Alemtuzumab in Multiple Sclerosis: Mechanism of Action and Beyond
Abstract
:1. Introduction
2. Alemtuzumab—Efficacy, Safety, Mechanisms and Perspectives
2.1. Alemtuzumab—A Humanized Anti-CD52 Antibody
2.2. Clinical Efficacy of Alemtuzumab: Phase II/III Trials and Newest Data
Parameter | CAMMS223 a [24,25] | CAMMS223 Extension a [29] | CARE-MS I [26] | CARE-MS II a [27] |
---|---|---|---|---|
Number of patients | A: n = 112, IFN: n = 111 | A: n = 112, IFN: n = 111 | A: n = 376, IFN: n = 187 | A: n = 202, IFN: n = 426 |
ARR at study end (reduction by alemtuzumab) | A: 0.11, IFN: 0.36 (69%, p < 0.001) | A: 0.12, IFN: 0.35 (66%, p < 0.0001) | A: 0.18, IFN: 0.39 (55%, p < 0.0001) | A: 0.26, IFN: 0.52 (49%, p < 0.0001) |
SAD (reduction by alemtuzumab) | A: 8%, IFN: 24% (75%, p < 0.001) | A: 13%, IFN: 30% (69%, p < 0.001) | A: 8%, IFN: 11% (p = 0.22) | A: 13%, IFN: 21% (42%, p < 0.01) |
Mean EDSS change | A: −0.32, IFN: +0.46 (p < 0.001) | A: −0.15, IFN: +0.46 (p = 0.014) | A: −0.14, IFN: −0.14 (ns) | A: −0.17, IFN: +0.24 (p < 0.0001) |
SRD | A: 45%, IFN: 27% (year 3, p = 0.01) | n/a | A: 23%, IFN: 25% (ns) | A: 29%, IFN: 13% (p = 0.0002) |
Relapse-free patients | A: 77%, IFN: 52% (p < 0.001) | A: 68%, IFN: 41% | A: 78%, IFN: 59% (p < 0.0001) | A: 65%, IFN: 47% (p < 0.0001) |
Freedom of clinical disease | A: 72%, IFN: 43% (year 3, p < 0.001) | n/a | A: 74%, IFN: 56% (p < 0.0001) | A: 60%, IFN: 41% (p < 0.0001) |
Gd-enhancing lesions | n/a | n/a | A: 15%, IFN: 27% (p = 0.001) | A: 19%, IFN: 34% (p < 0.0001) |
New/enlarging T2 lesions | n/a | n/a | A: 49%, IFN: 58% (p = 0.04) | A: 46%, IFN: 68% (p < 0.0001) |
Median change in T2 lesion volume | A: −18.2%, IFN: −13.3% (ns) | n/a | A: −6.5%, IFN: −9.3% (ns) | A: −1.2%, IFN: −1.3% (ns) |
Freedom of MRI and clinical disease | n/a | n/a | A: 39%, IFN: 27% (p = 0.006) | A: 32%, IFN: 14% (p < 0.0001) |
Median change in BPF from baseline | A: −0.9%, IFN: −1.8% (ns) | n/a | A: −0.9%, IFN: −1.5% (p < 0.0001) | A: −0.6%, IFN: −0.8% (p = 0.012) |
2.3. Safety Profile of Alemtuzumab
Adverse Event | Prevalence a | Highest Incidence | Risk-Monitoring | Management |
---|---|---|---|---|
IARs | >90% | During infusion and 24 h thereafter | Clinical and technical monitoring of vital signs | Corticosteroids (first 3 days of infusion), antihistamines and/or antipyretics (prior and as needed) |
Infections | 66%–77% | Year 1 | Frequent follow-up visits | Herpes prophylaxis ≥1 month after alemtuzumab |
Thyroid disorders | 30%–41% | Year 3 Onset 6–61 months | Thyroid function test (e.g., TSH) | Prior to alemtuzumab and quarterly after alemtuzumab for 48 months |
ITP | 1%–3% | Onset 1–34 months | CBC and differential | Prior to alemtuzumab and monthly after alemtuzumab for 48 months |
Glomerulo-nephritis | 0.3% | Onset 4–39 months | Serum creatinine and urinalysis with microscopy | Prior to alemtuzumab and monthly after alemtuzumab for 48 months |
2.3.1. Infusion-Associated Reactions (IAR)
2.3.2. Infections
2.3.3. Malignancy
2.3.4. Pregnancy
2.3.5. Secondary Autoimmune Disease
Potential Mechanism | Consequences | References |
---|---|---|
Homeostatic proliferation ↑ | Chronically activated, oligoclonal, auto-reactive T cells ↑ | [56,59,60] |
IL-21 ↑ | Homestatic proliferation ↑ | [22] |
Th17 cells ↑ | [61] | |
B cell differentiation, antibody production | [62] | |
Treg function ↓ | [63,64] | |
Thymopoiesis ↓ | Clonal restricted T cell receptor repertoire | [56] |
IL-7 ↓ | Thymic output ↓, homeostatic proliferation > thymopoiesis | [65,66] |
Faster B cell recovery than T cell recovery, BAFF ↑ | Unregulated B cell expansion in response to self-antigens | [3,74] |
Low absolute Treg numbers, potentially compromised Treg function a | Diminished control of autoimmune responses | [13,72,73] |
Genetic risk profile | Susceptibility to autoimmunity ↑ | [67,69,70] |
Smoking | Susceptibility to autoimmunity ↑ | [70] |
2.4. Mechanisms of Action (MOA)
Effect | Potential Mechanism | References |
---|---|---|
Infusion-associated reactions (e.g., fever, rash, malaise) | TNF-α, IFN-γ and IL-6 release by target cell lysis and consecutive inflammatory responses | [41,42] |
Reduction of MS-related inflammatory responses | Depletion of CD52+ circulating immune cells | [18,21,72] |
Prolonged T cell lymphopenia (CD4 > CD8) | [22,72] | |
Prolonged memory B cell lymphopenia | [21] | |
Maturation of immune cells in a tolerogenic environment: relative Treg numbers ↑, restored Treg function, TGF-β ↑, IL-10 ↑, IFN-γ ↓, IL-12 ↓, IL-17 ↓, Th1 ↓, Th2 ↑, Th17 ↓, expression of inhibitory receptors on T cells: PD-1 ↑, LAG-3 ↑ | [56,75] | |
Reduction of autoreactive T cell clones, increased TCR diversity | [56,76,77] | |
