Modulation of Selectin-Mediated Adhesion of Flowing Lymphoma and Bone Marrow Cells by Immobilized SDF-1
Abstract
:1. Introduction
2. Results and Discussion
2.1. U937 and KG1a Express PSGL-1 on the Cell Surface
2.2. Differential Localization of CXCR4 Expression in U937 and KG1a
2.3. P-Selectin and SDF-1 Have a Synergistic Effect on Rolling Velocity
2.4. Higher Concentrations of SDF-1 Reduce the Rolling Velocity of U937 Cells
2.5. Flux Increases with Increasing Concentrations of Immobilized SDF-1
2.6. SDF-1 Significantly Reduces the Rolling Velocity of LDBMC
3. Experimental Section
3.1. Cell Culture
3.2. Low Density Bone Marrow Cells
3.3. CXCR4 and PSGL-1 Expression Studies
3.4. Preparation of Microtubes
3.5. Microtube Flow Experiment
3.6. Data Acquisition
3.7. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Orr, F.W.; Wang, H.H.; Lafrenie, R.M.; Scherbarth, S.; Nance, D.M. Interactions between cancer cells and the endothelium in metastasis. J. Pathol. 2000, 190, 310–329. [Google Scholar] [CrossRef]
- Orr, F.W.; Wang, H.H. Tumor cell interactions with the microvasculature: A rate-limiting step in metastasis. Surg. Oncol. Clin. N. Am. 2001, 10, 357–381. [Google Scholar]
- Yang, R.; Pu, J.; Guo, J.; Xu, F.; Zhang, Z.; Zhao, Y.; Zhang, X.; Gu, S.; Chang, C.; Li, X. The biological behavior of SDF-1/CXCR4 in patients with myelodysplastic syndrome. Med. Oncol. 2012, 29, 1202–1208. [Google Scholar] [CrossRef]
- Fierro, F.A.; Brenner, S.; Oelschlaegel, U.; Jacobi, A.; Knoth, H.; Ehninger, G.; Illmer, T.; Bornhauser, M. Combining SDF-1/CXCR4 antagonism and chemotherapy in relapsed acute myeloid leukemia. Leukemia 2009, 23, 393–396. [Google Scholar] [CrossRef]
- Taichman, R.S.; Cooper, C.; Keller, E.T.; Pienta, K.J.; Taichman, N.S.; McCauley, L.K. Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res. 2002, 62, 1832–1837. [Google Scholar]
- Sison, E.A.; Brown, P. The bone marrow microenvironment and leukemia: Biology and therapeutic targeting. Expert Rev. Hematol. 2011, 4, 271–283. [Google Scholar] [CrossRef]
- Tavor, S.; Petit, I.; Porozov, S.; Avigdor, A.; Dar, A.; Leider-Trejo, L.; Shemtov, N.; Deutsch, V.; Naparstek, E.; Nagler, A.; et al. CXCR4 regulates migration and development of human acute myelogenous leukemia stem cells in transplanted NOD/SCID mice. Cancer Res. 2004, 64, 2817–2824. [Google Scholar] [CrossRef]
- Zepeda-Moreno, A.; Saffrich, R.; Walenda, T.; Hoang, V.T.; Wuchter, P.; Sanchez-Enriquez, S.; Corona-Rivera, A.; Wagner, W.; Ho, A.D. Modeling SDF-1-induced mobilization in leukemia cell lines. Exp. Hematol. 2012, 40, 666–674. [Google Scholar] [CrossRef]
- Kijowski, J.; Baj-Krzyworzeka, M.; Majka, M.; Reca, R.; Marquez, L.A.; Christofidou-Solomidou, M.; Janowska-Wieczorek, A.; Ratajczak, M.Z. The SDF-1-CXCR4 axis stimulates VEGF secretion and activates integrins but does not affect proliferation and survival in lymphohematopoietic cells. Stem Cells 2001, 19, 453–466. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Malik, M.; Tomkowicz, B.E.; Collman, R.G.; Ptasznik, A. BCR-ABL1 alters SDF-1α-mediated adhesive responses through the β2 integrin LFA-1 in leukemia cells. Blood 2008, 111, 5182–5186. [Google Scholar] [CrossRef]
