An Updated Review on the Genetics of Primary Open Angle Glaucoma
Abstract
:1. Introduction
2. Epidemiology of POAG
3. Genotype-Phenotype Association in POAG
Studies | Gene/Chromosome | SNP ID | Population * | Study Type | Study Size (POAG/Controls) * | OR/Beta, p Value | Any Clinical Association * |
---|---|---|---|---|---|---|---|
GWAS Studies | |||||||
Nakano et al., 2009 [38] | PLXDC2 (10p12.31) | rs7081455 | D: Japan R: Japan | GWAS | D: 1519 R: 857 | OR = 1.49, p = 1 × 10−5 | – |
TMTC2 (12q21.31) | rs7961953 | OR = 1.37, p = 7 × 10−5 | – | ||||
ZP4 (1q43) | rs547984 | OR = 1.34, p = 6 × 10−5 | – | ||||
rs540782 | OR =1.34, p = 6 × 10−5 | ||||||
rs693421 | OR = 1.35, p = 4 × 10−5 | ||||||
rs2499601 | OR = 1.33, p = 9 × 10−5 | ||||||
Meguro et al., 2010 [39] | SRBD1 (2p21) | rs3213787 | Japanese | GWAS | D: 305 R: 355 | OR = 2.80, p = 2.5 × 10−9 | Associated with NPG |
ELOVL5 (6p12.1) | rs735860 | – | – | – | OR = 1.69, p = 4.1 × 10−6 | Associated with NPG | |
Thorleifsson et al., 2010 [40] | CAV1/CAV2 (7q31.1) | rs4236601 | D: Iceland R1: SW, UK, AU R2: China | GWAS | D: 36,140 R1: 4239 R2: 879 | OR = 1.36, p = 5 × 10−10 | Nominal association was observed for increased IOP (p = 0.034) |
rs1052990 | OR = 1.32, p = 1.1 × 10−9 | – | |||||
Burdon et al., 2011 [41] | CDKN2B-AS (9p21.3) | rs4977756 | AU, NZ | GWAS | D: 590/3956 R: 4148 | OR = 1.50, p = 4.7 × 10−9 | – |
TMCO1 (1q24) | rs4656461 | OR = 1.68, p = 6.1 × 10−10 | – | ||||
Wiggs et al., 2012 [42] | CDKN2B-AS (9p21) | rs2157719 | US Caucasian | GWAS | D: 3146/3487 | OR = 0.69, p = 1.86 × 10−18 | Also associated with NPG. OR = 0.58, p = 1.17 × 10−12 |
SIX1/SIX6 (14q23) | rs10483727 | OR = 1.32, p = 3.87 × 10−11 | – | ||||
8q22 | rs284489 | OR = 0.62, p = 8.88 × 10−10 | Associated with NPG | ||||
Osman et al., 2012 [43] | CDKN2B-AS (9p21) | rs1063192 | Japanese | GWAS | D: 7993 R: 9014 | OR = 0.75, p = 5.2 × 10−11 | – |
SIX1/SIX6 (14q23) | rs10483727 | OR = 0.79, p = 9.49 × 10−8 | – | ||||
NCKAP5 (2q21.2) | rs7588567 | OR = 0.85, p = 3.89 × 10−7 | – | ||||
Nakano et al., 2012 [44] | CDKN2B-AS (9p21.3) | rs7865618 | Japanese | GWAS | D: 833/686 R: 411/289 | OR = 1.78, p = 9.0 × 10−11 | Strongly associated with POAG and POAG/NPG, but not with HPG |
rs523096 | OR = 1.76, p =1.6 × 10−10 | ||||||
Takamoto et al., 2012 [45] | CDKN2B (9p21) | rs523096 | Japanese | GWAS | D: 286/557 R: 183/514 | OR = 2.13, p =4.96 × 10−11 | Associated with NTG |
Chen et al., 2014 [46] | ABCA1 (9q31.1) | rs2487032 | Asian Southern Chinese | GWAS | D: 1007/1009 R: 1899/4965 | OR = 0.69, p = 1.66 × 10−8; ORR = 0.73, pR = 2.79 × 10−9 | – |
PMM2 (16p13.2) | rs3785176 | OR = 1.42, p = 3.18 × 10−6; ORR = 1.30, pR = 5.77 × 10−10 | – | ||||
Gharahkhani et al., 2014 [47] | ABCA1 (9q31.1) | rs2472493 | D: Australian R1: Australian R2: US | GWAS | D: 1155/1992 R1: 932/6862 R2: 2616/2634 | OR = 1.31, p = 2.1 × 10−19 | – |
AFAP1 (4p16.1) | rs4619890 | OR = 1.20, p = 7.0 × 10−10 | – | ||||
GMDS (6p25.3) | rs11969985 | OR = 1.31, p = 7.7 × 10−10 | – | ||||
Li et al., 2015 [48] | CDKN2B-AS1 (9p21) | rs2157719 | Asian, African and European | GWAS | D: 3504/9746 R: 9173/26,780 | OR = 0.71, p = 2.81 × 10−33 | – |
CDC7-TGFBR3 (1p22) | rs1192415 | OR = 1.13, p = 1.60 × 10−8 | Associated with optical disk, vertical CD ratio | ||||
FNDC3B (3q25.31) | rs4894796 | OR = 0.89, p = 7.93 × 10−8 in Asians only | – | ||||
van Koolwijk et al., 2012 [49] | GAS7 (17p13.1) | rs11656696 | D: NL R: UK, AU, Canada, NZ SNP: NL, GE | GWAS | D: 11,972 R: 7482 SNP: 1432 | p = 1.4 × 10−8 SNP: P = 2.4 × 10−2 | Associated with IOP reduction |
TMCO1 (1q24.1) | rs7555523 | p = 1.6 × 10−8 SNP: P = 9.1 × 10−4 | Associated with IOP increase | ||||
Hysi et al., 2014 [50] | FNDC3B (3q25.31) | rs6445055 | Asian, European | GWAS | D: 35,296 R: 4284/95,560 | p = 4.19 × 10−8 | All 4 loci associated with IOP |
ABCA1 (9q31.1) | rs2472493 | p = 2.8 × 10−11 | |||||
ABO (9q34.2) | rs8176693 | p = 6.39 × 10−11 | |||||
11p11.2 | rs747782 | p = 1.04 × 10−11 | |||||
Chen et al., 2015 [51] | FAR2 (12p11.22) | rs4931170 | US Caucasian | GWAS | D: 1660 | p = 1.2 × 10−5 | Associated with IOP |
GGA3 (17q25.1) | rs52809447 | p = 6.7 × 10−5 | |||||
PKDREJ (22q13.31) | rs7291444 | p = 7.4 × 10−5 | |||||
Springelkamp et al., 2015 [52] | ARHGEF12 (11q23.3) | rs58073046 | D: NL R: NL, UK | GWAS | D: 8105 R: 1125/4117 | β = 0.44, p = 1.87 × 10−8 OR = 1.66, p = 2.81 × 10−9 (HPG) OR = 1.29, p = 4.23 × 10−2 (NPG) | Associated with increasing IOP |
Ramdas et al., 2010 and 2011 [53,54] | ATOH7 (10q21.3-22.1) | rs1900004 | D: NL R: NL, UK | GWAS | D: 7360 R: 4455 | β = −0.068, p = 2.05 × 10−32 | Optic disc area (−)/VCDR (−) |
CDC7/TGFBR3 (1p22) | rs1192415 | β = 0.064, p = 1.82 × 10−27 | Optic disc area (+) | ||||
CDKN2B (9p21) | rs1063192 | β = −0.014, p = 1.96 × 10−14 | VCDR (−) | ||||
SIX1 (14q22.3-q23) | rs10483727 | β =0.012, p = 9.30 × 10−11 | VCDR (+) | ||||
SALL1 (16q12.1) | rs1362756 | β = 0.028, p = 6.48 × 10−8 | Optic disc area (+) | ||||
Macgregor et al., 2010 [55] | ATOH7 (10q21.3-22.1) | rs3858145 | D: AU R: UK | GWAS | D: 1368 R: 848 | p = 3.4 × 10−10 | Associated with mean disc area |
RFTN1 (3p24) | rs690037 | p = 1.6 × 10−6 | Explained 2.1% cup area variation in AU cohort | ||||
Khor et al., 2011 [56] | CARD10 (22q13.1) | rs9607469 | D: Asian R: NL | GWAS | D: 4445 R: 9326 | p = 2.73 × 10−12 | Associated with optic disc area |
ATOH7 (10q21.3-22.1) | rs7916697 | p = 2.00 × 10−15 | Associated with optic disc area in Asians | ||||
CDC7/TGFBR3 (1p22) | rs1192415 | p = 7.57 × 10−17 | |||||
Iglesias et al., 2014 [57 ] | SIX6 (14q23) | rs33912345 (His141Asn) | D: NL, UK R: NL, UK | GWAS | D: 292/1208 R: 11,473 | p = 7.74 × 10−7 | Associated with VCDR and POAG |
rs146737847 (Glu29Lys) | p = 5.0 × 10−3 | Associated with VCDR | |||||
Vitart et al., 2010 [58] | COL5A1 9q34.2 | rs1536482 | Croatia, Scotland | GWAS | D: 7711 R: 2681 | β = 0.22, p = 7.1 × 10−8 | Associated with CCT |
ZNF469 16q24.2 | rs12447690 | β = 0.23, p = 4.4 × 10−9 | |||||
AKAP13 15q24-25 | rs6496932 | β = 0.13, p = 1.4 × 10−8 | |||||
AVGR8 13q12.11 | rs1034200 | β = 0.14, p = 3.5 × 10−9 | |||||
Vithana et al., 2011 [59] | ZNF469 (16q24) | rs12447690 | D1: SG-Malay D2: SG-Chinese | GWAS | D1: 3280 D2: 3400 | β = −5.068, p = 1.92 × 10−14 | Associated with CCT |
rs9938149 | β = −6.248, p = 1.63 × 10−16 | ||||||
COL5A1/RXRA (9q34.2-q34.3) | rs1536478 | β = −4.63, p = 3.05 × 10−9 | |||||
rs7044529 | β = 2.7, p = 1.2 × 10−4 | ||||||
COL8A2 (1p34.2) | rs96067 | β = −4.799, p = 5.40 × 10−13 | |||||
Ulmer et al., 2012 [60] | ZNF469 (16q24) | rs12447690 | D: US-Cau SNP: US-Cau | GWAS | D: 1117 SNP: 6469 | β = −5.08, p = 0.001 | Associated with CCT |
NTM (11q25) | rs7481514 | β = −6.89, p = 1.03 × 10−5 | Associated with reduced CCT | ||||
OR = 1.28, p = 9.9 × 10−4 | and POAG risk in low-tension subset | ||||||
Candidate Gene Studies | |||||||
Chen et al., 2012 [61] | 2p16.3 | rs1533428 | China | SNP | 462/577 | OR = 2.16, p = 0.00025 | Associated with late-onset POAG |
Kim et al., 2014 [62] | 10p12.31 | rs7098387 | Korea | SNP | 211/904 | OR = 2.0, p = 0.00038 | Associated with POAG |
Fan et al., 2005 [63] | APOE 19q13.2 | rs429358 rs7412 | Japan | SNP | 400/281 | OR = 0.4, p = 0.007 | APOE4 confers a protective effect against NTG |
Lam et al., 2006 [64] | rs429358 rs7412 | China | SNP | 400/300 | OR = 0.36, p = 0.008 | APOE4 confers a protective effect against NTG | |
Lake et al., 2004 [65] | rs429358 rs7412 | UK | SNP | 155/349 | p = ns | None | |
Cao et al., 2012 [66] | ATOH7 10q21.3-22.1 | rs7916697 | African-Caribbean | SNP | 272/165 | OR = 0.67, p = 0.0096 | Interacts with rs1063192 near CDKN2B to reduce POAG risk |
rs1900004 | OR = 1.02, p = 0.9076 | None | |||||
rs3858145 | OR = 0.98, p = 0.9138 | None | |||||