Reduced T cell migration into the CNS | [11,78] | |
Restoration of blood-brain-barrier properties | [79] | |
Preserved immunocompetence | Less pronounced immune cell depletion in lymphoid organs | [18] |
Preserved B and T cell responses | [49,80] | |
Low depletion of innate immune cells, especially tissue resident cells | [48,50] | |
Active neuroprotection with regression of disability | Induction of neurotrophin producing lymphocytes | [74] |
Preservation of axonal conductance in MOG35–55 EAE | [81] |
2.4.1. What We Learned from Animal Models
2.4.2. What We Learned from Clinical Application in MS Therapy
2.5. Perspectives and Future Challenges
Drug/Study | Fingolimod FREEDOMS a [94,95] | Fingolimod TRANSFORMS b [93,96] | Natalizumab AFFIRM a [97,98] | Alemtuzumab CARE-MS I [26,31] | Alemtuzumab CARE-MS II [27,30] |
---|---|---|---|---|---|
Comparator | Placebo | i.m. IFNβ-1a | Placebo | s.c. IFNβ-1a | s.c. IFNβ-1a |
ARR, relative reduction to comparator | 54% (p < 0.001) | 38% (p < 0.001) | 68% (p < 0.001) | 55% (p < 0.0001) | 49% (p < 0.0001) |
NEDA vs. comparator | 33% vs. 13% (p < 0.001) | 46% (0.5 mg), 38% (1.25 mg) vs. 34% (p < 0.001, p = 0.18) | 37% vs. 7% (p < 0.0001) | Y1: 50% vs. 38% (p = 0.0053) | Y1: 44% vs. 27% (p = 0.0001) |
Y2: 68% vs. 47% (p < 0.0001) | Y2: 58% vs. 32% (p < 0.0001) | ||||
Y3: 62% | Y3: 53% | ||||
Y4: 60% | Y4: 55% |
3. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Havrdova, E.; Horakova, D.; Kovarova, I. Alemtuzumab in the treatment of multiple sclerosis: Key clinical trial results and considerations for use. Ther. Adv. Neurol. Disord. 2015, 8, 31–45. [Google Scholar] [CrossRef] [PubMed]
- Menge, T.; Stuve, O.; Kieseier, B.C.; Hartung, H.P. Alemtuzumab: The advantages and challenges of a novel therapy in MS. Neurology 2014, 83, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Wiendl, H.; Kieseier, B. Multiple sclerosis: Reprogramming the immune repertoire with alemtuzumab in MS. Nat. Rev. Neurol. 2013, 9, 125–126. [Google Scholar] [CrossRef] [PubMed]
- Boulianne, G.L.; Hozumi, N.; Shulman, M.J. Production of functional chimaeric mouse/human antibody. Nature 1984, 312, 643–646. [Google Scholar] [CrossRef] [PubMed]
- Klotz, L.; Meuth, S.G.; Wiendl, H. Immune mechanisms of new therapeutic strategies in multiple sclerosis—A focus on alemtuzumab. Clin. Immunol. 2012, 142, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Rodig, S.J.; Abramson, J.S.; Pinkus, G.S.; Treon, S.P.; Dorfman, D.M.; Dong, H.Y.; Shipp, M.A.; Kutok, J.L. Heterogeneous CD52 expression among hematologic neoplasms: Implications for the use of alemtuzumab (Campath-1H). Clin. Cancer Res. 2006, 12, 7174–7179. [Google Scholar] [CrossRef] [PubMed]
- Ginaldi, L.; de Martinis, M.; Matutes, E.; Farahat, N.; Morilla, R.; Dyer, M.J.; Catovsky, D. Levels of expression of CD52 in normal and leukemic B and T cells: Correlation with in vivo therapeutic responses to Campath-1H. Leuk. Res. 1998, 22, 185–191. [Google Scholar] [CrossRef]
- Hale, G. The CD52 antigen and development of the Campath antibodies. Cytotherapy 2001, 3, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Xia, M.Q.; Tone, M.; Packman, L.; Hale, G.; Waldmann, H. Characterization of the Campath-1 (CDw52) antigen: Biochemical analysis and cDNA cloning reveal an unusually small peptide backbone. Eur. J. Immunol. 1991, 21, 1677–1684. [Google Scholar] [CrossRef] [PubMed]
- Rowan, W.C.; Hale, G.; Tite, J.P.; Brett, S.J. Cross-linking of the Campath-1 antigen (CD52) triggers activation of normal human T lymphocytes. Int. Immunol. 1995, 7, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Masuyama, J.; Yoshio, T.; Suzuki, K.; Kitagawa, S.; Iwamoto, M.; Kamimura, T.; Hirata, D.; Takeda, A.; Kano, S.; Minota, S. Characterization of the 4C8 antigen involved in transendothelial migration of CD26(hi) T cells after tight adhesion to human umbilical vein endothelial cell monolayers. J. Exp. Med. 1999, 189, 979–990. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Masuyama, J.; Sohma, Y.; Inazawa, H.; Horie, K.; Kojima, K.; Uemura, Y.; Aoki, Y.; Kaga, S.; Minota, S.; et al. CD52 is a novel costimulatory molecule for induction of CD4+ regulatory T cells. Clin. Immunol. 2006, 120, 247–259. [Google Scholar] [CrossRef] [PubMed]
- Bandala-Sanchez, E.; Zhang, Y.; Reinwald, S.; Dromey, J.A.; Lee, B.H.; Qian, J.; Bohmer, R.M.; Harrison, L.C. T cell regulation mediated by interaction of soluble CD52 with the inhibitory receptor Siglec-10. Nat. Immunol. 2013, 14, 741–748. [Google Scholar] [CrossRef] [PubMed]
- Maloy, K.J.; Powrie, F. Regulatory T cells in the control of immune pathology. Nat. Immunol. 2001, 2, 816–822. [Google Scholar] [CrossRef] [PubMed]
