluid. Mater. Lett. 2006, 60, 2573–2577. [Google Scholar] [CrossRef]
- Afzal, M.A.F.; Kalmodia, S.; Kesarwani, P.; Basu, B.; Balani, K. Bactericidal effect of silver-reinforced carbon nanotube and hydroxyapatite composites. J. Biomater. Appl. 2012, 27, 967–978. [Google Scholar]
- Chen, Y.; Zheng, X.; Xie, Y.; Ji, H.; Ding, C; Li, H.; Dai, K. Silver release from silver-containing hydroxyapatite coatings. Surf. Coat. Technol. 2010, 205, 1892–1896. [Google Scholar] [CrossRef]
- Jamuna-Thevi, K.; Bakar, S.A.; Ibrahim, S.; Shahab, N.; Toff, M.R.M. Quantification of silver ion release, in vitro cytotoxicity and antibacterial properties of nanostuctured Ag doped TiO2 coatings on stainless steel deposited by RF magnetron sputtering. Vacuum 2011, 86, 235–241. [Google Scholar] [CrossRef]
- Greulicha, C.; Diendorf, J.; Geßmanna, J.; Simonc, T.; Habijana, T.; Eggeler, G.; Schildhauer, T.A.; Epple, M.; Köller, M. Cell type-specific responses of peripheral blood mononuclear cells to silver nanoparticles. Acta Biomater. 2011, 7, 3505–3514. [Google Scholar] [CrossRef]
- Li, Y.; Ho, J.; Ooi, C.P. Antibacterial efficacy and cytotoxicity studies of copper (II) and titanium (IV) substituted hydroxyapatite nanoparticles. Mater. Sci. Eng. C 2010, 30, 1137–1144. [Google Scholar]
- Stanic, V.; Dimitrijevic, S.; Antic-Stankovic, J.; Mitric, M.; Jokic, B.; Plecas, I.B.; Raicevic, S. Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders. Appl. Surf. Sci. 2010, 256, 6083–6089. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Erakovic, S.; Jankovic, A.; Tsui, G.C.P.; Tang, C.-Y.; Miskovic-Stankovic, V.; Stevanovic, T. Novel Bioactive Antimicrobial Lignin Containing Coatings on Titanium Obtained by Electrophoretic Deposition. Int. J. Mol. Sci. 2014, 15, 12294-12322. https://doi.org/10.3390/ijms150712294
Erakovic S, Jankovic A, Tsui GCP, Tang C-Y, Miskovic-Stankovic V, Stevanovic T. Novel Bioactive Antimicrobial Lignin Containing Coatings on Titanium Obtained by Electrophoretic Deposition. International Journal of Molecular Sciences. 2014; 15(7):12294-12322. https://doi.org/10.3390/ijms150712294
Chicago/Turabian StyleErakovic, Sanja, Ana Jankovic, Gary C. P. Tsui, Chak-Yin Tang, Vesna Miskovic-Stankovic, and Tatjana Stevanovic. 2014. "Novel Bioactive Antimicrobial Lignin Containing Coatings on Titanium Obtained by Electrophoretic Deposition" International Journal of Molecular Sciences 15, no. 7: 12294-12322. https://doi.org/10.3390/ijms150712294
APA StyleErakovic, S., Jankovic, A., Tsui, G. C. P., Tang, C.-Y., Miskovic-Stankovic, V., & Stevanovic, T. (2014). Novel Bioactive Antimicrobial Lignin Containing Coatings on Titanium Obtained by Electrophoretic Deposition. International Journal of Molecular Sciences, 15(7), 12294-12322. https://doi.org/10.3390/ijms150712294