- Kucia, M.; Jankowski, K.; Reca, R.; Wysoczynski, M.; Bandura, L.; Allendorf, D.J.; Zhang, J.; Ratajczak, J.; Ratajczak, M.Z. CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion. J. Mol. Histol. 2004, 35, 233–245. [Google Scholar]
- Redondo-Muñoz, J.; Escobar-Díaz, E.; Samaniego, R.; Terol, M.J.; García-Marco, J.A.; García-Pardo, A. MMP-9 in B-cell chronic lymphocytic leukemia is up-regulated by α4β1 integrin or CXCR4 engagement via distinct signaling pathways, localizes to podosomes, and is involved in cell invasion and migration. Blood 2006, 108, 3143–3151. [Google Scholar] [CrossRef]
- Tavor, S.; Eisenbach, M.; Jacob-Hirsch, J.; Golan, T.; Petit, I.; Benzion, K.; Kay, S.; Baron, S.; Amariglio, N.; Deutsch, V.; et al. The CXCR4 antagonist AMD3100 impairs survival of human aml cells and induces their differentiation. Leukemia 2008, 22, 2151–5158. [Google Scholar] [CrossRef]
- Ley, K.; Gaehtgens, P.; Fennie, C.; Singer, M.S.; Lasky, L.A.; Rosen, S.D. Lectin-like cell-adhesion molecule-1 mediates leukocyte rolling in mesenteric venules in vivo. Blood 1991, 77, 2553–2555. [Google Scholar]
- Alon, R.; Rossiter, H.; Wang, X.; Springer, T.A.; Kupper, T.S. Distinct cell surface ligands mediate T lymphocyte attachment and rolling on P and E selectin under physiological flow. J. Cell Biol. 1994, 127, 1485–1495. [Google Scholar] [CrossRef]
- Springer, T.A. Traffic signals for lymphocyte recirculation and leukocyte emigration: The multistep paradigm. Cell 1994, 76, 301–314. [Google Scholar] [CrossRef]
- Peled, A.; Grabovsky, V.; Habler, L.; Sandbank, J.; Arenzana-Seisdedos, F.; Petit, I.; Ben-Hur, H.; Lapidot, T.; Alon, R. The chemokine SDF-1 stimulates integrin-mediated arrest of CD34+ cells on vascular endothelium under shear flow. J. Clin. Investig. 1999, 104, 1199–1211. [Google Scholar] [CrossRef]
- Cao, T.M.; Takatani, T.; King, M.R. Effect of extracellular pH on selectin adhesion: Theory and experiment. Biophys. J. 2013, 104, 292–299. [Google Scholar] [CrossRef]
- Geng, Y.; Marshall, J.R.; King, M.R. Glycomechanics of the metastatic cascade: Tumor cell-endothelial cell interactions in the circulation. Ann. Biomed. Eng. 2012, 40, 790–805. [Google Scholar] [CrossRef]
- Weston, B.W.; Hiller, K.M.; Mayben, J.P.; Manousos, G.A.; Bendt, K.M.; Liu, R.; Cusack, J.C., Jr. Expression of human α(1,3)fucosyltransferase antisense sequences inhibits selectin-mediated adhesion and liver metastasis of colon carcinoma cells. Cancer Res. 1999, 59, 2127–2135. [Google Scholar]
- King, M.R.; Western, L.; Rana, K.; Liesveld, J.L. Biomolecular surfaces for the capture and reprogramming of circulating tumor cells. J. Bionic Eng. 2009, 6, 311–317. [Google Scholar] [CrossRef]
- Hughes, A.D.; King, M.R. Use of naturally occurring halloysite nanotubes for enhanced capture of flowing cells. Langmuir 2010, 26, 12155–12164. [Google Scholar] [CrossRef]
- Hughes, A.D.; Mattison, J.; Powderly, J.D.; Greene, B.T.; King, M.R. Rapid isolation of viable circulating tumor cells from patient blood samples. J. Vis. Exp. 2012, 64, e4248. [Google Scholar]
- Wojciechowski, J.C.; Narasipura, S.D.; Charles, N.; Mickelsen, D.; Rana, K.; Blair, M.L.; King, M.R. Capture and enrichment of CD34-positive haematopoietic stem and progenitor cells from blood circulation using P-selectin in an implantable device. Br. J. Haematol. 2008, 140, 673–681. [Google Scholar] [CrossRef]