Mabuchi et al., 2012 [67] | rs1900004 | Japan | SNP | 425/191 | p = 0.028 | Associated with NTG | |
Chen et al., 2012 [68] | rs3858145 | China | SNP | 142/289 | OR = 2.69, p < 0.05 | Showed interaction with RFTN1 rs690037 | |
rs61854782 | β = −0.088, p = 0.004 | Associated with VCDR in controls but not POAG | |||||
Fan et al., 2011 [69] | rs1900004 | US-Caucasian | SNP | 539/336 | OR = 1.89, p = 0.025 | Associated with increased optic nerve area | |
Dimasi et al., 2012 [70] | rs1900004 | AU, NZ | SNP | 873/886 | OR = 1.12′, p = 0.18 | No association | |
rs3858145 | OR = 1.13, p = 0.12 | ||||||
Wiggs et al., 2011 [71] | CAV1/CAV2 7q31.1 | rs4236601 | US-Caucasian | SNP | 1000/1183 | OR = 1.31, p = 0.0007 | Significantly associated in women more than men |
rs1052990 | OR = 1.25, p = 0.0084 | Significantly associated in women; and nominally associated with NPG (p = 0.039) | |||||
Cao et al., 2012 [66] | rs4236601 | African-Caribbean | SNP | 272/165 | OR = 1.15, p = 0.3332 | No association | |
Loomis et al., 2014 [72] | rs4236601 | US-Caucasian | SNP | R1: 976/2132 R2: 1140/2290 | pmeta = 2.61 × 10(−7), pwomen = 1.59 × 10(−5) | Associated with early paracentral VF defect | |
rs17588172 | pmeta = 1.07 × 10(−4) | Associated with early paracentral VF defect | |||||
Kuehn et al., 2011 [73] | rs4236601 | US | SNP | 545/297 | p = 0.5 | No association | |
Cao et al., 2012 [66] | CARD10 22q13.1 | rs9607469 | African-Caribbean | SNP | 272/165 | OR = 1.13, p = 0.5096 | No association |
Cao et al., 2012 [66] | CDC7/TGFBR3 1p22 | rs1192415 | African-Caribbean | SNP | 272/165 | OR = 1.14, p = 0.4802 | No association |
Dimasi et al., 2012 [70] | rs1192415 | AU, NZ | SNP | 873/886 | OR = 1.22, p = 0.03 | Showed nominal significance with optic disc area | |
Cao et al., 2012 [66] | CDKN2B (-AS1) 9p21 | rs1063192 | African-Caribbean | SNP | 272/165 | OR = 0.39, p = 0.0008 | Minor allele was protective against POAG |
rs4977756 | OR = 0.89, p = 0.4507 | No association | |||||
Fan et al., 2011 [69] | rs1063192 | US-Caucasian | SNP | 539/336 | OR = 0.73, p = 0.0006 | Associated with decreased VCDR and POAG risk | |
Mabuchi et al., 2012 [67] | rs1063192 | Japan | SNP | 425/191 | β = 0.11, p = 0.0043 | Associated with VCDR; and NTG (p = 0.023) | |
Dimasi et al., 2012 [70] | rs1063192 | AU, NZ | SNP | 873/886 | OR = 0.74, p = 2.2 × 10−5 | More strongly associated with advanced open-angle glaucoma | |
Burdon et al., 2012 [74] | rs10120688 rs7049105 | AU, NZ | SNP | 1432/595 | VCDR – β = 0.016, p = 0.03; IOP – β = −2.135, p = 0.001 | Associated with larger VCDR and lower IOP | |
Mabuchi et al., 2012 [67] | CHEK2 22q12.1 | rs1547014 | Japan | SNP | 425/191 | β = 0.11, p = 0.0079 | Associated with VCDR; and HTG (p = 0.013) |
Dimasi et al., 2012 [70] | rs1547014 | AU, NZ | SNP | 873/886 | OR = 0.98, p = 0.77 | No association | |
Dimasi et al., 2012 [70] | COL5A1/RXRA 9q34.2-q34.3 | rs1536482 | AU, NZ | SNP | 873/886 | OR = 0.94, p = 0.46 | No association |
rs7044529 | OR = 1.00, p = 0.98 | ||||||
Desronvil et al., 2010 [75] | COL8A2 1p34.2 | rs274754 | US-Caucasian | SNP | 100 | p = 0.018 | Associated with corneal thickness |
Dimasi et al., 2010 [76] | FBN1 15q21.1 | rs17352842 | AU-Caucasian | SNP | 956 | p = 0.02 | Associated with CCT |
Rocha et al., 2011 [77] | GSTT1/GSTM1 1p13.3 | null > positive | Brazil | SNP | 87/85 | OR = 2.4, p = 0.016 | T1M0 genotype associated with higher IOP and severe defect of right eye optic nerve and visual field |
Juronen et al., 2000 [78] | positive > null | Estonia | SNP | 250/202 | OR = 1.83, p = 0.002 | GSTM1 were at significant risk for glaucoma and even higher in smokers (OR = 3.86, p = 0.012) | |
Jansson et al., 2003 [79] | positive = null | Sweden | SNP | 200/200 | p = ns | No association | |
Fan et al., 2010 [80] | positive = null | China | SNP | 405/201 | p = ns | No association | |
Liu et al., 2010 [81] | NTF4 19q13.33 | Whole gene | US-Caucasian | SNP | 443/533 | – | Not associated with POAG |
Rao et al., 2010 [82] | Whole gene | India | SNP | 141/285 | p = 0.2 | No association | |
Vithana et al., 2010 [83] | c.338T>C | China | SNP | 174/91 | – | Rare cause of POAG in Chinese | |
Chen et al., 2012 [84] | c.470G>C c.545C>T | China | SNP | 720/230 | – | May be a rare cause of POAG | |
Aung et al., 2002 [85] | OPA1 3q28-q29 | rs166850 | UK | SNP | 163/86 | OR = 3.1, p = 0.002 | rs166850 combined with rs10451941 was more strongly associated with NTG (p = 0.00001) |
rs10451941 | p = 0.03 | ||||||
Mabuchi et al., 2007 [86] | rs10451941 | Japan | SNP | 285/185 | OR = 2.27, p = 0.004 | Increased risk of NTG; and age at diagnosis in HTG (p = 0.048) | |
Yao et al., 2006 [87] | rs166850 rs10451941 | African-Caribbean | SNP | 109/48 | p = ns | No association | |
Fan et al., 2010 [80] | rs166850 rs10451941 | China | SNP | 405/201 | p = ns | No association | |
Dimasi et al., 2010 [76] | PAX6 11p13 | rs3026398 | AU-Caucasian | SNP | 956 | p = 0.02 | Associated with CCT; more strongly with rs662702 haplotype (p = 0.009) |
Chen et al., 2012 [61] | PLXDC2 10p12.31 | rs7081455 | China | SNP | 462/577 | OR = 1.25, p = 0.31 | No association |
Cao et al., 2012 [66] | rs7081455 | African-Caribbean | SNP | 272/165 | OR = 1.04, p = 0.8052 | No association | |
Chen et al., 2012 [68] | RFTN1 3p24.3 | rs3858145 | China | SNP | 142/289 | β = 25.66, p = 0.029 | Associated with CCT |
Fan et al., 2011 [69] | SIX1/SIX6 14p22-23 | rs10483727 | US-Caucasian | SNP | 539/336 | OR = 1.33, p = 0.0043 | Associated with increased VCDR and POAG risk |
Dimasi et al., 2012 [70] | rs10483727 | AU, NZ | SNP | 873/886 | OR = 1.38, p = 6.2 × 10−6 | Strongly associated with open-angle glaucoma | |
Cao et al., 2012 [66] | rs10483727 | African-Caribbean | SNP | 272/165 | OR = 0.77, p = 0.4151 | No association | |
Mabuchi et al., 2012 [67] | rs10483727 | Japan | SNP | 425/191 | p = 0.017 | Associated with age at diagnosis in NTG | |
Carnes et al., 2014 [88] | rs10483727 | US—Caucasians | SNP | 262/256 | OR = 1.32, p = 3.87 × 10−11 | Significantly associated with POAG | |
rs33912345 | SNP | OR = 1.27, p = 4.2 × 10−10 | Associated with POAG; and thickness of retinal nerve fiber layer | ||||
Mabuchi et al., 2011 [89] | SRBD1 2p21 | rs3213787 | Japan | SNP | 370/191 | p = 0.0003 in NTG and p = 0.0013 in HTG | Associated with HTG and NTG including late-onset |
Cao et al., 2012 [66] | rs3213787 | African-Caribbean | SNP | 272/165 | OR = 0.45, p = 0.2882 | None | |
Takano et al., 2012 [90] | TLR4 9q33.1 | rs2149356 | Japan | SNP | 449/107 | p = 0.000058 | Associated with NTG |
Chen et al., 2012 [61] | rs7037117 | China | SNP | 462/577 | OR = 0.99, p = 0.99 | No association | |
Shibuya et al., 2008 [91] | rs7037117 | Japan | SNP | 215/318 | p = 0.0095 | 1.47- to 1.65-fold increased risk of NTG; strongest association with rs10759930 haplotype | |
Cao et al., 2012 [66] | rs7037117 | African-Caribbean | SNP | 272/165 | OR = 0.73, p = 0.0571 | No association | |
Sharma et al., 2012 [92] | TMCO1 1q24 | rs4656461 | AU, NZ | SNP | 1420 | β = −2.56, p = 0.004 | Correlation with age at diagnosis |
Ozel et al., 2014 [93] | rs7518099 | US-Caucasian | SNP | 6.236 | p = 8 × 10−8 | Strongly associated with IOP | |
Chen et al., 2012 [61] | TMTC2 12q21.31 | rs7961953 | China | SNP | 462/577 | OR = 1.15, p = 0.35 | No association |
Cao et al., 2012 [66] | rs7961953 | African-Caribbean | SNP | 272/165 | OR = 0.89, p = 0.5559 | No association | |
Fan et al., 2010 [80] | TNFα 6p21.3 | rs1800629 | China | SNP | 405/201 | p = 0.012 | Associated with HTG |
Wang et al., 2012 [94] | rs4645836 | China | SNP | 234/230 | OR = 0.63, p = 0.017 | Protective for POAG | |
Mossböck et al., 2006 [95] | rs1800629 | AU | SNP | 114/228 | OR = 0.96, p > 0.05 | Not associated among Caucasian | |
