Robust Non-Wetting PTFE Surfaces by Femtosecond Laser Machining
Abstract
:1. Introduction
2. Results and Discussion
2.1. Femtosecond Laser Micromachining
2.1.1. Homogeneous Surface Patterns
2.1.2. Line Experiments
2.1.3. Heterogeneous Surface Patterns
2.2. Wetting
2.2.1. Drop Impact Experiments
2.2.2. Contact Angle Experiments
Liquid | Surface Tension | Coating | Surface Structure | Sessile CA (°) |
---|---|---|---|---|
Water | 72 mN/m | x | flat | 107 ± 2 |
fibrous | 151 ± 7 | |||
gold | flat | 77 ± 4 | ||
fibrous | 148 ± 6 | |||
Glycerol | 63 mN/m | x | flat | 96 ± 8 |
fibrous | 135 ± 6 | |||
gold | flat | 74 ± 6 | ||
fibrous | 123 ± 7 | |||
Ethylene glycol | 47 mN/m | x | flat | 78 ± 4 |
fibrous | 133 ± 7 | |||
gold | flat | 60 ± 5 | ||
fibrous | 97 ± 7 | |||
Propylene glycol | 36 mN/m | x | flat | 71 ± 4 |
fibrous | 124 ± 3 | |||
gold | flat | 48 ± 4 | ||
fibrous | 31 ± 4 |
2.3. Bioadhesion
3. Experimental Section
4. Conclusions
Supplementary Files
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interest
References
- Koch, K.; Barthlott, W. Superhydrophobic and superhydrophilic plant surfaces: An inspiration for biomimetic materials. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2009, 367, 1487–1509. [Google Scholar] [CrossRef]
- Barthlott, W.; Neinhuis, C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 1997, 202, 1–8. [Google Scholar] [CrossRef]
- Wagner, T.; Neinhuis, C.; Barthlott, W. Wettability and contaminability of insect wings as a function of their surface sculptures. Acta Zool. 1996, 77, 213–225. [Google Scholar] [CrossRef]
- Hu, H.-M.; Watson, J.A.; Cribb, B.W.; Watson, G.S. Fouling of nanostructured insect cuticle: Adhesion of natural and artificial contaminants. Biofouling 2011, 27, 1125–1137. [Google Scholar]
- Byun, D.; Hong, J.; Saputra Ko, J.H.; Lee, Y.J.; Park, H.C.; Byun, B.K.; Lukes, J.R. Wetting characteristics of insect wing surfaces. J. Bionic Eng. 2009, 6, 63–70. [Google Scholar]
- Gao, X.; Jiang, L. Biophysics: Water-repellent legs of water striders. Nature 2004, 432, 36–36. [Google Scholar] [CrossRef]
- Goodwyn, P.J.P.; Voigt, D.; Fujisaki, K. Skating and diving: Changes in functional morphology of the setal and microtrichial cover during ontogenesis in aquarius paludum fabricius (heteroptera, gerridae). J. Morphol. 2008, 269, 734–744. [Google Scholar]
- Baum, C.; Simon, F.; Meyer, W.; Fleischer, L.-G.; Siebers, D.; Kacza, J.; Seeger, J. Surface properties of the skin of the pilot whale globicephala melas. Biofouling 2003, 19, 181–186. [Google Scholar] [CrossRef]
- Prowse, M.S.; Wilkinson, M.; Puthoff, J.B.; Mayer, G.; Autumn, K. Effects of humidity on the mechanical properties of gecko setae. Acta Biomater. 2011, 7, 733–738. [Google Scholar] [CrossRef]
- Barthlott, W.; Wiersch, S.; Čolić, Z.; Koch, K. Classification of trichome types within species of the water fern salvinia, and ontogeny of the egg-beater trichomes. Botany 2009, 87, 830–836. [Google Scholar] [CrossRef]
- Cassie, A.B.D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551. [Google Scholar] [CrossRef]