- Narasipura, S.D.; Wojciechowski, J.C.; Charles, N.; Liesveld, J.L.; King, M.R. P-selectin coated microtube for enrichment of CD34+ hematopoietic stem and progenitor cells from human bone marrow. Clin. Chem. 2008, 54, 77–85. [Google Scholar]
- Kappelmayer, J.; Kiss, A.; Karaszi, E.; Veszpremi, A.; Jako, J.; Kiss, C. Identification of P-selectin glycoprotein ligand-1 as a useful marker in acute myeloid leukaemias. Br. J. Haematol. 2001, 115, 903–909. [Google Scholar] [CrossRef]
- Bistrian, R.; Dorn, A.; Mobest, D.C.C.; Ruster, B.; Ludwig, R.; Scheele, J.; Seifried, E.; Martin, H.; Henschler, R. Shear stress-mediated adhesion of acute myeloid leukemia and KG-1 cells to endothelial cells involves functional P-selectin. Stem Cells Dev. 2009, 18, 1235–1241. [Google Scholar] [CrossRef]
- DiVietro, J.A.; Brown, D.C.; Sklar, L.A.; Larson, R.S.; Lawrence, M.B. Immobilized stromal cell-derived factor-1α triggers rapid VLA-4 affinity increases to stabilize lymphocyte tethers on VCAM-1 and subsequently initiate firm adhesion. J. Immunol. 2007, 178, 3903–3911. [Google Scholar] [CrossRef]
- Cuchiara, M.L.; Horter, K.L.; Banda, O.A.; West, J.L. Covalent immobilization of stem cell factor and stromal derived factor 1α for in vitro culture of hematopoietic progenitor cells. Acta Biomater. 2013, 9, 9258–9269. [Google Scholar] [CrossRef]
- Davnall, F.; Yip, C.S.; Ljungqvist, G.; Selmi, M.; Ng, F.; Sanghera, B.; Ganeshan, B.; Miles, K.A.; Cook, G.J.; Goh, V. Assessment of tumor heterogeneity: An emerging imaging tool for clinical practice? Insights Imaging 2012, 3, 573–589. [Google Scholar] [CrossRef]
- Charles, N.; Liesveld, J.L.; King, M.R. Investigating the feasibility of stem cell enrichment mediated by immobilized selectins. Biotechnol. Prog. 2007, 23, 1463–1472. [Google Scholar] [CrossRef]
- Ball, C.J.; King, M.R. Role of c-Abl in L-selectin shedding from the neutrophil surface. Blood Cells Mol. Dis. 2011, 46, 246–251. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Hedges, E.A.; Hughes, A.D.; Liesveld, J.L.; King, M.R. Modulation of Selectin-Mediated Adhesion of Flowing Lymphoma and Bone Marrow Cells by Immobilized SDF-1. Int. J. Mol. Sci. 2014, 15, 15061-15072. https://doi.org/10.3390/ijms150915061
Hedges EA, Hughes AD, Liesveld JL, King MR. Modulation of Selectin-Mediated Adhesion of Flowing Lymphoma and Bone Marrow Cells by Immobilized SDF-1. International Journal of Molecular Sciences. 2014; 15(9):15061-15072. https://doi.org/10.3390/ijms150915061
Chicago/Turabian StyleHedges, Elizabeth A., Andrew D. Hughes, Jane L. Liesveld, and Michael R. King. 2014. "Modulation of Selectin-Mediated Adhesion of Flowing Lymphoma and Bone Marrow Cells by Immobilized SDF-1" International Journal of Molecular Sciences 15, no. 9: 15061-15072. https://doi.org/10.3390/ijms150915061
APA StyleHedges, E. A., Hughes, A. D., Liesveld, J. L., & King, M. R. (2014). Modulation of Selectin-Mediated Adhesion of Flowing Lymphoma and Bone Marrow Cells by Immobilized SDF-1. International Journal of Molecular Sciences, 15(9), 15061-15072. https://doi.org/10.3390/ijms150915061