Insight into the Molecular and Functional Diversity of Cnidarian Neuropeptides
Abstract
:1. Introduction
2. Cnidarian Neuropeptides
2.1. FLPs (FMRFamide-Like Peptides)
Name | Peptide Sequence | Species | Reference |
---|---|---|---|
Antho-RFamide | pQGRFamide | Anthopleura elegantissima | [26] |
Cyanea-RFamide I | pQWLRGRFamide | Cyanea Lamarckii | [20] |
Cyanea-RFamide II | pQPLWSGRFamide | ||
Cyanea-RFamide III | GRFamide | ||
Pol-RFamide I | pQLLGGRFamide | Polyorchis penicillatus | [21] |
Pol-RFamide II | pQWLKGRFamide | [22] | |
Hydra-RFamide I | pQWLGGRFamide | Hydra magnipapillata | [11] |
Hydra-RFamide II | pQWFNGRFamide | ||
Hydra-RFamide III | KPHLRGRFamide | ||
Hydra-RFamide IV | HLRGRFamide | ||
Hydra-RFamide V | pQLMSGRFamide | Hydra magnipapillata | [23] |
Hydra-RFamide VI | pQLMRGRFamide | ||
Hydra-RFamide VII | pQLLRGRFamide | ||
Hydra-RFamide VIII | KPHYRGRFamide | ||
Hydra-RFamide IX | HYRGRFamide | ||
Hydra-RFamide X | KPHLIGRFamide | Hydra magnipapillata | [24] |
Hydra-RFamide XI | pQLMTGRFamide | ||
He-RFamide | pQWLKGRFamide | Hydractinia echinata | [25] |
Nv-RFamide I | pQITRFamide | Nematostella vectensis | [27] |
Nv-RFamide II | VVPRRFamide |
2.2. GLWamides
Name | Peptide Sequence | Species | Reference |
---|---|---|---|
MMA | pQQPGLWamide | Anthopleura elegantissima | [34] |
Hym-53 | NPYPGLWamide | Hydra magnipapillata | [8,32] |
Hym-54 | GPMTGLWamide | ||
Hym-248 | EPLPIGLWamide | ||
Hym-249 | KPIPGLWamide | ||
Hym-331 | GPPPGLWamide | ||
Hym-338 | GPPhPGLWamide | ||
Hym-370 | KPNAYKGKLPIGLWamide | ||
He-LWamide I | pQRPPGLWamide | Hydractinia echinata | [35] |
He-LWamide II | KPPGLWamide | ||
Ae-LWamide I | pQQHGLWamide | Actinia equine | [35] |
Ae-LWamide II | pQNPGLWamide | ||
Ae-LWamide III | pQPGLWamide | ||
Ae-LWamide IV | pQKAGLWamide | ||
Ae-LWamide V | pQLGLWamide | ||
Ae-LWamide VI | RSRIGLWamide | ||
Ae-MWamide | pQDLDIGMWamide | ||
MMA | pQQPGLWamide | ||
As-LWamide I | pQQAGLWamide | Anemonia sulcata | [35] |
As-LWamide II | pQHPGLWamide | ||
As-IWamide | pQERIGIWamide | ||
Ae-LWamide II | pQNPGLWamide | ||
MMA | pQQPGLWamide |
2.3. Hym-355
Name | Peptide Sequence | Species | Reference |
---|---|---|---|
Hym-355 | FPQSFLPRGamide | Hydra magnipapillata | [10] |
Antho-RPamide | LPPGPLPRPamide | Anthopleura elegantissma | [33] |
3. Functional Diversity of Cnidarian Neuropeptides
3.1. Role of FLPs in Muscle Contraction, Feeding, Sensory Activity, Reproduction, Metamorphosis, and Larval Movement
3.2. Role of GLWamides in Metamorphosis, Muscle Contraction, Planula Migration, Oocyte Maturation, and Spawning
3.3. Roles of Hym-355 in Neuron Differentiation, Muscle Contraction, Oocyte Maturation, and Spawning
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Nillni, E.A.; Luo, L.G.; Jackson, I.M.; McMillan, P. Identification of the thyrotropin-releasing hormone precursor, its processing products, and its coexpression with convertase 1 in primary cultures of hypothalamic neurons: Anatomic distribution of PC1 and PC2. Endocrinology 1996, 137, 5651–5661. [Google Scholar] [PubMed]