- Long, S.A.; Buckner, J.H. CD4+FoxP3+ T regulatory cells in human autoimmunity: More than a numbers game. J. Immunol. 2011, 187, 2061–2066. [Google Scholar] [CrossRef] [PubMed]
- Tuohy, O.; Costelloe, L.; Hill-Cawthorne, G.; Bjornson, I.; Harding, K.; Robertson, N.; May, K.; Button, T.; Azzopardi, L.; Kousin-Ezewu, O.; et al. Alemtuzumab treatment of multiple sclerosis: Long-term safety and efficacy. J. Neurol. Neurosurg. Psychiatry 2015, 86, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.P.; Sancho, J.; Campos-Rivera, J.; Boutin, P.M.; Severy, P.B.; Weeden, T.; Shankara, S.; Roberts, B.L.; Kaplan, J.M. Human peripheral blood mononuclear cells exhibit heterogeneous CD52 expression levels and show differential sensitivity to alemtuzumab mediated cytolysis. PLoS ONE 2012, 7, e39416. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Turner, M.J.; Shields, J.; Gale, M.S.; Hutto, E.; Roberts, B.L.; Siders, W.M.; Kaplan, J.M. Investigation of the mechanism of action of alemtuzumab in a human CD52 transgenic mouse model. Immunology 2009, 128, 260–270. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.E.; Goldman, M.D. Alemtuzumab for the treatment of relapsing-remitting multiple sclerosis: A review of its clinical pharmacology, efficacy and safety. Expert Rev. Clin. Immunol. 2014, 10, 1281–1291. [Google Scholar] [CrossRef] [PubMed]
- Coles, A.J.; Cox, A.; Le Page, E.; Jones, J.; Trip, S.A.; Deans, J.; Seaman, S.; Miller, D.H.; Hale, G.; Waldmann, H.; et al. The window of therapeutic opportunity in multiple sclerosis: Evidence from monoclonal antibody therapy. J. Neurol. 2006, 253, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Thompson, S.A.; Jones, J.L.; Cox, A.L.; Compston, D.A.; Coles, A.J. B-cell reconstitution and BAFF after alemtuzumab (Campath-1H) treatment of multiple sclerosis. J. Clin. Immunol. 2010, 30, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.L.; Phuah, C.L.; Cox, A.L.; Thompson, S.A.; Ban, M.; Shawcross, J.; Walton, A.; Sawcer, S.J.; Compston, A.; Coles, A.J. IL-21 drives secondary autoimmunity in patients with multiple sclerosis, following therapeutic lymphocyte depletion with alemtuzumab (Campath-1H). J. Clin. Investig. 2009, 119, 2052–2061. [Google Scholar] [CrossRef] [PubMed]
- Coles, A.J.; Wing, M.G.; Molyneux, P.; Paolillo, A.; Davie, C.M.; Hale, G.; Miller, D.; Waldmann, H.; Compston, A. Monoclonal antibody treatment exposes three mechanisms underlying the clinical course of multiple sclerosis. Ann. Neurol. 1999, 46, 296–304. [Google Scholar] [CrossRef]
- Investigators, C.T.; Coles, A.J.; Compston, D.A.; Selmaj, K.W.; Lake, S.L.; Moran, S.; Margolin, D.H.; Norris, K.; Tandon, P.K. Alemtuzumab vs. Interferon β-1a in early multiple sclerosis. N. Engl. J. Med. 2008, 359, 1786–1801. [Google Scholar]
- Coles, A.J.; Fox, E.; Vladic, A.; Gazda, S.K.; Brinar, V.; Selmaj, K.W.; Bass, A.D.; Wynn, D.R.; Margolin, D.H.; Lake, S.L.; et al. Alemtuzumab versus interferon β-1a in early relapsing-remitting multiple sclerosis: Post-hoc and subset analyses of clinical efficacy outcomes. Lancet Neurol. 2011, 10, 338–348. [Google Scholar] [CrossRef]
- Cohen, J.A.; Coles, A.J.; Arnold, D.L.; Confavreux, C.; Fox, E.J.; Hartung, H.P.; Havrdova, E.; Selmaj, K.W.; Weiner, H.L.; Fisher, E.; et al. Alemtuzumab versus interferon β 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: A randomised controlled phase 3 trial. Lancet 2012, 380, 1819–1828. [Google Scholar] [CrossRef]
- Coles, A.J.; Twyman, C.L.; Arnold, D.L.; Cohen, J.A.; Confavreux, C.; Fox, E.J.; Hartung, H.P.; Havrdova, E.; Selmaj, K.W.; Weiner, H.L.; et al. Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: A randomised controlled phase 3 trial. Lancet 2012, 380, 1829–1839. [Google Scholar] [CrossRef]
- Hartung, H.P.; Aktas, O.; Boyko, A.N. Alemtuzumab: A new therapy for active relapsing-remitting multiple sclerosis. Mult. Scler. 2015, 21, 22–34. [Google Scholar] [CrossRef] [PubMed]
- Coles, A.J.; Fox, E.; Vladic, A.; Gazda, S.K.; Brinar, V.; Selmaj, K.W.; Skoromets, A.; Stolyarov, I.; Bass, A.; Sullivan, H.; et al. Alemtuzumab more effective than interferon β-1a at 5-year follow-up of CAMMS223 clinical trial. Neurology 2012, 78, 1069–1078. [Google Scholar] [CrossRef] [PubMed]
- Havrdova, E.; Giovannoni, G.; Arnold, D.L.; Coles, A.J.; Fox, E.J.; Hartung, H.; Selmaj, K.W.; Margolin, D.H.; Palmer, J.; Panzara, M.; et al. Durable effect of alemtuzumab on clinical outcomes in patients with relapsing-remitting multiple sclerosis who relapsed on prior therapy: 4-Year follow-up of CARE-MS II. In Proceedings of the AAN Meeting, Philadelphia, PA, USA, 26 April–3 May 2014.
