Mechanical and Anticorrosive Properties of Graphene/Epoxy Resin Composites Coating Prepared by in-Situ Method
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation of GNS-Based Epoxy Resin Coating
2.2. Mechanical Properties of GNS-Based Epoxy Resin Coating
2.2.1. Nanoindentation Behavior
Loading | Er (GPa) | Young’s Modulus (GPa) | Hardness (GPa) | Plasticity Index (%) |
---|---|---|---|---|
0 | 2.90 | 2.44 | 0.17 | 43.4 |
0.1% | 3.10 | 2.60 | 0.19 | 43.1 |
0.4% | 4.33 | 3.64 | 0.41 | 34.4 |
0.7% | 6.69 | 5.62 | 0.51 | 31.7 |
2.2.2. Plasticity Index
2.3. Thermal Properties of GNS-Based Epoxy Resin Coating
2.4. Protective Properties of GNS-Based Epoxy Resin Coating
Loading | Ecorr (mV) | Icorr (μA/cm2) | Rcorr (mm/year) |
---|---|---|---|
0 | −900 | 0.75 | 1.3 |
1.0% | −47 | 0.69 | 1.2 |
4% | −408 | 0.48 | 0.85 |
7% | −957 | 0.18 | 0.3 |
3. Experimental Section
3.1. Materials
3.2. Preparation of GNS-Based Epoxy Resin Coating
3.3. Mechanics Measurement of GNS-Based Epoxy Resin Coating by Nanoindentation
3.4. Corrosion Measurements
3.4.1. Preparation of Sample Used in Corrosion Measurements
3.4.2. Electrochemical Measurements
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Jiang, T.W.; Kuila, T.; Kim, N.H.; Ku, B.-C.; Lee, J.H. Enhanced mechanical properties of silanized silica nanoparticle attached graphene oxide/epoxy composites. Compos. Sci. Technol. 2013, 79, 115–125. [Google Scholar] [CrossRef]
- Prasai, D.; Carlos Tuberquia, J.; Harl, R.R.; Jennings, G.K.; Bolotin, K.I. Correction to graphene: Corrosion-Inhibiting coating. ACS Nano 2012, 6, 1102–1108. [Google Scholar] [CrossRef] [PubMed]
- Nayak, P.K.; Hsu, C.J.; Wang, S.C.; Sung, J.C.; Huang, J.L. Graphene coated Ni films: A protective coating. Thin Solid Films 2013, 529, 312–316. [Google Scholar] [CrossRef]
- Liu, K.H.; Chen, S.L.; Luo, Y.F.; Jia, D.M.; Gao, H.; Hu, G.J.; Liu, L. Edge-functionalized graphene as reinforcement of epoxy-based conductive composite for electrical interconnects. Compos. Sci. Technol. 2013, 88, 84–91. [Google Scholar] [CrossRef]
- Qian, X.D.; Song, L.; Yu, B.; Wang, B.B.; Yuan, B.H.; Shi, Y.Q.; Hu, Y.; Yuen, R.K.K. Novel organic-inorganic flame retardants containing exfoliated graphene: Preparation and their performance on the flame retardancy of epoxy resins. J. Mater. Chem. A 2013, 1, 6822–6830. [Google Scholar] [CrossRef]
- Chatterjee, S.; Wang, J.W.; Kuo, W.S.; Tai, N.H.; Salzmann, C.; Li, W.L.; Hollertz, R.; Nüesch, F.A.; Chu, B.T.T. Mechanical reinforcement and thermal conductivity in expanded graphene nanoplatelets reinforced epoxy composites. Chem. Phys. Lett. 2012, 531, 6–10. [Google Scholar] [CrossRef]
- Wang, X.; Xing, W.Y.; Zhang, P.; Song, L.; Yang, H.Y.; Hua, Y. Covalent functionalization of graphene with organosilane and its use as a reinforcement in epoxy composites. Compos. Sci. Technol. 2012, 72, 737–743. [Google Scholar] [CrossRef]
- Prolongo, S.G.; Jimenez-Suarez, A.; Moriche, R.; Ure, A. In situ processing of epoxy composites reinforced with graphene nanoplatelets. Compos. Sci. Technol. 2013, 86, 185–191. [Google Scholar] [CrossRef]