- Wenzel, R.N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988–994. [Google Scholar] [CrossRef]
- Guo, Z.; Liu, W.; Su, B.-L. Superhydrophobic surfaces: From natural to biomimetic to functional. J. Colloid Interface Sci. 2011, 353, 335–355. [Google Scholar] [CrossRef]
- Lu, C.; Xie, Y.; Yang, Y.; Cheng, M.M.C.; Koh, C.-G.; Bai, Y.; Lee, L.J.; Juang, Y.-J. New valve and bonding designs for microfluidic biochips containing proteins. Anal. Chem. 2006, 79, 994–1001. [Google Scholar]
- Gentile, F.; Coluccio, M.L.; Coppedè, N.; Mecarini, F.; Das, G.; Liberale, C.; Tirinato, L.; Leoncini, M.; Perozziello, G.; Candeloro, P.; et al. Superhydrophobic surfaces as smart platforms for the analysis of diluted biological solutions. ACS Appl. Mater. Interfaces 2012, 4, 3213–3224. [Google Scholar] [CrossRef]
- Gentile, F.; Coluccio, M.L.; Accardo, A.; Asande, M.; Cojoc, G.; Mecarini, F.; Das, G.; Liberale, C.; de Angelis, F.; Candeloro, P.; et al. Nanoporous- micropatterned- superhydrophobic surfaces as harvesting agents for few low molecular weight molecules. Microelectron. Eng. 2011, 88, 1749–1752. [Google Scholar] [CrossRef]
- Sousa, M.P.; Mano, J.F. Superhydrophobic paper in the development of disposable labware and lab-on-paper devices. ACS Appl. Mater. Interfaces 2013, 5, 3731–3737. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Zhang, D.; Yang, Q.; Yong, J.; Du, G.; Si, J.; Yun, F.; Hou, X. Bioinspired wetting surface via laser microfabrication. ACS Appl. Mater. Interfaces 2013, 5, 6777–6792. [Google Scholar] [CrossRef]
- Shirk, M.D.; Molian, P.A. A review of ultrashort pulsed laser ablation of materials. J. Laser Appl. 1998, 10, 18–28. [Google Scholar] [CrossRef]
- Cheng, J.; Liu, C.-S.; Shang, S.; Liu, D.; Perrie, W.; Dearden, G.; Watkins, K. A review of ultrafast laser materials micromachining. Opt. Laser Technol. 2013, 46, 88–102. [Google Scholar] [CrossRef]
- Lippert, T.; Dickinson, J.T. Chemical and spectroscopic aspects of polymer ablation: Special features and novel directions. Chem. Rev. 2003, 103, 453–486. [Google Scholar] [CrossRef]
- Küper, S.; Stuke, M. Ablation of polytetrafluoroethylene (teflon) with femtosecond uv excimer laser pulses. Appl. Phys. Lett. 1989, 54, 4–6. [Google Scholar] [CrossRef]
- Kumagai, H.; Midorikawa, K.; Toyoda, K.; Nakamura, S.; Okamoto, T.; Obara, M. Ablation of polymer films by a femtosecond high-peak-power ti:Sapphire laser at 798 nm. Appl. Phys. Lett. 1994, 65, 1850–1852. [Google Scholar] [CrossRef]
- Adhi, K.P.; Owings, R.L.; Railkar, T.A.; Brown, W.D.; Malshe, A.P. Femtosecond ultraviolet (248 nm) excimer laser processing of teflon (ptfe). Appl. Surf. Sci. 2003, 218, 17–23. [Google Scholar]
- Hashida, M.; Mishima, H.; Tokita, S.; Sakabe, S. Non-thermal ablation of expanded polytetrafluoroethylene with an intense femtosecond-pulse laser. Opt. Express 2009, 17, 13116–13121. [Google Scholar] [CrossRef]
- Wang, Z.B.; Hong, M.H.; Lu, Y.F.; Wu, D.J.; Lan, B.; Chong, T.C. Femtosecond laser ablation of polytetrafluoroethylene (teflon) in ambient air. J. Appl. Phys. 2003, 93, 6375–6380. [Google Scholar] [CrossRef]