- Compston, D.A.S.; Giovannoni, G.; Arnold, D.L.; Fox, E.J.; Hartung, H.; Havrdova, E.; Selmaj, K.W.; Margolin, D.H.; Palmer, J.; Panzara, M.; et al. Durable effect of alemtuzumab on clinical outcomes in treatment-naive relapsing-remitting multiple sclerosis patients: 4-Year follow-up of CARE-MS I. In Proceedings of the AAN Meeting, Philadelphia, PA, USA, 26 April–3 May 2015.
- LaGanke, C.; Hughes, B.; Berkovich, R.; Cohen, J.A.; Giovannoni, G.; Kasten, L.; Margolin, D.H.; Havrdova, E. Durable effect of alemtuzumab on disability improvement in patients with relapsing-remitting multiple sclerosis who relapsed on a prior therapy. In Proceedings of the AAN Meeting, Washington, DC, USA, 18–25 April 2015.
- Coles, A.J.; Arnold, D.L.; Cohen, J.A.; Fox, E.J.; Hartung, H.; Havrdova, E.; Selmaj, K.W.; Margolin, D.H.; Kasten, L.; Panzara, M.; et al. Alemtuzumab slows brain volume loss over 4 years despite most relapsing-remitting multiple sclerosis patients not receiving treatment for 3 years. In Proceedings of the AAN Meeting, Washington, DC, USA, 18–25 April 2015.
- Traboulsee, A.; Coles, A.J.; Cohen, J.A.; Compston, D.A.S.; Fox, E.J.; Hartung, H.; Havrdova, E.; Selmaj, K.W.; Margolin, D.H.; Zhao, Y.; et al. Durable effect of alemtuzumab on MRI outcomes in patients with relapsing-remitting multiple sclerosis who relapsed on prior therapy: 4-Year follow-up of CARE-MS II. In Proceedings of the AAN Meeting, Washington, DC, USA, 18–25 April 2015.
- Arnold, D.L.; Traboulsee, A.; Coles, A.J.; Cohen, J.A.; Fox, E.J.; Hartung, H.; Havrdova, E.; Selmaj, K.W.; Margolin, D.H.; Zhao, Y.; et al. Durable effect of alemtuzumab on MRI activity in treatment-naive active relapsing-remitting multiple sclerosis patients: 4-Year follow-up of CARE-MS I. In Proceedings of the AAN Meeting, Washington, DC, USA, 18–25 April 2015.
- Hartung, H.; Giovannoni, G.; Arnold, D.L.; Coles, A.J.; Fox, E.J.; Havrdova, E.; Selmaj, K.W.; Margolin, D.H.; Compston, D.A.S. Improvement in clinical outcomes in treatment-naive relapsing-remitting multiple sclerosis patients who switched from subcutaneous interferon β-1a to alemtuzumab. In Proceedings of the AAN Meeting, Washington, DC, USA, 18–25 April 2015.
- Fox, E.J.; Giovannoni, G.; Arnold, D.L.; Coles, A.J.; Hartung, H.; Havrdova, E.; Selmaj, K.W.; Margolin, D.H.; Compston, D.A.S. Improvement in clinical outcomes following switch from subcutaneous interferon β-1a to alemtuzumab: CARE-MS II extension study. In Proceedings of the AAN Meeting, Washington, DC, USA, 18–25 April 2015.
- Barkhof, F.; Pelletier, D.; Coles, A.J.; Cohen, J.A.; Compston, D.A.S.; Fox, E.J.; Hartung, H.; Havrdova, E.; Margolin, D.H.; Kasten, L.; et al. Switching to alemtuzumab from subcutaneous interferon β-1a after CARE-MS I further improved MRI outcomes in patients with relapsing-remitting multiple sclerosis. In Proceedings of the AAN Meeting, Washington, DC, USA, 18–25 April 2015.
- Pelletier, D.; Barkhof, F.; Coles, A.J.; Cohen, J.A.; Compston, D.A.S.; Fox, E.J.; Hartung, H.; Havrdova, E.; Margolin, D.H.; Kasten, L.; et al. Switching to alemtuzumab from subcutaneous interferon β-1a after CARE-MS II further improved MRI outcomes in patients with relapsing-remitting multiple sclerosis. In Proceedings of the AAN Meeting, Washington, DC, USA, 18–25 April 2015.
