Lack of Association between the TSPAN18 Gene and Schizophrenia Based on New Data from Han Chinese and a Meta-Analysis
Abstract
:1. Introduction
2. Results
2.1. Case-Control Study
Makers | Allele Freq (%) | p-Value | OR a (95% CI) | Genotype (N) | HWE p-Value | Model | OR b (95% CI) | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SNP | ID | |||||||||||
SNP1 | rs11038167 | A | C | AA | AC | CC | ||||||
SCZ | 43.5 | 56.5 | 0.935 | 0.993 (0.835–1.181) | 79 | 227 | 137 | 0.238 | Add | 0.993 (0.838–1.177) | 0.936 | |
CTR | 43.6 | 56.4 | 134 | 280 | 214 | Dom | 1.155 (0.890–1.498) | 0.297 | ||||
Rec | 0.800 (0.587–1.090) | 0.157 | ||||||||||
SNP2 | rs11038172 | A | G | AA | AG | GG | ||||||
SCZ | 47.9 | 52.1 | 0.166 | 1.130 (0.951–1.342) | 114 | 197 | 132 | 0.954 | Add | 1.127 (0.950–1.337) | 0.171 | |
CTR | 44.8 | 55.2 | 120 | 323 | 185 | Dom | 0.984 (0.754–1.284) | 0.905 | ||||
Rec | 1.450 (1.083–1.941) | 0.012 | ||||||||||
SNP3 | rs835990 | G | A | GG | AG | AA | ||||||
SCZ | 25.2 | 74.8 | 0.796 | 1.027 (0.841–1.254) | 31 | 158 | 248 | 0.461 | Add | 1.026 (0.843–1.249) | 0.799 | |
CTR | 24.7 | 75.3 | 41 | 224 | 355 | Dom | 1.021 (0.797–1.307) | 0.870 | ||||
Rec | 1.078 (0.665–1.749) | 0.760 | ||||||||||
SNP4 | rs704671 | A | C | AA | AC | CC | ||||||
SCZ | 37.4 | 62.6 | 0.269 | 1.106 (0.925–1.323) | 58 | 215 | 170 | 0.324 | Add | 1.104 (0.925–1.318) | 0.274 | |
CTR | 35.0 | 65.0 | 86 | 268 | 274 | Dom | 1.243 (0.970–1.593) | 0.086 | ||||
Rec | 0.949 (0.664–1.358) | 0.776 | ||||||||||
SNP5 | rs73456450 | G | A | GG | AG | AA | ||||||
SCZ | 2.25 | 97.75 | 0.667 | 0.883 (0.502–1.555) | 0 | 20 | 423 | 0.551 | Add | 0.889 (0.512–1.543) | 0.676 | |
CTR | 2.25 | 97.75 | 2 | 28 | 598 | Dom | 0.943 (0.528–1.682) | 0.841 | ||||
Rec | 0.999 | |||||||||||
SNP6 | rs836001 | G | C | GG | GC | CC | ||||||
SCZ | 25.3 | 75.7 | 0.739 | 0.967 (0.794–1.178) | 39 | 146 | 258 | 0.065 | Add | 0.969 (0.799–1.174) | 0.746 | |
CTR | 25.9 | 75.1 | 43 | 237 | 343 | Dom | 0.878 (0.687–1.124) | 0.302 | ||||
Rec | 1.302 (0.829–2.045) | 0.252 | ||||||||||
SNP7 | rs836002 | G | C | GG | GC | CC | ||||||
SCZ | 24.2 | 75.8 | 0.716 | 0.964 (0.789–1.177) | 30 | 154 | 259 | 0.621 | Add | 0.964 (0.970–1.176) | 0.718 | |
CTR | 24.8 | 75.2 | 37 | 238 | 353 | Dom | 0.912 (0.713–1.166) | 0.463 | ||||
Rec | 1.160 (0.705–1.908) | 0.558 |
2.2. Meta-Analysis
3. Discussion
4. Experimental Section
4.1. Subjects
4.2. Single Nucleotide Polymorphism (SNP) Selection and Genotyping
4.3. Statistical Analyses
4.4. Meta-Analysis
Acknowledgments
Author Contributions
Conflicts of interest
References
- Jia, P.; Wang, L.; Meltzer, H.Y.; Zhao, Z. Common variants conferring risk of schizophrenia: A pathway analysis of GWAS data. Schizophr. Res. 2010, 122, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Yuan, A.; Yi, Z.; Wang, Q.; Sun, J.; Li, Z.; Du, Y.; Zhang, C.; Yu, T.; Fan, J.; Li, H.; et al. ANK3 as a risk gene for schizophrenia: New data in Han Chinese and meta analysis. Am. J. Med. Genet. 2012, 159B, 997–1005. [Google Scholar] [CrossRef] [PubMed]
- Ratta-Apha, W.; Hishimoto, A.; Mouri, K.; Shiroiwa, K.; Sasada, T.; Yoshida, M.; Supriyanto, I.; Ueno, Y.; Asano, M.; Shirakawa, O.; et al. Association analysis of the DISC1 gene with schizophrenia in the Japanese population and DISC1 immunoreactivity in the postmortem brain. Neurosci. Res. 2013, 77, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Chant, D.; Welham, J.; McGrath, J. A systematic review of the prevalence of schizophrenia. PLoS Med. 2005, 2, 413–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lichtenstein, P.; Yip, B.H.; Bjork, C.; Pawitan, Y.; Cannon, T.D.; Sullivan, P.F.; Hultman, C.M. Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: A population-based study. Lancet 2009, 373, 234–239. [Google Scholar] [CrossRef]