rs361525 | OR = 0.52, p > 0.05 | ||||||
Rao et al., 2010 [82] | VAV2 9q34.1 | rs2156323 | India | SNP | 141/285 | p = 0.533 | No association |
VAV3 1p13.3 | rs2801219 | p = 0.133 | |||||
Dimasi et al., 2012 [70] | ZNF469 16q24 | rs12447690 | AU, NZ | SNP | 873/886 | OR = 1.01, p = 0.91 | No association |
rs9938149 | OR = 0.94, p = 0.46 | ||||||
Chen et al., 2012 [61] | ZP4 1q43 | rs693421 | China | SNP | 462/577 | OR = 0.98, p = 0.31 | No association |
Cao et al., 2012 [66] | rs547984 | African-Caribbean | SNP | 272/165 | OR = 1.05, p = 0.7374 | No association | |
Kim et al., 2014 [62] | rs693421 | Korea | SNP | 211/904 | OR = 1.4, p = 0.0082 | Associated with POAG | |
Li et al., 2015 [48] | CDKN2B-AS1 9p21 | rs2157719 | Saudi Arabia | SNP | R **: 236/655 | OR = 1.24, p = 0.146 | – |
CDC7-TGFBR3 1p22 | rs1192415 | OR = 1.24, p = 0.146 | – | ||||
FNDC3B 3q25.31 | rs4894796 | OR = 1.03, p = 0.779 | – | ||||
Neamatzadeh et al., 2015 [96] | TP53 17p13.1 | rs1042522 | Iranian | SNP | 65/65 | OR = 2.1, p < 0.05 | Pro72 allele is associated with POAG risk |
Emam et al., 2014 [97] | NOS3 7q36 | rs2070744 | Egypt | SNP | 160/110 | OR = 1.86, p < 0.0001 | rs2070744 is associated with high tension glaucoma; and with plasma nitrite/nitrate levels (p < 0.001) |
rs1799983 | – | OR = 1.28, p = 0.21 | – | ||||
27 bp-VNTR-a/b | – | OR = 0.81, p = 0.33 | – | ||||
Abu-Amero et al., 2013 [98] | CAT 11p13 | rs1001179 | Saudi Arabia | SNP | 225/403 | OR = 0.81, p = 0.218 | Associated with age of onset, and trend towards IOP, and duration of glaucoma |
Abu-Amero et al., 2014 [99] | SOD2 6q25.3 | rs4880 | Saudi Arabia | SNP | 226/403 | OR = 1.0, p = 0.988 | Trend towards age of onset and IOP |
Abu-Amero et al., 2012 [100] | CAV1/CAV2 7q31 | rs4236601 | Saudi Arabia | SNP | 220/405 | OR = 1.06, p = 0.699 | – |
Abu-Amero et al., 2012 [101] | LOXL1 15q24.1 | rs1048661 | Saudi Arabia | SNP | 96/101 | p = 0.866 | – |
rs3825942 | – | p = 0.477 | – | ||||
rs2165241 | – | p = 0.176 | – | ||||
Abu-Amero et al., 2006 [102] | MYOC 1q24.3 | 22259 G/T (G324V) | Saudi Arabia | SNP | 27/96 | p = 0.74 | – |
OPTN 10p13 | 412 G/A (T34T) | – | p = 0.61 | – | |||
469 G/C (Q53H) | – | p = 0.28 | – | ||||
Zanon-Moreno et al., 2013 [103] | SLC23A2 20p13 | rs1279683 | Mediterranean | SNP | 250/250 | OR = 2.47, p < 0.001 | Associated with POAG risk; and plasma vitamin C levels (p < 0.001) |
TTPA 8q12.3 | rs6994076 | – | OR = 1.38, p = 0.122 | Associated with plasma vitamin E levels (p < 0.001) | |||
SEC14L2/TAP 22q12.2 | rs737723 | – | OR = 2.24, p < 0.001 | Associated with POAG risk; and nominal (p = 0.047) gene-gene interaction with SNP rs1279683 | |||
GPX4 19p13.3 | rs757228 | – | OR = 0.80, p = 0.337 | – | |||
Zanon-Moreno et al., 2011 [104] | RBP1 3q23 | rs176990 | Mediterranean | SNP | 150/150 | OR = 0.97, p = 0.826 | – |
rs190910 | – | OR = 0.83, p = 0.315 | – | ||||
SLC23A1 5q31.2 | rs10063949 | – | OR = 1.19, p = 0.552 | – | |||
SLC23A2 20p13 | rs1279683 | – | OR = 1.67, p = 0.010 | Associated with POAG risk; and plasma vitamin C levels (p < 0.001) | |||
Abu-Amero et al., 2008 [105] | GSTT1/GSTM1 1p13.3 | T0M0 | Saudi Arabia | SNP | 49/120 | OR = 5.67, p = 0.06 | GSTT1 and GSTM1 positive genotypes are at risk for POAG |
T1M0 | – | OR = 10.2, p = 0.00001 | – | ||||
T0M1 | – | OR = 11.3, p = 0.00001 | – | ||||
Unal et al., 2007 [106] | GSTT1/GSTM1 1p13.3 | T0M1 | Turkey | SNP | 144/121 | OR = 3.46, p < 0.005 | GSTM1 positive and GSTT1 null genotypes are associated with increased risk of POAG |
Al-Dabbagh et al. [107] | APOE 19q13.2 | rs429358 rs7412 | Saudi Arabia | SNP | 60/130 | OR = 2.75, p = 0.034 | APOE4 allele is a risk factor for POAG |
Saglar et al., 2009 [108] | APOE 19q13.2 | rs429358 rs7412 | Turkey | SNP | 75/119 | p = 0.38 | – |
TP53 17p | rs1042522 | – | p = 0.12 | – | |||
Nilforoushan et al. [109] | MTHFR 1p36.3 | rs1801133 | Iran | – | 73/90 | p = 0.337 | – |
4. GWAS and POAG
5. GWAS and Quantitative Endophenotype Traits
6. Candidate Genes and POAG
7. Final Remarks
Gene | Gene Name | Function | Role in Ophthalmic Diseases |
---|---|---|---|
PLXDC2 | Plexin Domain Containing 2 | May play a role in tumor angiogenesis | Possible role through inhibition of angiogenesis and possible involvement in protecting against inflammation |
TMTC2 | Transmembrane and Tetratricopeptide Repeat Containing 2 | Protein binding calcium ion homeostasis | Unknown |
ZP4 | Zona Pellucida Glycoprotein 4 | Signal transducer activity | Unknown |
SRBD1 | S1 RNA Binding Domain 1 | Nucleic acid binding, RNA binding, hydrolase activity, acting on ester bonds | Appears to contribute to glaucomatous optic neuropathy as a non–IOP-related genetic factor; exact mechanism is not known |
ELOVL5 | ELOVL Fatty Acid Elongase 5 | Catalytic activity | Appears to contribute to glaucomatous optic neuropathy as a non–IOP-related genetic factor; exact mechanism is not known |
CAV1/CAV2 | Caveolin 1/Caveolin 2 | Receptor binding, structural molecule activity | Dysfunction of cellular signaling and transport leading to the damage in tissues |
CDKN2B-AS | Cyclin-Dependent Kinase Inhibitor 2B | Protein coding gene, inhibits CDK4 | Associated with systemic diseases inside and outside the eyes causing disruption in cell cycle |
TMCO1 | Transmembrane And Coiled-Coil Domains 1 | Encoding transmembrane protein | Association with cellular malfunction and oxidative stress |
SIX1 | SIX Homeobox 1 | Regulation of cell proliferation, apoptosis and embryonic development. | Associated with developmental malformation of anterior angle, TM and CB |
NCKAP5 | NCK-Associated Protein 5 | Protein coding gene | Unknown |
ABCA1 | ATP-Binding Cassette, Sub-Family A (ABC1), Member 1 | Cholesterol carrying out of the cell | Expressed highly in TM network, thought to be involved in raising IOP |
AFAP1 | Actin Filament Associated Protein 1 | signaling pathways | Possible involvement in aqueous outflow and IOP |
GMDS | GDP-Mannose 4,6-Dehydratase | Catalytic activity | GMDS encodes a protein that is required for the first step in de novo synthesis of fucose. Fucose is required for diverse biological functions such as growth factor receptor signalling. Several studies have suggested the effects of growth factors on development of glaucoma |
CDC7 | Cell Division Cycle 7 | Phosphorylation | Impairment of cellular function in CB, TM and RGC |
FNDC3B | Fibronectin Type III Domain Containing 3B | Poly(A) RNA binding | Associated with IOP through as yet unknown mechanism |
GAS7 | Growth Arrest-Specific 7 | Protein coding gene sequence-specific DNA binding transcription factor activity | Involved in developmental and functional impairment of RGC |
ABO | ABO Blood Group (Transferase A, Alpha 1-3-N-Acetylgalactosaminyltransferase; Transferase B, Alpha 1-3-Galactosyltransferase) | Basis of the ABO blood group system | Thought to play a role in IOP elevation; Exact mechanism is not known |
FAR2 | Fatty Acyl CoA Reductase 2 | Catalytic activity | Unknown |
GGA3 | Golgi-Associated, Gamma Adaptin Ear Containing, ARF Binding Protein 3 | Protein sorting and trafficking between the trans-Golgi network (TGN) and endosomes | Unknown |
PKDREJ | Polycystin (PKD) Family Receptor For Egg Jelly | May have a central role in fertilization | Elevated IOP through undetermined mechanism |
ARHGEF12 | Rho Guanine Nucleotide Exchange Factor (GEF) 12 | May play a role in the regulation of RhoA GTPase | Elevated IOP through undetermined mechanism |
ATOH7 | Atonal Homolog 7 | Involved in the differentiation of retinal ganglion cells | Involved in developmental problems of retinal vasculature |
SALL1 | Spalt-Like Transcription Factor 1 | Organogenesis | SALL1 is involved in development of calcium homeostasis in the endoplasmic reticulum |