- Truman, J.W. The eclosion hormone synthesis of insects. Prog. Brain Res. 1992, 92, 361–374. [Google Scholar] [PubMed]
- Cottrell, G.A. The first peptide-gated ion channel. J. Exp. Biol. 1997, 200, 2377–2386. [Google Scholar] [PubMed]
- Brogiolo, W.; Stocker, H.; Ikeya, T.; Rintelen, F.; Fernandez, R.; Hafen, E. An evolutionally conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr. Biol. 2001, 11, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Fujisawa, T.; Hayakawa, E. Peptide signaling in Hydra. Int. J. Dev. Biol. 2012, 56, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Grimmelikhuijzen, C.J.P.; Leview, I.; Carstensen, K. Peptides in the nervous system of cnidarians: Structure, function and biosynthesis. Int. Rev. Cytol. 1996, 167, 37–89. [Google Scholar] [PubMed]
- Kass-Simon, G.; Pierobon, P. Cnidarian chemical neurotransmission, an updated overview. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2007, 146, 9–25. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Muneoka, Y.; Lohmann, Y.; deHaro, M.S.L.; Solleder, G.; Bosch, T.C.G.; David, C.N.; Bode, H.R.; Koizumi, O.; Shimizu, H.; et al. Systematic isolation of peptide signal molecules regulating development in hydra: LWamide and PW families. Proc. Natl. Acad. Sci. USA 1997, 94, 1241–1246. [Google Scholar] [CrossRef]
- Leitz, T.; Morand, K.; Mann, M. Metamorphosin A: A novel peptide controlling development of the lower metazoan Hydractinia echinata (Coelenterata, Hydrozoa). Dev. Biol. 1994, 163, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Koizumi, O.; Ariura, Y.; Romanovitch, A.; Bosch, T.C.G.; Kobayakawa, Y.; Mohri, S.; Bode, H.R.; Yum, S.; Hatta, M.; et al. A novel neuropeptide, Hym-355, positively regulates neuron differentiation in Hydra. Development 2000, 127, 997–1005. [Google Scholar]
- Moosler, A.; Rinehart, K.L.; Grimmelikhuijzen, C.J.P. Isolation of four novel neuropeptides, the Hydra RFamides I–IV, from Hydra magnipapillata. Biochem. Biophys. Res. Commun. 1996, 229, 596–602. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Fujisawa, T. Peptidomic approaches to the identification and characterization of functional peptides in Hydra. Methods Mol. Biol. 2010, 615, 275–292. [Google Scholar] [PubMed]
- Karas, M.; Bachmann, D.; Bahr, U.; Hillenkamp, F. Matrix-assisted ultraviolet laser desorption of nonvolatile compounds. Int. J. Mass Spectrom. Ion Process. 1987, 78, 53–68. [Google Scholar] [CrossRef]
- Karas, M.; Hillenkamp, F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 1988, 60, 2299–2301. [Google Scholar] [CrossRef] [PubMed]
- Price, D.A.; Greenberg, M.J. Structure of a molluscan cardioexcitatory neuropeptide. Science 1977, 97, 670–671. [Google Scholar] [CrossRef]
- Price, D.A.; Greenberg, M.J. Purification and characterization of a cardioexcitatory neuropeptide from the central ganglia of a bivalve mollusk. Prep. Biochem. 1977, 7, 261–281. [Google Scholar] [PubMed]
- Price, D.A.; Greenberg, M.J. The hunting of the FaRPs: The distribution of FMRFamide-related peptides. Biol. Bull. 1989, 177, 198–205. [Google Scholar] [CrossRef]
