The Use of 1α,25-Dihydroxyvitamin D3 as an Anticancer Agent
Abstract
:1. Introduction
2. 1α,25-Dihydroxyvitamin D3-Driven Cell Signalling in Acute Myeloid Leukaemia (AML) Cells
3. The Actions of 1α,25-Dihydroxyvitamin D3 against Carcinomas
4. 1α,25-Dihydroxyvitamin D3 and Anticancer Immunity
5. Clinical Trials of the Use of 1α,25-Dihydroxyvitamin D3 in Cancer
5.1. Myelodysplasia (MDS) and AML
5.2. Prostate Cancer
5.3. Breast Cancer
5.4. Colorectal Cancer
5.5. Melanoma
6. The Extent to Which Low Calcaemic Analogues Are in Use
7. Conclusions
Acknowledgments
Conflicts of Interest
Abbreviations
1,25D | 1α,25-Dihydroxyvitamin D3 |
25D | 25-Hydroxyvitamin D3 |
AML | Acute myeloid leukaemia |
CD | Cluster of differentiation |
CNS | Central nervous system |
CTL | Cytotoxic T lymphocyte |
CTLA-4 | Cytotoxic T-lymphocyte-associated protein 4 |
CYP24A1 | 24-Hydroxylase of 1,25D |
CYP27B1 | 1-α-Hydroxylase to 25D |
DAG | Diacylglycerol |
ER | Estrogen receptors |
Erk | Extracellular-signal activated kinase |
ETO | Eight-twenty one protein |
FOXP3 | Forkhead box P3 |
FRP2 | Formyl receptor 2 |
IL | Interleukin |
IFNγ | Interferon γ |
MARRS | Membrane Associated Rapid Response Steroid-binding |
MDS | Myelodysplasia |
PDIA3 | Protein disulfide-isomerase A3 |
PI3K | Phosphatidyl inositol 3-kinase |
PKC | Protein kinase C |
PLA2 | Phospholipase A2 |
PLD | Phospholipase D |
PLZF | Promyelocytic leukaemia zinc finger protein |
PML | Promyelocytic leukaemia |
PSA | Prostate specific antigen |
RARα | Retinoic acid receptor α |
Rb | Retinoblastoma protein |
Th | T helper |
TNF | Tumour necrosis factor |
VDR | Vitamin D receptor |
WHI | WOMEN’S Health Initiative |
References
- Abe, E.; Miamura, C.; Sakagami, H.; Takeda, M.; Konno, K.; Yamazaki, T.; Yoshiki, S.; Suda, T. Differentiation of mouse myeloid leukemia cells induced by 1-α,25-dihydroxyvitamin D3. Proc. Natl. Acad. Sci. USA 1981, 78, 4990–4994. [Google Scholar] [CrossRef] [PubMed]
- Miyaura, C.; Abe, E.; Kuribayashi, T.; Tanaka, H.; Konno, K.; Nishii, Y.; Suda, T. 1α,25-dihydroxyvitamin D3 induces differentiation of human myeloid leukemia cells. Biochem. Biophys. Res. Commun. 1981, 102, 937–943. [Google Scholar] [CrossRef]
- Godyn, J.; Xu, H.; Zhang, F.; Kolla, S.; Studzinski, G. A dual block to cell cycle progression in HL60 cells exposed to analogues of vitamin D3. Cell Prolif. 1994, 27, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Brown, G.; Choudhry, M.; Durham, J.; Drayson, M.; Michell, R. Monocytically differentiating HL60 cells proliferate rapidly before they mature. Exp. Cell Res. 1999, 253, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Finch, R.; Sartorelli, A. Role of vitamin D3 receptor in the synergistic differentiation of WEHI-3B leukemia cells by vitamin D3 and retinoic acid. Exp. Cell Res. 1999, 249, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Gocek, E.; Marchwicka, A.; Baurska, H.; Chrobak, A.; Marcinkowska, E. Opposite regulation of vitamin D receptor by atra in aml cells susceptible and resistant to vitamin D-induced differentiation. J. Steroid Biochem. Mol. Biol. 2012, 132, 220–226. [Google Scholar] [CrossRef] [PubMed]
- O’Kelly, J.; Histake, J.; Histake, Y.; Bishop, J.; Norman, A.; Koeffler, H. Normal myelopoiesis but abnormal T lymphocyte responses in vitamin D receptor knockout mice. J. Clin. Investig. 2002, 109, 1091–1099. [Google Scholar] [CrossRef] [PubMed]
- Pike, J.; Meyer, M. Fundamentals of vitamin D hormone-regulated gene expression. J. Steroid Biochem. Mol. Biol. 2014, 144 Pt A, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Carlberg, C.; Seuter, S.; de Mello, V.; Schwab, U.; Voutilainen, S.; Pulkki, K.; Nurmi, T.; Virtanen, J.; Tuomainen, T.; Uusitupa, M. Primary vitamin D target genes allow a categorization of possible benefits of vitamin D3 supplementation. PLoS ONE 2013, 8, e71042. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Jones, J.; Studzinski, G. Cyclin-dependent kinase inhibitor p27 as a mediator of the G1-S phase block induced by 1,25-dihydroxyvitamin D3 in HL60 cells. Cancer Res. 1996, 56, 264–267. [Google Scholar] [PubMed]
- Humeniuk-Polaczek, R.; Marcinkowska, E. Impaired nuclear localization of vitamin D receptor in leukemia cells resistant to calcitriol-induced differentiation. J. Steroid Biochem. Mol. Biol. 2004, 88, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Puccetti, E.; Obradovic, D.; Beissert, T.; Bianchini, A.; Washburn, B.; Chiaradonna, F.; Boehrer, S.; Hoelzer, D.; Ottmann, O.; Pelicci, P.; et al. Aml-associated translocation products block vitamin D3-induced differentiation by sequestering the vitamin D3 receptor. Cancer Res. 2002, 62, 7050–7058. [Google Scholar] [PubMed]