- Cohen, J.A.; Arnold, D.L.; Coles, A.J.; Fox, E.J.; Hartung, H.; Havrdova, E.; Selmaj, K.W.; Margolin, D.H.; Kasten, L.; Compston, D.A.S. Slowing of brain volume loss in patients with relapsing-remitting multiple sclerosis after switching from subcutaneous interferon β-1a to alemtuzumab. In Proceedings of the AAN Meeting, Washington, DC, USA, 18–25 April 2015.
- Breslin, S. Cytokine-release syndrome: Overview and nursing implications. Clin. J. Oncol. Nurs. 2007, 11, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Maggi, E.; Vultaggio, A.; Matucci, A. Acute infusion reactions induced by monoclonal antibody therapy. Expert Rev. Clin. Immunol. 2011, 7, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Mayer, L.; Casady, L.; Clayton, G.; Oyuela, P.; Margolin, D. Alemtuzumab infusion-associated reactions and management in multiple sclerosis. J. Infus. Nurs. Manag. (Harrow) 2014, 37, 250–258. [Google Scholar]
- Wray, S.; Boyko, A.N.; Braley, T.J.; Khan, O.; Margolin, D.H.; Coles, A.J. Administration of alemtuzumab on nonconsecutive days does not impact infusion-associated reactions, efficacy, or lymphocyte depletion. In Proceedings of the AAN Meeting, Washington, DC, USA, 18–25 April 2015.
- Vermersch, P.; Vanopdenbosch, L.J.; González, R.A.; Fernandez, O.; Baldinetti, F.; Krolczyk, S.; Martell, L.; Moreau, T. Evaluation of comprehensive alemtuzumab infusion guidance in patients with relapsing-remitting multiple sclerosis: Emerald study design. In Proceedings of the AAN Meeting, Washington, DC, USA, 18–25 April 2015.
- Wray, S.; Arnold, D.L.; Cohen, J.; Coles, A.; Fox, E.; Hartung, H. Herpes infection risk reduced with acyclovir prophylaxis after alemtuzumab. In Proceedings of the Annual Meeting of the Consortium of Multiple Sclerosis Centers (CMSC), Orlando, FL, USA, 27–30 May 2013.
- Henson, L.J.; Arnold, D.L.; Cohen, J.A.; Coles, A.J.; Fox, E.J.; Hartung, H.; Havrdova, E.; Selmaj, K.W.; Margolin, D.H.; Compston, D.A.S. Incidence of infection decreases over time in alemtuzumab-treated patients with relapsing-remitting multiple sclerosis: 4-year follow-up of the CARE-MS studies. In Proceedings of the AAN Meeting, Washington, DC, USA, 18–25 April 2015.
- Buggins, A.G.; Mufti, G.J.; Salisbury, J.; Codd, J.; Westwood, N.; Arno, M.; Fishlock, K.; Pagliuca, A.; Devereux, S. Peripheral blood but not tissue dendritic cells express CD52 and are depleted by treatment with alemtuzumab. Blood 2002, 100, 1715–1720. [Google Scholar] [PubMed]
- McCarthy, C.L.; Tuohy, O.; Compston, D.A.; Kumararatne, D.S.; Coles, A.J.; Jones, J.L. Immune competence after alemtuzumab treatment of multiple sclerosis. Neurology 2013, 81, 872–876. [Google Scholar] [CrossRef] [PubMed]
- Clark, R.A.; Watanabe, R.; Teague, J.E.; Schlapbach, C.; Tawa, M.C.; Adams, N.; Dorosario, A.A.; Chaney, K.S.; Cutler, C.S.; Leboeuf, N.R.; et al. Skin effector memory T cells do not recirculate and provide immune protection in alemtuzumab-treated ctcl patients. Sci. Transl. Med. 2012, 4, 117ra117. [Google Scholar] [CrossRef] [PubMed]
- Miller, T.; Habek, M.; Coles, A.; Selmaj, K.; Margolin, D.; Palmer, J. Analysis of data from rrms alemtuzumab-treated patients in the clinical program to evaluate incidence rates of malignancy. In Proceedings of the Join ACTRIMS-ECTRIMS Meeting, Boston, MA, USA, 10–13 September 2014.
- Alemtuzumab prescribing information. Available online: http://www.Accessdata.Fda.Gov/drugsatfda_docs/label/2014/103948s5139lbl.Pdf (accessed on 4 May 2015).
- McCombe, P.; Achiron, A.; Giovannoni, G.; Brinar, V.; Margolin, D.; Palmer, J. Pregnancy outcomes in the alemtuzumab multiple sclerosis clinical development program. In Proceedings of the Join ACTRIMS-ECTRIMS Meeting, Boston, MA, USA, 10–13 September 2014.
- Margolin, D.; Rizzo, M.; Smith, G.; Arnold, D.; Coles, A.; Hartung, H. Alemtuzumab treatment has no adverse impact on sperm quality, quantity, or motility: A care-MS substudy. In Proceedings of the 21st World Congress of Neurology, Vienna, Austria, 21–26 September 2013.
- Daniels, G.H.; Vladic, A.; Brinar, V.; Zavalishin, I.; Valente, W.; Oyuela, P.; Palmer, J.; Margolin, D.H.; Hollenstein, J. Alemtuzumab-related thyroid dysfunction in a phase 2 trial of patients with relapsing-remitting multiple sclerosis. J. Clin. Endocrinol. Metab. 2014, 99, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.L.; Thompson, S.A.; Loh, P.; Davies, J.L.; Tuohy, O.C.; Curry, A.J.; Azzopardi, L.; Hill-Cawthorne, G.; Fahey, M.T.; Compston, A.; et al. Human autoimmunity after lymphocyte depletion is caused by homeostatic T-cell proliferation. Proc. Natl. Acad. Sci. USA 2013, 110, 20200–20205. [Google Scholar] [CrossRef] [PubMed]
- Hunter, S.F.; Arnold, D.L.; Coles, A.J.; Cohen, J.A.; Fox, E.J.; Hartung, H.; Havrdova, E.; Margolin, D.H.; Compston, D.A.S.; on behalf of the CARE-MS Investigators. The efficacy of alemtuzumab is maintained in patients who develop thyroid adverse events. In Proceedings of the AAN Meeting, Washinton, DC, USA, 18–25 April 2015.