- Espinoza, E.; Carrigan, M.; Thomas, S.G.; Shaw, G.; Edison, A.S. A statistical view of FMRFamide neuropeptide diversity. Mol. Neurobiol. 2000, 21, 35–56. [Google Scholar] [CrossRef] [PubMed]
- Krajniak, K.G. Invertebrate FMRFamide related peptides. Protein Pept. Lett. 2013, 20, 647–670. [Google Scholar] [CrossRef] [PubMed]
- Moosler, A.; Rhinehart, K.L.; Grimmelikhuijzen, C.J.P. Isolation of three novel peptides, the Cyanea-RFamides I-III, from scyphomedusae. Biochem. Biophys. Res. Commun. 1997, 236, 743–749. [Google Scholar] [CrossRef] [PubMed]
- Grimmelikhuijzen, C.J.P.; Hahn, M.; Rhinehart, K.L.; Spencer, A.N. Isolation of Glu-Leu-Gly-Gly-Arg-Phe-NH2. Brain Res. 1988, 475, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Grimmelikhuijzen, C.J.P.; Rhinehart, K.L.; Spencer, A.N. Isolation of the neuropeptide Glu-Trp-Leu-Lys-Gly-Arg-Phe-NH2 (Pol-RFamide II) from the hydromedusa Polyorchis penicillatus. Biochem. Biophys. Res. Commun. 1992, 183, 375–382. [Google Scholar]
- Darmer, D.; Hauser, F.; Nothacker, H.P.; Bosch, T.C.G.; Williamson, M.; Grimmilikhuijzen, C.J.P. Three different prohormones yield a variety of Hydra-RFamide (Arg-Phe-NH2) neuropeptides in Hydra magnipapillata. Biochem. J. 1998, 332, 403–412. [Google Scholar] [PubMed]
- Fujisawa, T. Hydra peptide project 1993–2007. Dev. Growth Differ. 2008, 50, S257–S268. [Google Scholar] [CrossRef] [PubMed]
- Gajewski, M.; Schmutzler, C.; Plickert, G. Structure of neuropeptide precursors in cnidarian. Ann. N. Y. Acad. Sci. 1998, 839, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Grimmelikhuijzen, C.J.P.; Graff, D. Isolation of Glu-Gly-Arg-Phe-NH2 (Antho-RFamide), a neuropeptide from sea anemones. Proc. Natl. Acad. Sci. USA 1986, 83, 9817–9821. [Google Scholar]
- Anctil, M. Chemical transmission in the sea anemone Nematostella vectensis: A genomic perspective. Comp. Biochem. Physiol. D 2009, 4, 268–289. [Google Scholar]
- Darmer, D.; Schmutzler, C.; Diekhoff, D.; Grimmelikhuijzen, C.J.P. Primary structure of the precursor for the sea anemone neuropeptide Antho-RFamide (Glu-Gly-Arg-Phe-NH2). Proc. Natl. Acad. Sci. USA 1991, 88, 2555–2559. [Google Scholar]
- Schmutzler, C.; Darmer, D.; Diekhoff, D.; Grimmelikhuijzen, C.J.P. Identification of a novel type of processing sites in the precursor for the sea anemone neuropeptide Antho-RFamide (Glu-Gly-Arg-Phe-NH2) from Anthopleura elegantissima. J. Biol. Chem. 1992, 267, 22534–22541. [Google Scholar]
- Reinscheid, R.K.; Grimmelikhuijzen, C.J.P. Primary structure of the precursor for the anthozoan neuropeptide Antho-RFamide from Renilla kollikeri: Evidence for unusual processing enzymes. J. Neurochem. 1994, 62, 1214–1222. [Google Scholar] [CrossRef] [PubMed]
- Schmutzler, C.; Diekhoff, D.; Grimmelikhuijzen, C.J.P. The primary structure of the Pol-RFamide neuropeptide precursor protein from the hydromedusa Polyorchis penicillatus indicates a novel processing proteinase activity. Biochem. J. 1994, 299, 431–436. [Google Scholar] [PubMed]
- Takahashi, T.; Kobayakawa, Y.; Muneoka, Y.; Fujisawa, Y.; Mohri, S.; Hatta, M.; Shimizu, H.; Fujisawa, T.; Sugiyama, T.; Takahara, M.; et al. Identification of a new member of the GLWamide peptide family: Physiological activity and cellular localization in cnidarian polyps. Comp. Biochem. Physiol. Part B 2003, 135, 309–324. [Google Scholar] [CrossRef]