RFTN1 | Raftlin, Lipid Raft Linker 1 | Formation and/or maintenance of lipid rafts. | Related to vertical cup-to-disc ratio |
CARD10 | Caspase Recruitment Domain Family, Member 10 | Protein binding, receptor signaling | Developmental problems of neuronal tissues |
COL5A1 | Collagen, Type V, Alpha 1 | Fibril formation | Associated with malformation of connective tissues leading to problems in cornea and TM |
ZNF469 | Zinc Finger Protein 469 | Transcriptional regulation | Thought to be involved in central corneal thickness |
AKAP13 | A Kinase (PRKA) Anchor Protein 13 | Protein binding, cAMP-dependent protein kinase activity | Involvement in corneal thickness and disruptions in signaling pathways in CB, TM and RGCs |
COL8A2 | Collagen, Type VIII, Alpha 2 | Protein binding, extracellular matrix structural constituent | Associated with malformation of connective tissues leading to problems in cornea and TM |
NTM | Neurotrimin | Protein binding | Unknown |
APOE | Apolipoprotein E | Protein binding, receptor binding | Role in oxidative stress and disrupted cellular homeostasis in CB, TM, LC and RGC |
CHEK2 | Checkpoint Kinase 2 | Protein kinase activity | High expression is associated with problems in optic nerve and cup disk ratio |
FBN1 | Fibrillin 1 | Extracellular matrix structural constituent | Mutations in FBN1 could cause backward bowing by compromising the mechanical properties of the iris |
GSTT1 | Glutathione S-Transferase Theta 1 | Glutathione transferase activity | Oxidative stress in all the POAG-involved tissues |
NTF4 | Neurotrophin 4 | Protein binding, receptor binding | Retinal ganglion cells survival and apoptosis |
OPA1 | Optic Atrophy 1 | Protein binding | Involved in Oxidative stress in cornea, CB and TM |
PAX6 | Paired Box 6 | Sequence-specific DNA binding RNA polymerase II transcription factor activity | Developmental impairment of neuro ophthalmic system |
PLXDC2 | Plexin Domain Containing 2 | Receptor binding | Developmental problems leading to fewer retinal ganglion cells |
SIX6 | SIX Homeobox 6 | DNA binding, protein binding | Associated with developmental malformation of anterior angle, TM and CB |
TLR4 | Toll-Like Receptor 4 | Receptor binding | Involved in Oxidative stress and decreased cellular viability |
TMTC2 | Transmembrane And Tetratricopeptide Repeat Containing 2 | Identical protein binding | TMTC2 is implicated in calcium homeostasis in the endoplasmic reticulum |
TNFα | Tumor Necrosis Factor | Protease binding, cytokine activity | May be activated in reaction to POAG-related indices (increased IOP, oxidative stress and increase in disregulation of cellular homeostasis |
VAV2 | Vav 2 Guanine Nucleotide Exchange Factor | Epidermal growth factor receptor binding | Unknown |
LOXL1 | Lysyl Oxidase-Like 1 | Copper ion binding | Through the loss of elastin formation and resulting friction between the iris and the anterior lens capsule |
ZNF469 | Zinc Finger Protein 469 | DNA binding | Associated with developmental malformation of connective tissues leading to problems in cornea and TM |
Zp4 | Zona Pellucida Glycoprotein 4 | Signal transducer activity | Unknown |
TP53 | Tumor Protein P53 | Core promoter sequence-specific DNA binding | Unknown |
NOS3 | Nitric Oxide Synthase 3 (Endothelial Cell) | Receptor binding | Dysregulation of the vascular tone particularly through interaction with endothelial nitric oxide synthase and production of nitric oxide (NO) in the vascular endothelia. This may lead to decreased AH outflow and increased IOP |
CAT | Catalase | Catalytic activity | Detoxification of reactive oxygen species—linked to POAG through oxidative stress |
SOD2 | Superoxide Dismutase 2, Mitochondrial | Oxygen binding, DNA binding | Possible role through oxidative stress mechanism |
OPTN | Optineurin | Protein binding | Through oxidative stress/the mitochondrial caspase-dependent cell death |
TTPA | Tocopherol (Alpha) Transfer Protein | Transporter activity | Linked to vitamin C loss and that in turn is linked to POAG development through yet undiscovered mechanism |
RBP1 | Retinol Binding Protein 1, Cellular | Transporter activity, retinoid binding | Through retinol and oxidative stress mechanism |
MTHFR | Methylenetetrahydrofolate Reductase (NAD(P)H) | Methylenetetrahydrofolate reductase (NAD(P)H) activity | Linked through homocysteine level, link to POAG is not established |
GPX4 | Glutathione Peroxidase 4 | Glutathione peroxidase activity | Effect on decreased level of vitamins E and C. Lower level of vitamin C is linked to glaucoma through unknown mechanism. |
SEC14L2 | SEC14-Like 2 (S. Cerevisiae) | Phospholipid binding | Effect on decreased level of vitamin C. Lower level of vitamin C is linked to glaucoma through unknown mechanism |
SLC23A1 | Solute Carrier Family 23 (Ascorbic Acid Transporter), Member 1 | Nucleobase transmembrane transporter activity | Effect on decreased level of vitamin C. Lower level of vitamin C is linked to glaucoma through unknown mechanism |
PMM2 | Phosphomannomutase 2 | Catalytic activity | Expressed highly in TM network, thought to be involved in raising IOP |
SLC23A2 | Solute Carrier Family 23 (Ascorbic Acid Transporter), Member 2 | Nucleobase transmembrane transporter activity | May be through lowering the plasma level of vitamin C. Low level of vitamin C was found in POAG patients carrying mutation in this gene. Exact link between low vitamin C level and POAG is not determined |
Author Contributions
Conflicts of Interest
References
- Quigley, H.A.; Broman, A.T. The number of people with glaucoma worldwide in 2010 and 2020. Br. J. Ophthalmol. 2006, 90, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.H.; Fingert, J.H.; Kuehn, M.H.; Alward, W.L. Primary open-angle glaucoma. N. Engl. J. Med. 2009, 360, 1113–1124. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.H.; Loomis, S.J.; Rosner, B.A.; Wiggs, J.L.; Pasquale, L.R. Comparison of risk factor profiles for primary open-angle glaucoma subtypes defined by pattern of visual field loss: A prospective study. Investig. Ophthalmol. Vis. Sci. 2015, 56, 2439–2448. [Google Scholar] [CrossRef] [PubMed]
- Caprioli, J.; Coleman, A.L. Intraocular pressure fluctuation a risk factor for visual field progression at low intraocular pressures in the advanced glaucoma intervention study. Ophthalmology 2008, 115, 1123–1129. [Google Scholar] [CrossRef] [PubMed]
- Gordon, M.O.; Beiser, J.A.; Brandt, J.D.; Heuer, D.K.; Higginbotham, E.J.; Johnson, C.A.; Keltner, J.L.; Miller, J.P.; Parrish, R.K., 2nd; Wilson, M.R.; et al. The ocular hypertension treatment study: Baseline factors that predict the onset of primary open-angle glaucoma. Arch. Ophthalmol. 2002, 120, 714–720. [Google Scholar] [CrossRef] [PubMed]
- Coleman, A.L.; Gordon, M.O.; Beiser, J.A.; Kass, M.A. Baseline risk factors for the development of primary open-angle glaucoma in the ocular hypertension treatment study. Am. J. Ophthalmol. 2004, 138, 684–685. [Google Scholar] [CrossRef] [PubMed]
- Leske, M.C.; Wu, S.Y.; Honkanen, R.; Nemesure, B.; Schachat, A.; Hyman, L.; Hennis, A. Nine-year incidence of open-angle glaucoma in the barbados eye studies. Ophthalmology 2007, 114, 1058–1064. [Google Scholar] [CrossRef] [PubMed]
- Miglior, S.; Pfeiffer, N.; Torri, V.; Zeyen, T.; Cunha-Vaz, J.; Adamsons, I. Predictive factors for open-angle glaucoma among patients with ocular hypertension in the european glaucoma prevention study. Ophthalmology 2007, 114, 3–9. [Google Scholar] [PubMed]
- Friedman, D.S.; Wolfs, R.C.; O'Colmain, B.J.; Klein, B.E.; Taylor, H.R.; West, S.; Leske, M.C.; Mitchell, P.; Congdon, N.; Kempen, J. Prevalence of open-angle glaucoma among adults in the united states. Arch. Ophthalmol. 2004, 122, 532–538. [Google Scholar] [PubMed]