- Krupica, T., Jr.; Fry, T.J.; Mackall, C.L. Autoimmunity during lymphopenia: A two-hit model. Clin. Immunol. 2006, 120, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Zandman-Goddard, G.; Shoenfeld, Y. HIV and autoimmunity. Autoimmun. Rev. 2002, 1, 329–337. [Google Scholar] [CrossRef]
- Powrie, F.; Leach, M.W.; Mauze, S.; Caddle, L.B.; Coffman, R.L. Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in C. B-17 scid mice. Int. Immunol. 1993, 5, 1461–1471. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Anderson, D.E.; Baecher-Allan, C.; Hastings, W.D.; Bettelli, E.; Oukka, M.; Kuchroo, V.K.; Hafler, D.A. IL-21 and TGF-β are required for differentiation of human T(h)17 cells. Nature 2008, 454, 350–352. [Google Scholar] [CrossRef] [PubMed]
- Ettinger, R.; Sims, G.P.; Fairhurst, A.M.; Robbins, R.; da Silva, Y.S.; Spolski, R.; Leonard, W.J.; Lipsky, P.E. IL-21 induces differentiation of human naive and memory b cells into antibody-secreting plasma cells. J. Immunol. 2005, 175, 7867–7879. [Google Scholar] [CrossRef] [PubMed]
- Clough, L.E.; Wang, C.J.; Schmidt, E.M.; Booth, G.; Hou, T.Z.; Ryan, G.A.; Walker, L.S. Release from regulatory T cell-mediated suppression during the onset of tissue-specific autoimmunity is associated with elevated IL-21. J. Immunol. 2008, 180, 5393–5401. [Google Scholar] [CrossRef] [PubMed]
- Peluso, I.; Fantini, M.C.; Fina, D.; Caruso, R.; Boirivant, M.; MacDonald, T.T.; Pallone, F.; Monteleone, G. IL-21 counteracts the regulatory T cell-mediated suppression of human CD4+ T lymphocytes. J. Immunol. 2007, 178, 732–739. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.W.; Memon, S.A.; Sharrow, S.O.; Hakim, F.T.; Eckhaus, M.; Lucas, P.J.; Gress, R.E. Exogenous IL-7 increases recent thymic emigrants in peripheral lymphoid tissue without enhanced thymic function. Blood 2004, 104, 1110–1119. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.L.; Compston, D.A.S.; Coles, A.J. Predicting autoimmunity following treatment of multiple sclerosis with alemtuzumab. In Proceedings of the ECTRIMS Meeting, Amsterdam, The Netherlands, 19–22 October 2011.
- Broadley, S.A.; Deans, J.; Sawcer, S.J.; Clayton, D.; Compston, D.A. Autoimmune disease in first-degree relatives of patients with multiple sclerosis. A UK survey. Brain 2000, 123 Pt 6, 1102–1111. [Google Scholar] [CrossRef] [PubMed]
- Clatworthy, M.R.; Wallin, E.F.; Jayne, D.R. Anti-glomerular basement membrane disease after alemtuzumab. N. Engl. J. Med. 2008, 359, 768–769. [Google Scholar] [CrossRef] [PubMed]
- Irizar, H.; Munoz-Culla, M.; Zuriarrain, O.; Goyenechea, E.; Castillo-Trivino, T.; Prada, A.; Saenz-Cuesta, M.; de Juan, D.; Lopez de Munain, A.; Olascoaga, J.; et al. HLA-DRB1*15:01 and multiple sclerosis: A female association? Mult. Scler. 2012, 18, 569–577. [Google Scholar] [CrossRef] [PubMed]
- Cossburn, M.; Pace, A.A.; Jones, J.; Ali, R.; Ingram, G.; Baker, K.; Hirst, C.; Zajicek, J.; Scolding, N.; Boggild, M.; et al. Autoimmune disease after alemtuzumab treatment for multiple sclerosis in a multicenter cohort. Neurology 2011, 77, 573–579. [Google Scholar] [CrossRef] [PubMed]
- Mackay, I.R. Clustering and commonalities among autoimmune diseases. J. Autoimmun. 2009, 33, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Cox, A.L.; Thompson, S.A.; Jones, J.L.; Robertson, V.H.; Hale, G.; Waldmann, H.; Compston, D.A.; Coles, A.J. Lymphocyte homeostasis following therapeutic lymphocyte depletion in multiple sclerosis. Eur. J. Immunol. 2005, 35, 3332–3342. [Google Scholar] [CrossRef] [PubMed]
- Bloom, D.D.; Chang, Z.; Fechner, J.H.; Dar, W.; Polster, S.P.; Pascual, J.; Turka, L.A.; Knechtle, S.J. CD4+CD25+FoxP3+ regulatory T cells increase de novo in kidney transplant patients after immunodepletion with Campath-1H. Am. J. Transplant. 2008, 8, 793–802. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.L.; Anderson, J.M.; Phuah, C.L.; Fox, E.J.; Selmaj, K.; Margolin, D.; Lake, S.L.; Palmer, J.; Thompson, S.J.; Wilkins, A.; et al. Improvement in disability after alemtuzumab treatment of multiple sclerosis is associated with neuroprotective autoimmunity. Brain 2010, 133, 2232–2247. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Tao, Y.; Chopra, M.; Ahn, M.; Marcus, K.L.; Choudhary, N.; Zhu, H.; Markovic-Plese, S. Differential reconstitution of T cell subsets following immunodepleting treatment with alemtuzumab (anti-CD52 monoclonal antibody) in patients with relapsing-remitting multiple sclerosis. J. Immunol. 2013, 191, 5867–5874. [Google Scholar] [CrossRef] [PubMed]
- Stinissen, P.; Hellings, N. Activation of myelin reactive t cells in multiple sclerosis: A possible role for t cell degeneracy? Eur. J. Immunol. 2008, 38, 1190–1193. [Google Scholar] [CrossRef] [PubMed]
- Turner, M.; Chretien, N.; Havari, E.; LaMorte, M.; Roberts, B.; Kaplan, J.; Siders, W. Activity of an anti-murine CD52 antibody in experimental autoimmune encephalomyelitis. In Proceedings of the AAN Meeting, New Orleans, LA, USA, 22–27 April 2012.