- Huang, M.Z.; Ming, Z. Femtosecond laser on the surface of PTFE. J. Funct. Mater. 2010, 41, 36. [Google Scholar]
- Cassady, A.I.; Hidzir, N.M.; Grøndahl, L. Enhancing expanded poly(tetrafluoroethylene) (ePTFE) for biomaterials applications. J. Appl. Polym. Sci. 2014, 131. [Google Scholar] [CrossRef]
- Wikol, M.; Hartmann, B.; Brendle, J.; Crane, M.; Beuscher, U.; Brake, J.; Shickel, T. Expanded polytetrafluoroethylene membranes and their applications. In Filtration and Purification in the Biopharmaceutical Industry, 2nd ed.; Jornitz, M.W., Meltzer, T.H., Eds.; Informa Healthcare USA, Inc.: New York, NY, USA, 2008; pp. 619–640. [Google Scholar]
- Lehr, J.; de Marchi, F.; Matus, L.; MacLeod, J.; Rosei, F.; Kietzig, A.-M. The influence of the gas environment on morphology and chemical composition of surfaces micro-machined with a femtosecond laser. Appl. Surf. Sci. 2014, unpublished work. [Google Scholar]
- Lehr, J.; Kietzig, A.-M. Production of homogenous micro-structures by femtosecond laser micro-machining. Opt. Lasers Eng. 2014, 57, 121–129. [Google Scholar] [CrossRef]
- Guo, Z.; Liu, W. Biomimic from the superhydrophobic plant leaves in nature: Binary structure and unitary structure. Plant Sci. 2007, 172, 1103–1112. [Google Scholar] [CrossRef]
- Ranella, A.; Barberoglou, M.; Bakogianni, S.; Fotakis, C.; Stratakis, E. Tuning cell adhesion by controlling the roughness and wettability of 3d micro/nano silicon structures. Acta Biomater. 2010, 6, 2711–2720. [Google Scholar] [CrossRef]
- Alves, N.M.; Shi, J.; Oramas, E.; Santos, J.L.; Tomás, H.; Mano, J.F. Bioinspired superhydrophobic poly(l-lactic acid) surfaces control bone marrow derived cells adhesion and proliferation. J. Biomed. Mater. Res. Part A 2009, 91A, 480–488. [Google Scholar] [CrossRef]
- Al-Kadi, O.S.; Watson, D. Texture analysis of aggressive and nonaggressive lung tumor ce ct images. IEEE Trans. Biomed. Eng. 2008, 55, 1822–1830. [Google Scholar] [CrossRef]
- Mandelbrot, B.B. The Fractal Geometry of Nature; W. H. Freeman and Company: New York, NY, USA, 1983; pp. 14–15. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Liang, F.; Lehr, J.; Danielczak, L.; Leask, R.; Kietzig, A.-M. Robust Non-Wetting PTFE Surfaces by Femtosecond Laser Machining. Int. J. Mol. Sci. 2014, 15, 13681-13696. https://doi.org/10.3390/ijms150813681
Liang F, Lehr J, Danielczak L, Leask R, Kietzig A-M. Robust Non-Wetting PTFE Surfaces by Femtosecond Laser Machining. International Journal of Molecular Sciences. 2014; 15(8):13681-13696. https://doi.org/10.3390/ijms150813681
Chicago/Turabian StyleLiang, Fang, Jorge Lehr, Lisa Danielczak, Richard Leask, and Anne-Marie Kietzig. 2014. "Robust Non-Wetting PTFE Surfaces by Femtosecond Laser Machining" International Journal of Molecular Sciences 15, no. 8: 13681-13696. https://doi.org/10.3390/ijms150813681
APA StyleLiang, F., Lehr, J., Danielczak, L., Leask, R., & Kietzig, A.-M. (2014). Robust Non-Wetting PTFE Surfaces by Femtosecond Laser Machining. International Journal of Molecular Sciences, 15(8), 13681-13696. https://doi.org/10.3390/ijms150813681