- Klein, B.E.; Klein, R.; Lee, K.E. Heritability of risk factors for primary open-angle glaucoma: The beaver dam eye study. Investig. Ophthalmol. Vis. Sci. 2004, 45, 59–62. [Google Scholar] [CrossRef]
- de Voogd, S.; Ikram, M.K.; Wolfs, R.C.; Jansonius, N.M.; Hofman, A.; de Jong, P.T. Incidence of open-angle glaucoma in a general elderly population: The rotterdam study. Ophthalmology 2005, 112, 1487–1493. [Google Scholar] [CrossRef] [PubMed]
- Tielsch, J.M.; Katz, J.; Sommer, A.; Quigley, H.A.; Javitt, J.C. Family history and risk of primary open angle glaucoma. The baltimore eye survey. Arch. Ophthalmol. 1994, 112, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Harmon, J.; Zabrieskie, N.; Chen, Y.; Grob, S.; Williams, B.; Lee, C.; Kasuga, D.; Shaw, P.X.; Buehler, J.; et al. Using the utah population database to assess familial risk of primary open angle glaucoma. Vis. Res. 2010, 50, 2391–2395. [Google Scholar] [CrossRef] [PubMed]
- Mukesh, B.N.; McCarty, C.A.; Rait, J.L.; Taylor, H.R. Five-year incidence of open-angle glaucoma: The visual impairment project. Ophthalmology 2002, 109, 1047–1051. [Google Scholar] [CrossRef]
- Kapetanakis, V.V.; Chan, M.P.; Foster, P.J.; Cook, D.G.; Owen, C.G.; Rudnicka, A.R. Global variations and time trends in the prevalence of primary open angle glaucoma (poag): A systematic review and meta-analysis. Br. J. Ophthalmol. 2015. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Foster, P.J.; Ge, J.; Huang, W.; Zheng, Y.; Friedman, D.S.; Lee, P.S.; Khaw, P.T. Prevalence and clinical characteristics of glaucoma in adult chinese: A population-based study in liwan district, guangzhou. Investig. Ophthalmol. Vis. Sci. 2006, 47, 2782–2788. [Google Scholar] [CrossRef] [PubMed]
- Vannorsdall, T.D.; Schretlen, D.J.; Andrejczuk, M.; Ledoux, K.; Bosley, L.V.; Weaver, J.R.; Skolasky, R.L.; Gordon, B. Altering automatic verbal processes with transcranial direct current stimulation. Front. Psychiatry 2012, 3, 73. [Google Scholar] [CrossRef] [PubMed]
- Janicijevic-Petrovic, M.A.; Sarenac-Vulovic, T.S.; Janicijevic, K.M.; Vulovic, D.A.; Andrijana, P.B.; Vujic, D.I. Evaluation of central corneal thickness in patients with ocular hypertension and primary open-angle glaucoma. Med. Glas. 2014, 11, 115–119. [Google Scholar]
- Dueker, D.K.; Singh, K.; Lin, S.C.; Fechtner, R.D.; Minckler, D.S.; Samples, J.R.; Schuman, J.S. Corneal thickness measurement in the management of primary open-angle glaucoma: A report by the american academy of ophthalmology. Ophthalmology 2007, 114, 1779–1787. [Google Scholar] [CrossRef] [PubMed]
- Copt, R.P.; Thomas, R.; Mermoud, A. Corneal thickness in ocular hypertension, primary open-angle glaucoma, and normal tension glaucoma. Arch. Ophthalmol. 1999, 117, 14–16. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.V.; Toris, C.B.; Fan, S.; Camras, C.B. Effects of central corneal thickness on the efficacy of topical ocular hypotensive medications. J. Glaucoma 2008, 17, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Melles, R.B.; Metlapally, R.; Barcellos, L.; Schaefer, C.; Risch, N.; Herrinton, L.J.; Wildsoet, C.; Jorgenson, E. The association of refractive error with glaucoma in a multiethnic population. Ophthalmology 2015. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, P.; Lee, A.J.; Rochtchina, E.; Wang, J.J. Open-angle glaucoma and systemic hypertension: The blue mountains eye study. J. Glaucoma 2004, 13, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.Y.; Klein, B.E.; Klein, R.; Knudtson, M.; Lee, K.E. Refractive errors, intraocular pressure, and glaucoma in a white population. Ophthalmology 2003, 110, 211–217. [Google Scholar] [CrossRef]
- Xu, L.; Wang, Y.; Wang, S.; Jonas, J.B. High myopia and glaucoma susceptibility the beijing eye study. Ophthalmology 2007, 114, 216–220. [Google Scholar] [CrossRef] [PubMed]
- Boland, M.V.; Quigley, H.A. Risk factors and open-angle glaucoma: Classification and application. J. Glaucoma 2007, 16, 406–418. [Google Scholar] [CrossRef] [PubMed]
- Klein, B.E.; Klein, R.; Jensen, S.C. Open-angle glaucoma and older-onset diabetes. The beaver dam eye study. Ophthalmology 1994, 101, 1173–1177. [Google Scholar] [CrossRef]
- Zhou, M.; Wang, W.; Huang, W.; Zhang, X. Diabetes mellitus as a risk factor for open-angle glaucoma: A systematic review and meta-analysis. PLoS ONE 2014, 9, e102972. [Google Scholar] [CrossRef] [PubMed]
- Klein, B.E.; Klein, R.; Knudtson, M.D. Intraocular pressure and systemic blood pressure: Longitudinal perspective: The beaver dam eye study. Br. J. Ophthalmol. 2005, 89, 284–287. [Google Scholar] [CrossRef] [PubMed]
- Hayreh, S.S.; Podhajsky, P.; Zimmerman, M.B. Beta-blocker eyedrops and nocturnal arterial hypotension. Am. J. Ophthalmol. 1999, 128, 301–309. [Google Scholar] [CrossRef]
- Janssen, S.F.; Gorgels, T.G.; Ramdas, W.D.; Klaver, C.C.; van Duijn, C.M.; Jansonius, N.M.; Bergen, A.A. The vast complexity of primary open angle glaucoma: Disease genes, risks, molecular mechanisms and pathobiology. Prog. Retin Eye Res. 2013, 37, 31–67. [Google Scholar] [CrossRef] [PubMed]
- Takamoto, M.; Araie, M. Genetics of primary open angle glaucoma. Jpn. J. Ophthalmol. 2014, 58, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.C.; Congdon, N.G.; Wojciechowski, R.; Munoz, B.; Gilbert, D.; Chen, P.; Friedman, D.S.; West, S.K. Determinants and heritability of intraocular pressure and cup-to-disc ratio in a defined older population. Ophthalmology 2005, 112, 1186–1191. [Google Scholar] [CrossRef] [PubMed]
- Toh, T.; Liew, S.H.; MacKinnon, J.R.; Hewitt, A.W.; Poulsen, J.L.; Spector, T.D.; Gilbert, C.E.; Craig, J.E.; Hammond, C.J.; Mackey, D.A. Central corneal thickness is highly heritable: The twin eye studies. Investig. Ophthalmol. Vis. Sci. 2005, 46, 3718–3722. [Google Scholar] [CrossRef] [PubMed]
- Barkana, Y.; Dorairaj, S. Re: Tham et al.: Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis (ophthalmology 2014;121:2081–90). Ophthalmology 2015, 122, 40–41. [Google Scholar] [CrossRef] [PubMed]
- Tielsch, J.M.; Sommer, A.; Katz, J.; Royall, R.M.; Quigley, H.A.; Javitt, J. Racial variations in the prevalence of primary open-angle glaucoma. The baltimore eye survey. JAMA 1991, 266, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Friedman, D.S.; Jampel, H.D.; Munoz, B.; West, S.K. The prevalence of open-angle glaucoma among blacks and whites 73 years and older: The salisbury eye evaluation glaucoma study. Arch. Ophthalmol. 2006, 124, 1625–1630. [Google Scholar] [CrossRef] [PubMed]
- Nakano, M.; Ikeda, Y.; Taniguchi, T.; Yagi, T.; Fuwa, M.; Omi, N.; Tokuda, Y.; Tanaka, M.; Yoshii, K.; Kageyama, M.; et al. Three susceptible loci associated with primary open-angle glaucoma identified by genome-wide association study in a japanese population. Proc. Natl. Acad. Sci. USA 2009, 106, 12838–12842. [Google Scholar] [CrossRef] [PubMed]
- Meguro, A.; Inoko, H.; Ota, M.; Mizuki, N.; Bahram, S. Genome-wide association study of normal tension glaucoma: Common variants in srbd1 and elovl5 contribute to disease susceptibility. Ophthalmology 2010, 117, 1331–1338. [Google Scholar] [PubMed]
- Thorleifsson, G.; Walters, G.B.; Hewitt, A.W.; Masson, G.; Helgason, A.; DeWan, A.; Sigurdsson, A.; Jonasdottir, A.; Gudjonsson, S.A.; Magnusson, K.P.; et al. Common variants near cav1 and cav2 are associated with primary open-angle glaucoma. Nat. Genet. 2010, 42, 906–909. [Google Scholar] [CrossRef] [PubMed]
- Burdon, K.P.; Macgregor, S.; Hewitt, A.W.; Sharma, S.; Chidlow, G.; Mills, R.A.; Danoy, P.; Casson, R.; Viswanathan, A.C.; Liu, J.Z.; et al. Genome-wide association study identifies susceptibility loci for open angle glaucoma at tmco1 and cdkn2b-as1. Nat. Genet. 2011, 43, 574–578. [Google Scholar] [CrossRef] [PubMed]