- Havari, E.; Turner, M.; Dodge, J.; Treleaven, C.; Shihabuddin, L.; Roberts, B.; Kaplan, J.; Siders, W. Anti-murine CD52 antibody treatment does not adversely affect the migratory ability of immune cells. In Proceedings of the AAN Meeting, Philadelphia, PA, USA, 26 April–3 May 2015.
- Wang, H.; Dong, J.; Shi, P.; Liu, J.; Zuo, L.; Li, Y.; Gong, J.; Gu, L.; Zhao, J.; Zhang, L.; et al. Anti-mouse CD52 monoclonal antibody ameliorates intestinal epithelial barrier function in interleukin-10 knockout mice with spontaneous chronic colitis. Immunology 2015, 144, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Turner, M.J.; Lamorte, M.J.; Chretien, N.; Havari, E.; Roberts, B.L.; Kaplan, J.M.; Siders, W.M. Immune status following alemtuzumab treatment in human CD52 transgenic mice. J. Neuroimmunol. 2013, 261, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Turner, M.; Pang, P.T.; Chretien, N.; Havari, E.; LaMorte, M.J.; Oliver, J.; Pande, N.; Masterjohn, E.; Carter, K.; Reczek, D.; et al. Reduction of inflammation and preservation of neurological function by anti-CD52 therapy in murine experimental autoimmune encephalomyelitis. J. Neuroimmunol. 2015, 285, 4–12. [Google Scholar] [CrossRef]
- Baccala, R.; Theofilopoulos, A.N. The new paradigm of T-cell homeostatic proliferation-induced autoimmunity. Trends Immunol. 2005, 26, 5–8. [Google Scholar] [CrossRef] [PubMed]
- Kassiotis, G.; Zamoyska, R.; Stockinger, B. Involvement of avidity for major histocompatibility complex in homeostasis of naive and memory T cells. J. Exp. Med. 2003, 197, 1007–1016. [Google Scholar] [CrossRef] [PubMed]
- Guimond, M.; Veenstra, R.G.; Grindler, D.J.; Zhang, H.; Cui, Y.; Murphy, R.D.; Kim, S.Y.; Na, R.; Hennighausen, L.; Kurtulus, S.; et al. Interleukin 7 signaling in dendritic cells regulates the homeostatic proliferation and niche size of CD4+ T cells. Nat. Immunol. 2009, 10, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, C.; Bains, I.; Yates, A.J.; Seddon, B. Asymmetric thymocyte death underlies the CD4:CD8 T-cell ratio in the adaptive immune system. Proc. Natl. Acad. Sci. USA 2013, 110, E2905–2914. [Google Scholar] [CrossRef] [PubMed]
- Gold, R.; Linington, C.; Lassmann, H. Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 Years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain 2006, 129, 1953–1971. [Google Scholar] [CrossRef] [PubMed]
- Ruck, T.; Bittner, S.; Epping, L.; Herrmann, A.M.; Meuth, S.G. Isolation of primary murine brain microvascular endothelial cells. J. Vis. Exp. 2014, 93, e52204. [Google Scholar] [CrossRef] [PubMed]
- Fujihara, K.; Nakashima, I. Secondary progression and innate immunity in nmo: A possible link to alemtuzumab therapy? Neurol. Neuroimmunol. Neuroinflammation 2014, 1, e38. [Google Scholar] [CrossRef] [PubMed]
- Gelfand, J.M.; Cotter, J.; Klingman, J.; Huang, E.J.; Cree, B.A. Massive CNS monocytic infiltration at autopsy in an alemtuzumab-treated patient with nmo. Neurol. Neuroimmunol. Neuroinflammation 2014, 1, e34. [Google Scholar] [CrossRef] [PubMed]
- Thorne, R.G.; Frey, W.H., 2nd. Delivery of neurotrophic factors to the central nervous system: Pharmacokinetic considerations. Clin. Pharmacokinet. 2001, 40, 907–946. [Google Scholar] [CrossRef] [PubMed]
- Kousin-Ezewu, O.; Azzopardi, L.; Parker, R.A.; Tuohy, O.; Compston, A.; Coles, A.; Jones, J. Accelerated lymphocyte recovery after alemtuzumab does not predict multiple sclerosis activity. Neurology 2014, 82, 2158–2164. [Google Scholar] [CrossRef] [PubMed]
- Junker, A.; Ivanidze, J.; Malotka, J.; Eiglmeier, I.; Lassmann, H.; Wekerle, H.; Meinl, E.; Hohlfeld, R.; Dornmair, K. Multiple sclerosis: T-cell receptor expression in distinct brain regions. Brain 2007, 130, 2789–2799. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.A.; Barkhof, F.; Comi, G.; Hartung, H.P.; Khatri, B.O.; Montalban, X.; Pelletier, J.; Capra, R.; Gallo, P.; Izquierdo, G.; et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N. Engl. J. Med. 2010, 362, 402–415. [Google Scholar] [CrossRef] [PubMed]
- Kappos, L.; Radue, E.W.; O’Connor, P.; Polman, C.; Hohlfeld, R.; Calabresi, P.; Selmaj, K.; Agoropoulou, C.; Leyk, M.; Zhang-Auberson, L.; et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N. Engl. J. Med. 2010, 362, 387–401. [Google Scholar] [CrossRef] [PubMed]
- Nixon, R.; Bergvall, N.; Tomic, D.; Sfikas, N.; Cutter, G.; Giovannoni, G. No evidence of disease activity: Indirect comparisons of oral therapies for the treatment of relapsing-remitting multiple sclerosis. Adv. Ther. 2014, 31, 1134–1154. [Google Scholar] [CrossRef] [PubMed]
- Khatri, B.; Barkhof, F.; Comi, G.; Jin, J.; Francis, G.; Cohen, J. Fingolimod treatment increases the proportion of patients who are free from disease activity in multiple sclerosis compared to IFNβ-1a: Results from a phase 3, active-controlled study (transforms). In Proceedings of the AAN Meeting, New Orleans, LA, USA, 23 April 2012.