- Shen, X.-J.; Liu, Y.; Xiao, H.-M.; Feng, Q.-P.; Yu, Z.-Z.; Fu, S.-Y. The reinforcing effect of graphene nanosheets on the cryogenic mechanical properties of epoxy resins. Compos. Sci. Technol. 2012, 72, 1581–1587. [Google Scholar] [CrossRef]
- Zandiatashbar, A.; Picu, R.C.; Koratkar, N. Mechanical behavior of epoxy-graphene platelets Nanocomposites. J. Eng. Mater. Technol. 2012, 134. [Google Scholar] [CrossRef]
- Wajid, A.S.; Tanvir Ahmed, H.S.; Das, S.; Irin, F.; Jankowski, A.F.; Green, M.J. High-performance pristine graphene/epoxy composites with enhanced mechanical and electrical properties. Macromol. Mater. Eng. 2013, 298, 339–347. [Google Scholar] [CrossRef]
- Chang, K.-C.; Hsu, M.-H.; Lu, H.-I.; Lai, M.-C.; Liu, P.-J.; Hsu, C.-H.; Ji, W.-F.; Chuang, T.-L.; Wei, Y.; Yeh, J.-M.; et al. Room-temperature cured hydrophobic epoxy/graphene composites as corrosion inhibitor for cold-rolled steel. Carbon 2014, 66, 144–153. [Google Scholar] [CrossRef]
- Mirabedini, S.M.; Kiamanesh, A. The effect of micro and nano-sized particles on mechanical and adhesion properties of a clear polyester powder coating. Prog. Org. Coat. 2013, 76, 1625–1632. [Google Scholar] [CrossRef]
- Verker, R.; Grossman, E.; Eliaz, N. Erosion of POSS-polyimide films under hypervelocity impact and atomic oxygen: The role of mechanical properties at elevated temperatures. Acta Mater. 2009, 57, 1112–1119. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Chi, H.J.; Zhang, W.H.; Sun, Y.Y.; Liang, Q.; Gu, Y.; Jing, R.Y. Highly efficient adsorption of copper ions by a PVP-reduced graphene oxide based on a new adsorptions mechanism. Nano-Micro Lett. 2014, 6, 80–87. [Google Scholar] [CrossRef]
- Shokrieh, M.M.; Hosseinkhani, M.R.; Naimi-Jamal, M.R.; Tourani, H. Nanoindentation and nanoscratch investigations on graphene-based nanocomposites. Polym. Test. 2013, 32, 45–51. [Google Scholar] [CrossRef]
- Poveda, R.; Gupta, N.; Porfiri, M. Poisson’s ratio of hollow particle filled composites. Mater. Lett. 2010, 64, 2360–2362. [Google Scholar] [CrossRef]
- Frank, I.W.; Tanenbauma, D.M.; vander Zande, A.M.; McEuen, P.L. Mechanical properties of suspended graphene sheets. J. Vac. Sci. Technol. B 2007, 25, 2558–2561. [Google Scholar] [CrossRef]
- Marianetti, C.A.; Yevick, H.G. Failure mechanisms of graphene under tension. Phys. Rev. Lett. 2010, 105. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.D.; Guo, K.K. Reinforcing epoxy resin through covalent integration of functionalized graphene nanosheets. Polym. Adv. Technol. 2014, 25, 418–423. [Google Scholar] [CrossRef]
- Zandiatashbar, A.; Picu, C.R.; Koratkar, N. Nanocomposite creep: Control of epoxy creep using graphene. Small 2012, 8. [Google Scholar] [CrossRef] [PubMed]
- Tehrani, M.; Safdari, M.; Al-Haik, M.S. Nanocharacterization of creep behavior of multiwall carbon nanotubes/epoxy nanocomposite. Int. J. Plast. 2011, 27, 887–901. [Google Scholar] [CrossRef]
- Yao, Z.; Wu, D.F.; Chen, C.; Zhang, M. Creep behavior of polyurethane nanocomposites with carbon nanotubes. Compos. Part A 2013, 50, 65–72. [Google Scholar] [CrossRef]