- Yue, W.H.; Wang, H.F.; Sun, L.D.; Tang, F.L.; Liu, Z.H.; Zhang, H.X.; Li, W.Q.; Zhang, Y.L.; Zhang, Y.; Ma, C.C.; et al. Genome-wide association study identifies a susceptibility locus for schizophrenia in Han Chinese at 11p11.2. Nat. Genet. 2011, 43, 1228–1231. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Jin, C.; Qin, H.D.; Wang, J.; Sha, W.; Wang, M.; Zhang, Y.; Zhang, F.; Li, J.; Li, J.; et al. Replication study confirms link between TSPAN18 mutation and schizophrenia in Han Chinese. PLoS ONE 2013, 8, e58785. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Tang, J.; Wang, D.; Zhang, W.; Liu, W.; Wang, D.; Liu, X.H.; Gong, W.; Yao, Y.G.; Chen, X. Evaluating risk loci for schizophrenia distilled from genome-wide association studies in Han Chinese from Central China. Mol. Psychiatry 2013, 18, 638–639. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Frigola, C.; Burgaya, F.; de Lecea, L.; Soriano, E. Pattern of expression of the tetraspanin Tspan-5 during brain development in the mouse. Mech. Dev. 2001, 106, 207–212. [Google Scholar] [CrossRef]
- Pan, S.J.; Wu, Y.B.; Cai, S.; Pan, Y.X.; Liu, W.; Bian, L.G.; Sun, B.; Sun, Q.F. Over-expression of tetraspanin 8 in malignant glioma regulates tumor cell progression. Biochem. Biophys. Res. Commun. 2015, 458, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Cheong, C.M.; Chow, A.W.; Fitter, S.; Hewett, D.R.; Martin, S.K.; Williams, S.A.; To, L.B.; Zannettino, A.C.; Vandyke, K. Tetraspanin 7 (TSPAN7) expression is upregulated in multiple myeloma patients and inhibits myeloma tumour development in vivo. Exp. Cell Res. 2015, 332, 24–38. [Google Scholar] [CrossRef] [PubMed]
- Kopczynski, C.C.; Davis, G.W.; Goodman, C.S. A neural tetraspanin, encoded by late bloomer, that facilitates synapse formation. Science 1996, 271, 1867–1870. [Google Scholar] [CrossRef] [PubMed]
- Zemni, R.; Bienvenu, T.; Vinet, M.C.; Sefiani, A.; Carrie, A.; Billuart, P.; McDonell, N.; Couvert, P.; Francis, F.; Chafey, P.; et al. A new gene involved in X-linked mental retardation identified by analysis of an X;2 balanced translocation. Nat. Genet. 2000, 24, 167–170. [Google Scholar] [CrossRef] [PubMed]
- Colombo, D. Characterization of the Tetraspanin Protein Tspan18. Ph.D. Thesis, University of Birmingham, Birmingham, England, September 2010. [Google Scholar]
- Zhang, L.; Yang, H.; Zhao, H.; Zhao, C. Calcium-related signaling pathways contributed to dopamine-induced cortical neuron apoptosis. Neurochem. Int. 2011, 58, 281–294. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.; Zhang, Y.; Wang, J.; Zhou, Z.; Sha, W.; Wang, M.; Zhang, F.; Li, J.; Li, J.; Yu, S.; et al. Lack of association between MPC2 variants and schizophrenia in a replication study of Han Chinese. Neurosci. Lett. 2013, 552, 120–123. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Cheng, Z.; Zhang, F.; Zhou, Z.; Yu, S.; Jin, C. Lack of association between microRNA-137 SNP rs1625579 and schizophrenia in a replication study of Han Chinese. Mol. Genet. Genomics 2015, 290, 297–301. [Google Scholar] [CrossRef] [PubMed]