- Carstensen, K.; Rinehart, K.L.; McFarlane, I.D.; Grimmelikhuijzen, C.J.P. Isolation of Leu-Pro-Pro-Gly-Pro-Leu-Pro-Arg-Pro-NH2 (Antho-RPamide), an N-terminally protected, biologically active neuropeptide from sea anemones. Peptides 1992, 13, 851–857. [Google Scholar] [CrossRef] [PubMed]
- Leviev, I.; Williamson, M.; Grimmelikhuijzen, C.J.P. Molecular cloning of a preprohormone from Hydra magnipapillata containing multiple copies of Hydra-LWamide (Leu-Trp-NH2) neuropeptides: Evidence for processing at Ser and Asn residues. J. Neurochem. 1997, 68, 1319–1325. [Google Scholar] [CrossRef] [PubMed]
- Gajewski, M.; Leitz, T.; Schlosherr, J.; Plickert, G. LWamides from cnidaria constitute a novel family of neuropeptides with morphogenetic activity. Roux’s Arch. Dev. Biol. 1996, 205, 232–242. [Google Scholar] [CrossRef]
- Leitz, T.; Lay, M. Metamorphosin A is a neuropeptide. Roux’s Arch. Dev. Biol. 1995, 204, 276–279. [Google Scholar] [CrossRef]
- Takahashi, T.; Ohtani, M.; Muneoka, Y.; Aimoto, S.; Hatta, M.; Shimizu, H.; Fujisawa, T.; Sugiyama, T.; Koizumi, O. Structure-activity relation of LWamide peptides synthesized with a multipeptide synthesizer. In Peptide Chemistry 1996; Kitada, C., Ed.; Protein Research Foundation: Osaka, Japan, 1997; pp. 193–196. [Google Scholar]
- Muneoka, Y.; Takahashi, T.; Kobayashi, M.; Ikeda, T.; Minakata, H.; Nomoto, K. Phylogenetic aspects of structure and action of molluscan neuropeptides. In Perspectives in Comparative Endocrinology; Davey, K.G., Peter, R.E., Tobe, S.S., Eds.; National Research Council of Canada: Toronto, ON, Canada, 1994; pp. 109–118. [Google Scholar]
- Raina, A.K.; Jaffe, H.; Kempe, T.G.; Keim, P.; Blacher, R.W.; Fales, H.M.; Riley, C.T.; Klum, J.A.; Ridgway, R.L.; Haves, D.K. Identification of a neuropeptide hormone that regulates sex pheromone production in female moths. Science 1989, 244, 796–798. [Google Scholar] [CrossRef] [PubMed]
- Morris, H.R.; Panico, M.; Karplus, A.; Lloyd, P.E.; Piniker, B. Identification by FAB-MS of the structure of a new cardioactive peptide from Aplysia. Nature 1982, 300, 643–645. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, P.E.; Kupfermann, I.; Weiss, K.R. Sequence of small cardioactive peptide A: A second member of a class of neuropeptides in Aplysia. Peptides 1987, 8, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, T.; Kubota, I.; Miki, W.; Nose, T.; Takao, T.; Shimonishi, Y.; Muneoka, Y. Structures and actions of 20 novel neuropeptides isolated from the ventral nerve cords of an echiuroid worm, Urechis unicinctus. In Peptide Chemistry 1992; Yanaihara, N., Ed.; ESCOM: Leiden, The Netherlands, 1933; pp. 583–585. [Google Scholar]
- Minakata, H.; Ikeda, T.; Fujita, T.; Kiss, T.; Hiripi, L.; Muneoka, Y.; Nomoto, K. Neuropeptides isolated from Helix pomatia. Part 2. FMRFamide-related peptides, S-Iamide peptides, FR peptides and others. In Peptide Chemistry 1992; Yanaihara, N., Ed.; ESCOM: Leiden, The Netherlands, 1993; pp. 579–582. [Google Scholar]