- Devasenapathi, V.; Monish, P.; Balasivanandha Prabu, S. Experimental investigation of tensile creep behavior of polymer nanocomposites. Int. J. Adv. Manuf. Technol. 2009, 44, 412–418. [Google Scholar] [CrossRef]
- Shiu, S.-C.; Tsai, J.-L. Characterizing thermal and mechanical properties of graphene/epoxy nanocomposites. Compos. Part B 2014, 56, 691–697. [Google Scholar] [CrossRef]
- Huang, X.Y.; Zhi, C.Y.; Jiang, P.K. Toward effective synergetic effects from graphene nanoplatelets and carbon nanotubes on thermal conductivity of ultrahigh volume fraction nanocarbon epoxy composites. J. Phys. Chem. C 2012, 116, 23812–23820. [Google Scholar] [CrossRef]
- Yang, S.-Y.; Lin, W.-N.; Huang, Y.-L.; Tien, H.-W.; Wang, J.-Y.; Ma, C.-C.M.; Li, S.-M.; Wang, Y.-S. Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites. Carbon 2011, 49, 793–803. [Google Scholar] [CrossRef]
- Hang, T.T.X.; Truc, T.A.; Nam, T.H.; Oanh, V.K.; Jorcin, J.-B.; Pébère, N. Corrosion protection of carbon steel by an epoxy resin containing organically modified clay. Surf. Coat. Technol. 2007, 201, 7408–7415. [Google Scholar] [CrossRef] [Green Version]
- Zaferani, S.H.; Zaarei, D.; Danaee, I.; Mehrabian, N. The effect of organosilane on corrosion resistance of epoxy coating containing cerium. J. Adhes. Sci. Technol. 2014, 28, 151–160. [Google Scholar] [CrossRef]
- Ranji, R.; Zakeri, A.H. Mechanical properties and corrosion resistance of normal strength and high strength steels in chloride solution. J. Nav. Archit. Mar. Eng. 2010, 7, 94–100. [Google Scholar]
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing Indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Yeh, J.M.; Huang, H.Y.; Chen, C.L.; Su, W.F.; Yu, Y.H. Siloxane-modified epoxy resin-clay nanocomposite coatings with advanced anticorrosive properties prepared by a solution dispersion approach. Surf. Coat. Technol. 2006, 200, 2753–2763. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Zhang, W.; Li, D.; Sun, Y.; Wang, Z.; Hou, C.; Chen, L.; Cao, Y.; Liu, Y. Mechanical and Anticorrosive Properties of Graphene/Epoxy Resin Composites Coating Prepared by in-Situ Method. Int. J. Mol. Sci. 2015, 16, 2239-2251. https://doi.org/10.3390/ijms16012239
Zhang Z, Zhang W, Li D, Sun Y, Wang Z, Hou C, Chen L, Cao Y, Liu Y. Mechanical and Anticorrosive Properties of Graphene/Epoxy Resin Composites Coating Prepared by in-Situ Method. International Journal of Molecular Sciences. 2015; 16(1):2239-2251. https://doi.org/10.3390/ijms16012239
Chicago/Turabian StyleZhang, Zhiyi, Wenhui Zhang, Diansen Li, Youyi Sun, Zhuo Wang, Chunling Hou, Lu Chen, Yang Cao, and Yaqing Liu. 2015. "Mechanical and Anticorrosive Properties of Graphene/Epoxy Resin Composites Coating Prepared by in-Situ Method" International Journal of Molecular Sciences 16, no. 1: 2239-2251. https://doi.org/10.3390/ijms16012239
APA StyleZhang, Z., Zhang, W., Li, D., Sun, Y., Wang, Z., Hou, C., Chen, L., Cao, Y., & Liu, Y. (2015). Mechanical and Anticorrosive Properties of Graphene/Epoxy Resin Composites Coating Prepared by in-Situ Method. International Journal of Molecular Sciences, 16(1), 2239-2251. https://doi.org/10.3390/ijms16012239