- Wiggs, J.L.; Yaspan, B.L.; Hauser, M.A.; Kang, J.H.; Allingham, R.R.; Olson, L.M.; Abdrabou, W.; Fan, B.J.; Wang, D.Y.; Brodeur, W.; et al. Common variants at 9p21 and 8q22 are associated with increased susceptibility to optic nerve degeneration in glaucoma. PLoS Genet. 2012, 8, e1002654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osman, W.; Low, S.K.; Takahashi, A.; Kubo, M.; Nakamura, Y. A genome-wide association study in the japanese population confirms 9p21 and 14q23 as susceptibility loci for primary open angle glaucoma. Hum. Mol. Genet. 2012, 21, 2836–2842. [Google Scholar] [CrossRef] [PubMed]
- Nakano, M.; Ikeda, Y.; Tokuda, Y.; Fuwa, M.; Omi, N.; Ueno, M.; Imai, K.; Adachi, H.; Kageyama, M.; Mori, K.; et al. Common variants in cdkn2b-as1 associated with optic-nerve vulnerability of glaucoma identified by genome-wide association studies in japanese. PLoS ONE 2012, 7, e33389. [Google Scholar] [CrossRef] [PubMed]
- Takamoto, M.; Kaburaki, T.; Mabuchi, A.; Araie, M.; Amano, S.; Aihara, M.; Tomidokoro, A.; Iwase, A.; Mabuchi, F.; Kashiwagi, K.; et al. Common variants on chromosome 9p21 are associated with normal tension glaucoma. PLoS ONE 2012, 7, e40107. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Lin, Y.; Vithana, E.N.; Jia, L.; Zuo, X.; Wong, T.Y.; Chen, L.J.; Zhu, X.; Tam, P.O.; Gong, B.; et al. Common variants near abca1 and in pmm2 are associated with primary open-angle glaucoma. Nat. Genet. 2014, 46, 1115–1119. [Google Scholar] [CrossRef] [PubMed]
- Gharahkhani, P.; Burdon, K.P.; Fogarty, R.; Sharma, S.; Hewitt, A.W.; Martin, S.; Law, M.H.; Cremin, K.; Bailey, J.N.; Loomis, S.J.; et al. Common variants near abca1, afap1 and gmds confer risk of primary open-angle glaucoma. Nat. Genet. 2014, 46, 1120–1125. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Allingham, R.R.; Nakano, M.; Jia, L.; Chen, Y.; Ikeda, Y.; Mani, B.; Chen, L.J.; Kee, C.; Garway-Heath, D.F.; et al. A common variant near tgfbr3 is associated with primary open angle glaucoma. Hum. Mol. Genet. 2015, 24, 3880–3892. [Google Scholar] [CrossRef] [PubMed]
- van Koolwijk, L.M.; Ramdas, W.D.; Ikram, M.K.; Jansonius, N.M.; Pasutto, F.; Hysi, P.G.; Macgregor, S.; Janssen, S.F.; Hewitt, A.W.; Viswanathan, A.C.; et al. Common genetic determinants of intraocular pressure and primary open-angle glaucoma. PLoS Genet. 2012, 8, e1002611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hysi, P.G.; Cheng, C.Y.; Springelkamp, H.; Macgregor, S.; Bailey, J.N.; Wojciechowski, R.; Vitart, V.; Nag, A.; Hewitt, A.W.; Hohn, R.; et al. Genome-wide analysis of multi-ancestry cohorts identifies new loci influencing intraocular pressure and susceptibility to glaucoma. Nat. Genet. 2014, 46, 1126–1130. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Klein, A.P.; Klein, B.E.; Lee, K.E.; Truitt, B.; Klein, R.; Iyengar, S.K.; Duggal, P. Exome array analysis identifies cav1/cav2 as a susceptibility locus for intraocular pressure. Investig. Ophthalmol. Vis. Sci. 2015, 56, 544–551. [Google Scholar] [CrossRef] [PubMed]
- Springelkamp, H.; Iglesias, A.I.; Cuellar-Partida, G.; Amin, N.; Burdon, K.P.; van Leeuwen, E.M.; Gharahkhani, P.; Mishra, A.; van der Lee, S.J.; Hewitt, A.W.; et al. Arhgef12 influences the risk of glaucoma by increasing intraocular pressure. Hum. Mol. Genet. 2015, 24, 2689–2699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramdas, W.D.; van Koolwijk, L.M.; Ikram, M.K.; Jansonius, N.M.; de Jong, P.T.; Bergen, A.A.; Isaacs, A.; Amin, N.; Aulchenko, Y.S.; Wolfs, R.C.; et al. A genome-wide association study of optic disc parameters. PLoS Genet. 2010, 6, e1000978. [Google Scholar] [CrossRef] [PubMed]
- Ramdas, W.D.; van Koolwijk, L.M.; Lemij, H.G.; Pasutto, F.; Cree, A.J.; Thorleifsson, G.; Janssen, S.F.; Jacoline, T.B.; Amin, N.; Rivadeneira, F.; et al. Common genetic variants associated with open-angle glaucoma. Hum. Mol. Genet. 2011, 20, 2464–2471. [Google Scholar] [CrossRef] [PubMed]
- Macgregor, S.; Hewitt, A.W.; Hysi, P.G.; Ruddle, J.B.; Medland, S.E.; Henders, A.K.; Gordon, S.D.; Andrew, T.; McEvoy, B.; Sanfilippo, P.G.; et al. Genome-wide association identifies atoh7 as a major gene determining human optic disc size. Hum. Mol. Genet. 2010, 19, 2716–2724. [Google Scholar] [CrossRef] [PubMed]
- Khor, C.C.; Ramdas, W.D.; Vithana, E.N.; Cornes, B.K.; Sim, X.; Tay, W.T.; Saw, S.M.; Zheng, Y.; Lavanya, R.; Wu, R.; et al. Genome-wide association studies in asians confirm the involvement of atoh7 and tgfbr3, and further identify card10 as a novel locus influencing optic disc area. Hum. Mol. Genet. 2011, 20, 1864–1872. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, A.I.; Springelkamp, H.; van der Linde, H.; Severijnen, L.A.; Amin, N.; Oostra, B.; Kockx, C.E.; van den Hout, M.C.; van Ijcken, W.F.; Hofman, A.; et al. Exome sequencing and functional analyses suggest that six6 is a gene involved in an altered proliferation-differentiation balance early in life and optic nerve degeneration at old age. Hum. Mol. Genet. 2014, 23, 1320–1332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vitart, V.; Bencic, G.; Hayward, C.; Skunca Herman, J.; Huffman, J.; Campbell, S.; Bucan, K.; Navarro, P.; Gunjaca, G.; Marin, J.; et al. New loci associated with central cornea thickness include col5a1, akap13 and avgr8. Hum. Mol. Genet. 2010, 19, 4304–4311. [Google Scholar] [CrossRef] [PubMed]
- Vithana, E.N.; Aung, T.; Khor, C.C.; Cornes, B.K.; Tay, W.T.; Sim, X.; Lavanya, R.; Wu, R.; Zheng, Y.; Hibberd, M.L.; et al. Collagen-related genes influence the glaucoma risk factor, central corneal thickness. Hum. Mol. Genet. 2011, 20, 649–658. [Google Scholar] [CrossRef] [PubMed]
- Ulmer, M.; Li, J.; Yaspan, B.L.; Ozel, A.B.; Richards, J.E.; Moroi, S.E.; Hawthorne, F.; Budenz, D.L.; Friedman, D.S.; Gaasterland, D.; et al. Genome-wide analysis of central corneal thickness in primary open-angle glaucoma cases in the neighbor and glaugen consortia. Investig. Ophthalmol. Vis. Sci. 2012, 53, 4468–4474. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.J.; Tam, P.O.; Leung, D.Y.; Fan, A.H.; Zhang, M.; Tham, C.C.; Chiang, S.W.; Fan, B.J.; Wang, N.; Pang, C.P. Snp rs1533428 at 2p16.3 as a marker for late-onset primary open-angle glaucoma. Mol. Vis. 2012, 18, 1629–1639. [Google Scholar] [PubMed]
- Kim, K.; Heo, D.W.; Kim, S.; Kim, J.S.; Kim, C.S.; Kang, C. Expansive marker analysis replicating the association of glaucoma susceptibility with human chromosome loci 1q43 and 10p12.31. Eur. J. Hum. Genet. 2014, 22, 409–413. [Google Scholar] [CrossRef] [PubMed]
- Fan, B.J.; Wang, D.Y.; Fan, D.S.; Tam, P.O.; Lam, D.S.; Tham, C.C.; Lam, C.Y.; Lau, T.C.; Pang, C.P. Snps and interaction analyses of myocilin, optineurin, and apolipoprotein e in primary open angle glaucoma patients. Mol. Vis. 2005, 11, 625–631. [Google Scholar] [PubMed]
- Lam, C.Y.; Fan, B.J.; Wang, D.Y.; Tam, P.O.; Yung Tham, C.C.; Leung, D.Y.; Ping Fan, D.S.; Chiu Lam, D.S.; Pang, C.P. Association of apolipoprotein e polymorphisms with normal tension glaucoma in a chinese population. J. Glaucoma 2006, 15, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Lake, S.; Liverani, E.; Desai, M.; Casson, R.; James, B.; Clark, A.; Salmon, J.F. Normal tension glaucoma is not associated with the common apolipoprotein e gene polymorphisms. Br. J. Ophthalmol. 2004, 88, 491–493. [Google Scholar] [CrossRef] [PubMed]
- Cao, D.; Jiao, X.; Liu, X.; Hennis, A.; Leske, M.C.; Nemesure, B.; Hejtmancik, J.F. Cdkn2b polymorphism is associated with primary open-angle glaucoma (poag) in the afro-caribbean population of barbados, west indies. PLoS ONE 2012, 7, e39278. [Google Scholar] [CrossRef] [PubMed]