- Grimmelikhuijzen, C.J.P.; Dierickx, K.; Boer, G.J. Oxytocin/vasopressin-like immunoreactivity is present in the nervous system of hydra. Neuroscience 1982, 7, 3191–3199. [Google Scholar] [CrossRef] [PubMed]
- Koizumi, O.; Bode, H.R. Plasticity in the nervous system of adult hydra. III. Conversion of neurons to expression of a vasopressin-like immunoreactivity depends on axial location. J. Neurosci. 1991, 11, 2011–2020. [Google Scholar] [PubMed]
- Morishita, F.; Nitagai, Y.; Furukawa, Y.; Matsushima, O.; Takahashi, T.; Hatta, M.; Fujisawa, T.; Tunamoto, S.; Koizumi, O. Identification of a vasopressin-like immunoreactive substance in hydra. Peptides 2003, 24, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Koizumi, O.; Hamada, S.; Minobe, S.; Hamaguchi-Hamada, K.; Kurumata-Shigeto, M.; Nakamura, M. The nerve ring in cnidarians: Its presence and structure in hydrozoan medusa. Zoology 2014, 118. [Google Scholar] [CrossRef]
- McFarlane, I.D.; Graff, D.; Grimmelikhuijzen, C.J.P. Excitatory actions of Antho-RFamide, an anthozoan neuropeptide, on muscles and conducting systems in the sea anemone Calliactis parasitica. J. Exp. Biol. 1987, 133, 157–168. [Google Scholar]
- Anctil, M.; Grimmelikhuijzen, C.J.P. Excitatory action of the native neuropeptide Antho-RFamide in muscles in the pennatulid Renilla Kollikeri. Gen. Pharmacol. 1989, 20, 381–384. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, H.; Fujisawa, T. Peduncle of Hydra and the heart of higher organisms share a common ancestral origin. Genesis 2003, 36, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Cottrell, G.A.; Green, K.A.; Davis, N.W. The neuropeptide Phe-Met-Arg-Phe-NH2 (FMRFamide) can activate a ligand gated ion channel in Helix neurons. Pflugers Arch. Eur. J. Physiol. 1990, 416, 612–614. [Google Scholar] [CrossRef]
- Lingueglia, E.; Champigny, G.; Lazdunski, M.; Barbry, P. Cloning of the amiloride-sensitive FMRFamide peptide-gated sodium channel. Nature 1995, 378, 730–733. [Google Scholar] [CrossRef] [PubMed]
- Golubovic, A.; Kuhn, A.; Williamson, M.; Kalbacher, H.; Holstein, T.W.; Grimmelikhuijzen, C.J.P.; Grunder, S. A peptide-gated ion channel from the freshwater polyp Hydra. J. Biol. Chem. 2007, 282, 35098–35103. [Google Scholar] [CrossRef] [PubMed]
- Durrnagel, S.; Kuhn, A.; Tsiairis, C.D.; Williamson, M.; Kalbacher, H.; Grimmelikhuijzen, C.J.P.; Holstein, T.W.; Grunder, S. Three homologous subunits form a high affinity peptide-gated ion channel in Hydra. J. Biol. Chem. 2010, 285, 11958–11965. [Google Scholar] [CrossRef] [PubMed]
- Assmann, M.; Kuhn, A.; Durrnagel, S.; Holstein, T.W.; Grunder, S. The comprehensive analysis of DEG/ENaC subunits in Hydra reveals a large variety of peptide-gated channels, potentially involved in neuromuscular transmission. BMC Biol. 2014, 12, 84. [Google Scholar] [CrossRef] [PubMed]
- Tardent, P. The cnidarian cnidocyte, a high tech cellular weaponry. BioEssays 1995, 17, 351–362. [Google Scholar] [CrossRef]
- Holtmann, M.; Thurm, U. Mono- and oligo-vesicular synapses and their connectivity in a Cnidarian sensory epithelium (Coryne tubulosa). J. Comp. Neurol. 2001, 432, 537–549. [Google Scholar] [CrossRef] [PubMed]