- Polman, C.H.; O’Connor, P.W.; Havrdova, E.; Hutchinson, M.; Kappos, L.; Miller, D.H.; Phillips, J.T.; Lublin, F.D.; Giovannoni, G.; Wajgt, A.; et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N. Engl. J. Med. 2006, 354, 899–910. [Google Scholar] [CrossRef] [PubMed]
- Havrdova, E.; Galetta, S.; Hutchinson, M.; Stefoski, D.; Bates, D.; Polman, C.H.; O’Connor, P.W.; Giovannoni, G.; Phillips, J.T.; Lublin, F.D.; et al. Effect of natalizumab on clinical and radiological disease activity in multiple sclerosis: A retrospective analysis of the natalizumab safety and efficacy in relapsing-remitting multiple sclerosis (affirm) study. Lancet Neurol. 2009, 8, 254–260. [Google Scholar] [CrossRef]
- Azzopardi, L.; Thompson, S.A.; Harding, K.E.; Cossburn, M.; Robertson, N.; Compston, A.; Coles, A.J.; Jones, J.L. Predicting autoimmunity after alemtuzumab treatment of multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 2014, 85, 795–798. [Google Scholar] [CrossRef] [PubMed]
- Cossburn, M.D.; Harding, K.; Ingram, G.; El-Shanawany, T.; Heaps, A.; Pickersgill, T.P.; Jolles, S.; Robertson, N.P. Clinical relevance of differential lymphocyte recovery after alemtuzumab therapy for multiple sclerosis. Neurology 2013, 80, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Edwards, K.; LaGanke, C.; Oyuela, P.; Palmer, J.; Margolin, D. Safety of using disease-modifying therapy post-alemtuzumab treatment in patients with relapsing-remitting multiple sclerosis in the core and extensions phases of CAMMS223, CARE-MS I, and CARE-MS II studies. In Proceedings of the AAN Meeting, Philadelphia, PA, USA, 26 April–3 May 2015.
- Siders, W.M.; Greene, B.; McVie-Wylie, A.; Bailey, M.; Dhawan, V.; Boutin, P.; Best, A.; Lawendowski, C.; Turner, M.; Roberts, B.; et al. Characterization of a next-generation anti-CD52 antibody. In Proceedings of the AAN Meeting, Washington, DC, USA, 18–25 April 2015.
- Somerfield, J.; Hill-Cawthorne, G.A.; Lin, A.; Zandi, M.S.; McCarthy, C.; Jones, J.L.; Willcox, M.; Shaw, D.; Thompson, S.A.; Compston, A.S.; et al. A novel strategy to reduce the immunogenicity of biological therapies. J. Immunol. 2010, 185, 763–768. [Google Scholar] [CrossRef] [PubMed]
- Ruck, T.; Bittner, S.; Kuhlmann, T.; Wiendl, H.; Meuth, S.G. Long-term efficacy of alemtuzumab in polymyositis. Rheumatology (Oxford) 2015, 54, 560–562. [Google Scholar] [CrossRef] [PubMed]
- Dalakas, M.C.; Rakocevic, G.; Schmidt, J.; Salajegheh, M.; McElroy, B.; Harris-Love, M.O.; Shrader, J.A.; Levy, E.W.; Dambrosia, J.; Kampen, R.L.; et al. Effect of alemtuzumab (Campath-1H) in patients with inclusion-body myositis. Brain 2009, 132, 1536–1544. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruck, T.; Bittner, S.; Wiendl, H.; Meuth, S.G. Alemtuzumab in Multiple Sclerosis: Mechanism of Action and Beyond. Int. J. Mol. Sci. 2015, 16, 16414-16439. https://doi.org/10.3390/ijms160716414
Ruck T, Bittner S, Wiendl H, Meuth SG. Alemtuzumab in Multiple Sclerosis: Mechanism of Action and Beyond. International Journal of Molecular Sciences. 2015; 16(7):16414-16439. https://doi.org/10.3390/ijms160716414
Chicago/Turabian StyleRuck, Tobias, Stefan Bittner, Heinz Wiendl, and Sven G. Meuth. 2015. "Alemtuzumab in Multiple Sclerosis: Mechanism of Action and Beyond" International Journal of Molecular Sciences 16, no. 7: 16414-16439. https://doi.org/10.3390/ijms160716414