- Mabuchi, F.; Sakurada, Y.; Kashiwagi, K.; Yamagata, Z.; Iijima, H.; Tsukahara, S. Association between genetic variants associated with vertical cup-to-disc ratio and phenotypic features of primary open-angle glaucoma. Ophthalmology 2012, 119, 1819–1825. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.H.; Wang, D.; Huang, C.; Zheng, Y.; Chen, H.; Pang, C.P.; Zhang, M. Interactive effects of atoh7 and rftn1 in association with adult-onset primary open-angle glaucoma. Investig. Ophthalmol. Vis. Sci. 2012, 53, 779–785. [Google Scholar] [CrossRef] [PubMed]
- Fan, B.J.; Wang, D.Y.; Pasquale, L.R.; Haines, J.L.; Wiggs, J.L. Genetic variants associated with optic nerve vertical cup-to-disc ratio are risk factors for primary open angle glaucoma in a us caucasian population. Investig. Ophthalmol. Vis. Sci. 2011, 52, 1788–1792. [Google Scholar] [CrossRef] [PubMed]
- Dimasi, D.P.; Burdon, K.P.; Hewitt, A.W.; Fitzgerald, J.; Wang, J.J.; Healey, P.R.; Mitchell, P.; Mackey, D.A.; Craig, J.E. Genetic investigation into the endophenotypic status of central corneal thickness and optic disc parameters in relation to open-angle glaucoma. Am. J. Ophthalmol. 2012, 154, 833–842. [Google Scholar] [CrossRef] [PubMed]
- Wiggs, J.L.; Kang, J.H.; Yaspan, B.L.; Mirel, D.B.; Laurie, C.; Crenshaw, A.; Brodeur, W.; Gogarten, S.; Olson, L.M.; Abdrabou, W.; et al. Common variants near cav1 and cav2 are associated with primary open-angle glaucoma in caucasians from the USA. Hum. Mol. Genet. 2011, 20, 4707–4713. [Google Scholar] [CrossRef] [PubMed]
- Loomis, S.J.; Kang, J.H.; Weinreb, R.N.; Yaspan, B.L.; Cooke Bailey, J.N.; Gaasterland, D.; Gaasterland, T.; Lee, R.K.; Lichter, P.R.; Budenz, D.L.; et al. Association of cav1/cav2 genomic variants with primary open-angle glaucoma overall and by gender and pattern of visual field loss. Ophthalmology 2014, 121, 508–516. [Google Scholar] [CrossRef] [PubMed]
- Kuehn, M.H.; Wang, K.; Roos, B.; Stone, E.M.; Kwon, Y.H.; Alward, W.L.; Mullins, R.F.; Fingert, J.H. Chromosome 7q31 poag locus: Ocular expression of caveolins and lack of association with poag in a us cohort. Mol. Vis. 2011, 17, 430–435. [Google Scholar] [PubMed]
- Burdon, K.P.; Crawford, A.; Casson, R.J.; Hewitt, A.W.; Landers, J.; Danoy, P.; Mackey, D.A.; Mitchell, P.; Healey, P.R.; Craig, J.E. Glaucoma risk alleles at cdkn2b-as1 are associated with lower intraocular pressure, normal-tension glaucoma, and advanced glaucoma. Ophthalmology 2012, 119, 1539–1545. [Google Scholar] [CrossRef] [PubMed]
- Desronvil, T.; Logan-Wyatt, D.; Abdrabou, W.; Triana, M.; Jones, R.; Taheri, S.; Del Bono, E.; Pasquale, L.R.; Olivier, M.; Haines, J.L.; et al. Distribution of col8a2 and col8a1 gene variants in caucasian primary open angle glaucoma patients with thin central corneal thickness. Mol. Vis. 2010, 16, 2185–2191. [Google Scholar] [PubMed]
- Dimasi, D.P.; Burdon, K.P.; Hewitt, A.W.; Savarirayan, R.; Healey, P.R.; Mitchell, P.; Mackey, D.A.; Craig, J.E. Candidate gene study to investigate the genetic determinants of normal variation in central corneal thickness. Mol. Vis. 2010, 16, 562–569. [Google Scholar] [PubMed]
- Rocha, A.V.; Talbot, T.; Magalhaes da Silva, T.; Almeida, M.C.; Menezes, C.A.; di Pietro, G.; Rios-Santos, F. Is the gstm1 null polymorphism a risk factor in primary open angle glaucoma? Mol. Vis. 2011, 17, 1679–1686. [Google Scholar] [PubMed]
- Juronen, E.; Tasa, G.; Veromann, S.; Parts, L.; Tiidla, A.; Pulges, R.; Panov, A.; Soovere, L.; Koka, K.; Mikelsaar, A.V. Polymorphic glutathione s-transferase m1 is a risk factor of primary open-angle glaucoma among estonians. Exp. Eye Res. 2000, 71, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Jansson, M.; Rada, A.; Tomic, L.; Larsson, L.I.; Wadelius, C. Analysis of the glutathione s-transferase m1 gene using pyrosequencing and multiplex pcr--no evidence of association to glaucoma. Exp. Eye Res. 2003, 77, 239–243. [Google Scholar] [CrossRef]
- Fan, B.J.; Liu, K.; Wang, D.Y.; Tham, C.C.; Tam, P.O.; Lam, D.S.; Pang, C.P. Association of polymorphisms of tumor necrosis factor and tumor protein p53 with primary open-angle glaucoma. Investig. Ophthalmol. Vis. Sci. 2010, 51, 4110–4116. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, W.; Crooks, K.; Schmidt, S.; Allingham, R.R.; Hauser, M.A. No evidence of association of heterozygous ntf4 mutations in patients with primary open-angle glaucoma. Am. J. Hum. Genet. 2010, 86, 498–499. [Google Scholar] [CrossRef] [PubMed]
- Rao, K.N.; Kaur, I.; Parikh, R.S.; Mandal, A.K.; Chandrasekhar, G.; Thomas, R.; Chakrabarti, S. Variations in ntf4, vav2, and vav3 genes are not involved with primary open-angle and primary angle-closure glaucomas in an indian population. Investig. Ophthalmol. Vis. Sci. 2010, 51, 4937–4941. [Google Scholar] [CrossRef] [PubMed]
- Vithana, E.N.; Nongpiur, M.E.; Venkataraman, D.; Chan, S.H.; Mavinahalli, J.; Aung, T. Identification of a novel mutation in the ntf4 gene that causes primary open-angle glaucoma in a chinese population. Mol. Vis. 2010, 16, 1640–1645. [Google Scholar] [PubMed]
- Chen, L.J.; Ng, T.K.; Fan, A.H.; Leung, D.Y.; Zhang, M.; Wang, N.; Zheng, Y.; Liang, X.Y.; Chiang, S.W.; Tam, P.O.; et al. Evaluation of ntf4 as a causative gene for primary open-angle glaucoma. Mol. Vis. 2012, 18, 1763–1772. [Google Scholar] [PubMed]
- Aung, T.; Ocaka, L.; Ebenezer, N.D.; Morris, A.G.; Krawczak, M.; Thiselton, D.L.; Alexander, C.; Votruba, M.; Brice, G.; Child, A.H.; et al. A major marker for normal tension glaucoma: Association with polymorphisms in the opa1 gene. Hum. Genet. 2002, 110, 52–56. [Google Scholar] [CrossRef] [PubMed]
- Mabuchi, F.; Tang, S.; Kashiwagi, K.; Yamagata, Z.; Iijima, H.; Tsukahara, S. The opa1 gene polymorphism is associated with normal tension and high tension glaucoma. Am. J. Ophthalmol. 2007, 143, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Yao, W.; Jiao, X.; Hejtmancik, J.F.; Leske, M.C.; Hennis, A.; Nemesure, B. Evaluation of the association between opa1 polymorphisms and primary open-angle glaucoma in barbados families. Mol. Vis. 2006, 12, 649–654. [Google Scholar] [PubMed]
- Carnes, M.U.; Liu, Y.P.; Allingham, R.R.; Whigham, B.T.; Havens, S.; Garrett, M.E.; Qiao, C.; Katsanis, N.; Wiggs, J.L.; Pasquale, L.R.; et al. Discovery and functional annotation of six6 variants in primary open-angle glaucoma. PLoS Genet. 2014, 10, e1004372. [Google Scholar] [CrossRef] [PubMed]
- Mabuchi, F.; Sakurada, Y.; Kashiwagi, K.; Yamagata, Z.; Iijima, H.; Tsukahara, S. Association between srbd1 and elovl5 gene polymorphisms and primary open-angle glaucoma. Investig. Ophthalmol. Vis. Sci. 2011, 52, 4626–4629. [Google Scholar] [CrossRef] [PubMed]
- Takano, Y.; Shi, D.; Shimizu, A.; Funayama, T.; Mashima, Y.; Yasuda, N.; Fukuchi, T.; Abe, H.; Ideta, H.; Zheng, X.; et al. Association of toll-like receptor 4 gene polymorphisms in japanese subjects with primary open-angle, normal-tension, and exfoliation glaucoma. Am. J. Ophthalmol. 2012, 154, 825–832. [Google Scholar] [CrossRef] [PubMed]
- Shibuya, E.; Meguro, A.; Ota, M.; Kashiwagi, K.; Mabuchi, F.; Iijima, H.; Kawase, K.; Yamamoto, T.; Nakamura, M.; Negi, A.; et al. Association of toll-like receptor 4 gene polymorphisms with normal tension glaucoma. Investig. Ophthalmol. Vis. Sci. 2008, 49, 4453–4457. [Google Scholar] [CrossRef]
- Sharma, S.; Burdon, K.P.; Chidlow, G.; Klebe, S.; Crawford, A.; Dimasi, D.P.; Dave, A.; Martin, S.; Javadiyan, S.; Wood, J.P.; et al. Association of genetic variants in the tmco1 gene with clinical parameters related to glaucoma and characterization of the protein in the eye. Investig. Ophthalmol. Vis. Sci. 2012, 53, 4917–4925. [Google Scholar] [CrossRef] [PubMed]
- Ozel, A.B.; Moroi, S.E.; Reed, D.M.; Nika, M.; Schmidt, C.M.; Akbari, S.; Scott, K.; Rozsa, F.; Pawar, H.; Musch, D.C.; et al. Genome-wide association study and meta-analysis of intraocular pressure. Hum. Genet. 2014, 133, 41–57. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.Y.; Shen, Y.C.; Wei, L.C.; Lin, K.H.; Feng, S.C.; Yang, Y.Y.; Chiu, C.H.; Tsai, H.Y. Polymorphism in the tnf-alpha(-863) locus associated with reduced risk of primary open angle glaucoma. Mol. Vis. 2012, 18, 779–785. [Google Scholar] [PubMed]