- Westfall, J.A.; Elliott, C.F.; Carlin, R.W. Ultrastructural evidence for two-cell and three-cell neural pathways in the tentacle epidermis of the sea anemone Aiptasia pallida. J. Morphol. 2002, 251, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Anderson, P.A.; Thompson, L.F.; Moneypenny, C.G. Evidence for a common pattern of peptidergic innervations of cnidocytes. Biol. Bull. 2004, 207, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, N.; Hartenstein, V.; Jacobs, D.K. Development of the rhopalial nervous system in Aurelia sp. 1 (Cnidaria, Scyphozoa). Dev. Genes Evol. 2009, 219, 301–317. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, M.E.; Henry, J.; Anctil, M. Spawning and gamete follicle rupture in the cnidarian Renilla Koellikeri: Effects of putative neurohormones. Gen. Comp. Endocrinol. 2004, 137, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Plickert, G.; Kroiher, M.; Munck, A. Cell proliferation and early differentiation during embryonic development and metamorphosis of Hydractinia echinata. Development 1988, 103, 795–803. [Google Scholar] [PubMed]
- Katsukura, Y.; Ando, H.; David, C.N.; Grimmelikhuijzen, C.J.P.; Sugiyama, T. Control of planula migration by LWamide and RFamide neuropeptides in Hydractinia echnata. J. Exp. Biol. 2004, 207, 1803–1810. [Google Scholar] [CrossRef] [PubMed]
- Leitz, T. Metamorphosin A and related compounds: A novel family of neuropeptides with morphogenetic activity. Ann. N.Y. Acad. Sci. 1998, 839, 105–110. [Google Scholar] [CrossRef]
- Leitz, T. Induction of metamorphosis of the marine hydrozoan Hydractinia echnata Fleming, 1828. Biofouling 1998, 12, 173–187. [Google Scholar] [CrossRef]
- Katsukura, Y.; David, C.N.; Grimmelikhuijzen, C.J.P.; Sugiyama, T. Inhibition of metamorphosis by RFamide neuropeptides in planula larvae of Hydractinia echinata. Dev. Genes Evol. 2003, 213, 579–586. [Google Scholar] [CrossRef] [PubMed]
- Seipp, S.; Schmich, J.; Will, B.; Schetter, E.; Plickert, G.; Leitz, T. Neuronal cell death during metamorphosis of Hydractinia echinata (Cnidaria, Hydrozoa). Invertebr. Neurosci. 2010, 10, 77–91. [Google Scholar] [CrossRef]
- Takahashi, T.; Hatta, M. The importance of GLWamide neuropeptides in Cnidarian development and physiology. J. Amino Acids 2011, 2011. [Google Scholar] [CrossRef] [PubMed]
- Schmich, J.; Trepel, S.; Leitz, T. The role of GLWamides in metamorphosis of Hydractinia echinata. Dev. Genes Evol. 1998, 208, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Iwao, K.; Fujisawa, T.; Hatta, M. A cnidarian neuropeptide of the GLWamide family indices metamorphosis of reef-building corals in the genus Acropora. Coral Reefs 2002, 21, 127–129. [Google Scholar]
- Erwin, P.M.; Szmant, A.M. Settlement induction of Acropora palmate planulae by a GLW-amide neuropeptide. Coral Reefs 2010, 29, 929–939. [Google Scholar] [CrossRef]
- Marcum, B.A.; Campbell, R.D. Development of hydra lacking nerve and intestinal cells. J. Cell Sci. 1978, 29, 17–33. [Google Scholar] [PubMed]