- Ke, X.; Cardon, L.R. Efficient selective screening of haplotype tag SNPs. Bioinformatics (Oxf.) 2003, 19, 287–288. [Google Scholar] [CrossRef]
- De Bakker, P.I.; Yelensky, R.; Pe’er, I.; Gabriel, S.B.; Daly, M.J.; Altshuler, D. Efficiency and power in genetic association studies. Nat. Genet. 2005, 37, 1217–1223. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; Cheng, J.; Ding, H.; Jiang, Z.; Guo, Y.; Yuan, H. A rapid method for simultaneous multi-gene mutation screening in children with nonsyndromic hearing loss. Genomics 2014, 104, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Li, M.; Liu, R.; Wang, Y.; Gu, H. Interleukin 17A rs3819024 A>G polymorphism is associated with an increased risk of gastric cardia adenocarcinoma in a Chinese population. Biomarkers 2014, 19, 411–416. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yin, J.; Zheng, L.; Wang, L.; Shi, Y.; Tang, W.; Ding, G.; Liu, C.; Liu, R.; Chen, S.; et al. The variant interleukin 1f7 rs3811047 G>A was associated with a decreased risk of gastric cardiac adenocarcinoma in a Chinese Han population. Tumour Biol. 2014, 35, 3509–3515. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Wang, X.; Wei, J.; Wang, L.; Shi, Y.; Zheng, L.; Tang, W.; Ding, G.; Liu, C.; Liu, R.; et al. Interleukin 12B rs3212227 T>G polymorphism was associated with an increased risk of gastric cardiac adenocarcinoma in a Chinese population. Dis. Esophagus 2014, 28, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 2005, 21, 263–265. [Google Scholar] [CrossRef] [PubMed]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. Br. Med. J. 2003, 327, 557–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higgins, J.P.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef] [PubMed]
- Lau, J.; Ioannidis, J.P.; Schmid, C.H. Quantitative synthesis in systematic reviews. Ann. Intern. Med. 1997, 127, 820–826. [Google Scholar] [CrossRef] [PubMed]
- DerSimonian, R.; Laird, N. Meta-analysis in clinical trials. Control. Clin. Trials 1986, 7, 177–188. [Google Scholar] [CrossRef]
- Mantel, N.; Haenszel, W. Statistical aspects of the analysis of data from retrospective studies of disease. J. Natl. Cancer Inst. 1959, 22, 719–748. [Google Scholar] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Li, D.-X.; Lu, N.; Fan, Q.-R.; Li, W.-H.; Feng, Z.-F. Lack of Association between the TSPAN18 Gene and Schizophrenia Based on New Data from Han Chinese and a Meta-Analysis. Int. J. Mol. Sci. 2015, 16, 11864-11872. https://doi.org/10.3390/ijms160611864
Zhang B, Li D-X, Lu N, Fan Q-R, Li W-H, Feng Z-F. Lack of Association between the TSPAN18 Gene and Schizophrenia Based on New Data from Han Chinese and a Meta-Analysis. International Journal of Molecular Sciences. 2015; 16(6):11864-11872. https://doi.org/10.3390/ijms160611864
Chicago/Turabian StyleZhang, Bao, Da-Xu Li, Ning Lu, Qian-Rui Fan, Wen-Hao Li, and Zu-Fei Feng. 2015. "Lack of Association between the TSPAN18 Gene and Schizophrenia Based on New Data from Han Chinese and a Meta-Analysis" International Journal of Molecular Sciences 16, no. 6: 11864-11872. https://doi.org/10.3390/ijms160611864
APA StyleZhang, B., Li, D. -X., Lu, N., Fan, Q. -R., Li, W. -H., & Feng, Z. -F. (2015). Lack of Association between the TSPAN18 Gene and Schizophrenia Based on New Data from Han Chinese and a Meta-Analysis. International Journal of Molecular Sciences, 16(6), 11864-11872. https://doi.org/10.3390/ijms160611864