- Mossbock, G.; Weger, M.; Moray, M.; Renner, W.; Haller-Schober, E.M.; Mattes, D.; Schmut, O.; Wegscheider, B.; El-Shabrawi, Y. Tnf-alpha promoter polymorphisms and primary open-angle glaucoma. Eye 2006, 20, 1040–1043. [Google Scholar] [CrossRef] [PubMed]
- Neamatzadeh, H.; Soleimanizad, R.; Zare-Shehneh, M.; Gharibi, S.; Shekari, A.; Rahimzadeh, A.B. Association between p53 codon 72 (arg72pro) polymorphism and primary open-angle glaucoma in iranian patients. Iran Biomed. J. 2015, 19, 51–56. [Google Scholar] [PubMed]
- Emam, W.A.; Zidan, H.E.; Abdulhalim, B.E.; Dabour, S.A.; Ghali, M.A.; Kamal, A.T. Endothelial nitric oxide synthase polymorphisms and susceptibility to high-tension primary open-angle glaucoma in an egyptian cohort. Mol. Vis. 2014, 20, 804–811. [Google Scholar] [PubMed]
- Abu-Amero, K.K.; Kondkar, A.A.; Mousa, A.; Osman, E.A.; Al-Obeidan, S.A. Analysis of catalase snp rs1001179 in saudi patients with primary open angle glaucoma. Ophthalmic Genet. 2013, 34, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Abu-Amero, K.K.; Kondkar, A.A.; Mousa, A.; Osman, E.A.; Al-Obeidan, S.A. Association of mn-sod mutation (c.47t > c) with various poag clinical indices. Ophthalmic Genet. 2014, 35, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Abu-Amero, K.K.; Kondkar, A.A.; Mousa, A.; Osman, E.A.; Al-Obeidan, S.A. Lack of association of snp rs4236601 near cav1 and cav2 with poag in a saudi cohort. Mol. Vis. 2012, 18, 1960–1965. [Google Scholar] [PubMed]
- Abu-Amero, K.K.; Osman, E.A.; Azad, M.T.; Allingham, R.R.; Hauser, M.A.; Al-Obeidan, S.A. Lack of association between loxl1 gene polymorphisms and primary open angle glaucoma in the saudi arabian population. Ophthalmic Genet. 2012, 33, 130–133. [Google Scholar] [CrossRef] [PubMed]
- Abu-Amero, K.K.; Morales, J.; Bosley, T.M. Mitochondrial abnormalities in patients with primary open-angle glaucoma. Invest. Ophthalmol. Vis. Sci. 2006, 47, 2533–2541. [Google Scholar] [CrossRef] [PubMed]
- Zanon-Moreno, V.; Asensio-Marquez, E.M.; Ciancotti-Oliver, L.; Garcia-Medina, J.J.; Sanz, P.; Ortega-Azorin, C.; Pinazo-Duran, M.D.; Ordovas, J.M.; Corella, D. Effects of polymorphisms in vitamin e-, vitamin c-, and glutathione peroxidase-related genes on serum biomarkers and associations with glaucoma. Mol. Vis. 2013, 19, 231–242. [Google Scholar] [PubMed]
- Zanon-Moreno, V.; Ciancotti-Olivares, L.; Asencio, J.; Sanz, P.; Ortega-Azorin, C.; Pinazo-Duran, M.D.; Corella, D. Association between a slc23a2 gene variation, plasma vitamin c levels, and risk of glaucoma in a mediterranean population. Mol. Vis. 2011, 17, 2997–3004. [Google Scholar] [PubMed]
- Abu-Amero, K.K.; Morales, J.; Mohamed, G.H.; Osman, M.N.; Bosley, T.M. Glutathione s-transferase m1 and t1 polymorphisms in arab glaucoma patients. Mol. Vis. 2008, 14, 425–430. [Google Scholar] [PubMed]
- Unal, M.; Guven, M.; Devranoglu, K.; Ozaydin, A.; Batar, B.; Tamcelik, N.; Gorgun, E.E.; Ucar, D.; Sarici, A. Glutathione s transferase m1 and t1 genetic polymorphisms are related to the risk of primary open-angle glaucoma: A study in a turkish population. Br. J. Ophthalmol. 2007, 91, 527–530. [Google Scholar] [CrossRef] [PubMed]
- Al-Dabbagh, N.M.; Al-Dohayan, N.; Arfin, M.; Tariq, M. Apolipoprotein e polymorphisms and primary glaucoma in saudis. Mol. Vis. 2009, 15, 912–919. [Google Scholar] [PubMed]
- Saglar, E.; Yucel, D.; Bozkurt, B.; Ozgul, R.K.; Irkec, M.; Ogus, A. Association of polymorphisms in apoe, p53, and p21 with primary open-angle glaucoma in turkish patients. Mol. Vis. 2009, 15, 1270–1276. [Google Scholar] [PubMed]
- Nilforoushan, N.; Aghapour, S.; Raoofian, R.; Saee Rad, S.; Greene, W.K.; Fakhraie, G.; Heidari, M. Lack of association between the c677t single nucleotide polymorphism of the mthfr gene and glaucoma in iranian patients. Acta Med. Iran 2012, 50, 208–212. [Google Scholar] [PubMed]
- Gibson, J.; Griffiths, H.; De Salvo, G.; Cole, M.; Jacob, A.; Macleod, A.; Yang, Y.; Menon, G.; Cree, A.; Ennis, S.; et al. Genome-wide association study of primary open angle glaucoma risk and quantitative traits. Mol. Vis. 2012, 18, 1083–1092. [Google Scholar] [PubMed]
- Huang, W.; Wang, W.; Zhou, M.; Zhang, X. Association of single-nucleotide polymorphism rs4236601 near caveolin 1 and 2 with primary open-angle glaucoma: A meta-analysis. Clin. Exp. Ophthalmol. 2014, 42, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Hannon, G.J.; Beach, D. P15ink4b is a potential effector of tgf-beta-induced cell cycle arrest. Nature 1994, 371, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Fuchshofer, R. The pathogenic role of transforming growth factor-beta2 in glaucomatous damage to the optic nerve head. Exp. Eye Res. 2011, 93, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.K.; Casson, R.J.; Burdon, K.P.; Craig, J.E. Chromosome 9p21 primary open-angle glaucoma susceptibility locus: A review. Clin. Exp. Ophthalmol. 2014, 42, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Gallardo, M.E.; Lopez-Rios, J.; Fernaud-Espinosa, I.; Granadino, B.; Sanz, R.; Ramos, C.; Ayuso, C.; Seller, M.J.; Brunner, H.G.; Bovolenta, P.; et al. Genomic cloning and characterization of the human homeobox gene six6 reveals a cluster of six genes in chromosome 14 and associates six6 hemizygosity with bilateral anophthalmia and pituitary anomalies. Genomics 1999, 61, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Vitart, V.; Burdon, K.P.; Khor, C.C.; Bykhovskaya, Y.; Mirshahi, A.; Hewitt, A.W.; Koehn, D.; Hysi, P.G.; Ramdas, W.D.; et al. Genome-wide association analyses identify multiple loci associated with central corneal thickness and keratoconus. Nat. Genet. 2013, 45, 155–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iglesias, A.I.; Springelkamp, H.; Ramdas, W.D.; Klaver, C.C.; Willemsen, R.; van Duijn, C.M. Genes, pathways, and animal models in primary open-angle glaucoma. Eye 2015, 29, 1285–1298. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Wang, W.; Zhou, M.; Chen, S.; Zhang, X. Association of glutathione s-transferase polymorphisms (gstm1 and gstt1) with primary open-angle glaucoma: An evidence-based meta-analysis. Gene 2013, 526, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Shi, Y.; Yin, J.; Huang, Z. Are glutathione s-transferase polymorphisms (gstm1, gstt1) associated with primary open angle glaucoma? A meta-analysis. Gene 2013, 527, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Weng, Y.; Guo, J.; Chen, G.; Yao, K. Association of glutathione s transferases polymorphisms with glaucoma: A meta-analysis. PLoS ONE 2013, 8, e54037. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abu-Amero, K.; Kondkar, A.A.; Chalam, K.V. An Updated Review on the Genetics of Primary Open Angle Glaucoma. Int. J. Mol. Sci. 2015, 16, 28886-28911. https://doi.org/10.3390/ijms161226135
Abu-Amero K, Kondkar AA, Chalam KV. An Updated Review on the Genetics of Primary Open Angle Glaucoma. International Journal of Molecular Sciences. 2015; 16(12):28886-28911. https://doi.org/10.3390/ijms161226135
Chicago/Turabian StyleAbu-Amero, Khaled, Altaf A. Kondkar, and Kakarla V. Chalam. 2015. "An Updated Review on the Genetics of Primary Open Angle Glaucoma" International Journal of Molecular Sciences 16, no. 12: 28886-28911. https://doi.org/10.3390/ijms161226135
APA StyleAbu-Amero, K., Kondkar, A. A., & Chalam, K. V. (2015). An Updated Review on the Genetics of Primary Open Angle Glaucoma. International Journal of Molecular Sciences, 16(12), 28886-28911. https://doi.org/10.3390/ijms161226135