- Campbell, R.D. Elimination of Hydra intestinal and nerve cells by means of colchicines. J. Cell Sci. 1976, 21, 1–13. [Google Scholar] [PubMed]
- Takeda, N.; Kyozuka, K.; Deguchi, R. Increase in intracellular cAMP is a prerequisite signal for initiation of physiological oocyte meiosis maturation in the hydrozoan Cytaeis uchidae. Dev. Biol. 2006, 298, 248–258. [Google Scholar] [CrossRef] [PubMed]
- Takeda, N.; Nakajima, Y.; Koizumi, O.; Fujisawa, T.; Takahashi, T.; Matsumoto, M.; Deguchi, R. Neuropeptides trigger oocyte maturation and subsequent spawning in the hydrozoan jellyfish Cytaeis uhcidae. Mol. Reprod. Dev. 2013, 80, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Koizumi, O.; Hayakawa, E.; Minobe, S.; Suetsugu, R.; Kobayakawa, Y.; Bosch, T.C.G.; David, C.N.; Fujisawa, T. Further characterization of the PW peptide family that inhibits neuron differentiation in Hydra. Dev. Genes Evol. 2009, 219, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T. Neuropeptides and epitheliopeptides: Structural and functional diversity in an ancestral metazoan Hydra. Protein Pept. Lett. 2013, 20, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Fujisawa, T.; Hayakawa, E.; Takahashi, T. Systematic identification of peptide signaling molecules by combining Hydra peptide and EST projects. In Peptide Chemistry 2004; Shimohigashi, Y., Ed.; Protein Research Foundation: Osaka, Japan, 2005; pp. 21–24. [Google Scholar]
- Hamaguchi-Hamada, K.; Fujisawa, Y.; Koizumi, O.; Muneoka, Y.; Okado, N.; Hamada, S. Immunohistochemical evidence for the existence of novel mammalian neuropeptides related to the Hydra GLW-amide neuropeptide family. Cell Tissue Res. 2009, 337, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Glauber, K.M.; Dana, C.E.; Park, S.S.; Colby, D.A.; Noro, Y.; Fujisawa, T.; Chamberlin, A.R.; Steele, R.E. A small molecule screen identifies a novel compound that induces a homeotic transformation in Hydra. Development 2013, 140, 4788–4796. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, B.; Wang, W.; Graspeuntner, S.; Li, Y.; Insua, S.; Herbst, E-M.; Dirksen, P.; Boehm, A-M.; Hemmrich, G.; Sommer, F.; et al. Regulation of polyp-to-jellyfish transition in Aurelia aurita. Curr. Biol. 2014, 24, 263–273. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takahashi, T.; Takeda, N. Insight into the Molecular and Functional Diversity of Cnidarian Neuropeptides. Int. J. Mol. Sci. 2015, 16, 2610-2625. https://doi.org/10.3390/ijms16022610
Takahashi T, Takeda N. Insight into the Molecular and Functional Diversity of Cnidarian Neuropeptides. International Journal of Molecular Sciences. 2015; 16(2):2610-2625. https://doi.org/10.3390/ijms16022610
Chicago/Turabian StyleTakahashi, Toshio, and Noriyo Takeda. 2015. "Insight into the Molecular and Functional Diversity of Cnidarian Neuropeptides" International Journal of Molecular Sciences 16, no. 2: 2610-2625. https://doi.org/10.3390/ijms16022610
APA StyleTakahashi, T., & Takeda, N. (2015). Insight into the Molecular and Functional Diversity of Cnidarian Neuropeptides. International Journal of Molecular Sciences, 16(2), 2610-2625. https://doi.org/10.3390/ijms16022610