- Berry, D.; Antochi, R.; Bhatia, M.; Meckling-Gill, K. 1,25-Dihydroxyvitamin D3 stimulates expression and translocation of protein kinase Cα and CΔ via a nongenomic mechanism and rapidly induces phosphorylation of a 33-KDA protein in acute promyelocytic NB4 cells. J. Biol. Chem. 1996, 271, 16090–16096. [Google Scholar] [CrossRef] [PubMed]
- Marcinkowska, E.; Wiedlocha, A.; Radzikowski, C. 1,25-Dihydroxyvitamin D3 induced activation and subsequent nuclear translocation of MAPK is upstream regulated by PKC in HL-60 cells. Biochem. Biophys. Res. Commun. 1997, 241, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Hmama, Z.; Nandan, D.; Sly, L.; Knutson, K.; Herrera-Velit, P.; Reiner, N. 1α,25-dihydroxyvitamin D3-induced myeloid cell differentiation is regulated by a vitamin D receptor-phosphatidylinositol 3-kinase signaling complex. J. Exp. Med. 1999, 190, 1583–1594. [Google Scholar] [CrossRef] [PubMed]
- Hughes, P.; Brown, G. 1α,25-Dihydroxyvitamin D3-mediated stimulation of steroid sulphatase activity in myeloid leukaemic cell lines requires vdrnuc-mediated activation of the Ras/Raf/Erk-MAP kinase signalling pathway. J. Cell. Biochem. 2006, 98, 590–617. [Google Scholar] [CrossRef] [PubMed]
- Aepfelbacher, F.; Weber, P.; Aepfelbacher, M. Activation of phospholipase A2 by 1,25(OH)2 vitamin D3 and cell growth in monocytic U937 and Mono Mac 6 cells. Cell Biochem. Funct. 1995, 13, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Marcinkowska, E.; Kutner, A. Side-chain modified vitamin D analogs require activation of both PI3-K and ERK1,2 signal transduction pathways to induce differentiation of human promyelocytic leukemia cells. Acta Biochim. Pol. 2002, 49, 393–406. [Google Scholar] [PubMed]
- López-Lluch, G.; Fernández-Ayala, D.; Alcaín, F.; Burón, M.; Quesada, J.; Navas, P. Inhibition of cox activity by nsaids or ascorbate increases camp levels and enhances differentiation in 1α,25-dihydroxyvitamin D3-induced HL-60 cells. Arch. Biochem. Biophys. 2005, 436, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Hughes, P.; Marcinkowska, E.; Gocek, E.; Studzinski, G.; Brown, G. Vitamin D3-driven signals for myeloid cell differentiation—Implications for differentiation therapy. Leuk. Res. 2010, 34, 553–565. [Google Scholar] [CrossRef] [PubMed]
- Mizwicki, M.; Norman, A. Vitamin D sterol/VDR conformational dynamics and nongenomic actions. In Vitamin D, 3rd ed.; Feldman, D., Pike, J., Adams, J., Eds.; Academic Press: Cambridge, MA, USA, 2011; Volume 1, pp. 271–297. [Google Scholar]
- Sterling, T.; Khanal, R.; Nemere, I. The 1,25 dihydroxyvitamin D3-membrane-associated, rapid response steroid-binding receptor. OA Biochem. 2013, 1, 4. [Google Scholar] [CrossRef]
- Nemere, I. The 1,25D3-MARRS protein: Contribution to steroid stimulated calcium uptake in chicks and rats. Steroids 2005, 70, 455–457. [Google Scholar] [CrossRef] [PubMed]
- Trump, D.; Potter, D.; Muindi, J.; Brufsky, A.; Johnson, C. Phase II trial of high-dose, intermittent calcitriol (1,25 dihydroxyvitamin D3) and dexamethasone in androgen-independent prostate cancer. Cancer 2006, 106, 2136–2142. [Google Scholar] [CrossRef] [PubMed]
- Bouillion, R.; Okamura, W.; Norman, A. Structure-function relationships in the vitamin D endocrine system. Endocr. Rev. 1995, 16, 200–216. [Google Scholar]
- Nadkarni, S.; Chodynski, M.; Corcoran, A.; Marcinkowska, E.; Brown, G.; Kutner, A. Double point modified analogs of vitamin D as potent activators of vitamin D receptor. Curr. Pharm. Des. 2015, 21, 1741–1763. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, G.; Hulka, B. Is vitamin D deficiency a risk factor for prostate cancer? (hypothesis). Anticancer Res. 1990, 10, 1307–1311. [Google Scholar] [PubMed]
- Hanchette, C.; Schwartz, G. Geographic patterns of prostate cancer mortality. Evidence for a protective effect of ultraviolet radiation. Cancer 1992, 70, 2861–2869. [Google Scholar] [CrossRef]
- Apperly, F. The relation of solar radiation to cancer mortality in north america. Cancer Res. 1941, 1, 191–195. [Google Scholar]
- Miller, G.; Stapleton, G.; Ferrara, J.; Lucia, M.; Pfister, S.; Hedlund, T.; Upadhya, P. The human prostatic carcinoma cell line lncap expresses biologically active, specific receptors for 1α,25-dihydroxyvitamin D3. Cancer Res. 1992, 52, 515–520. [Google Scholar] [PubMed]
- Ahonen, M.; Tenkanen, L.; Teppo, L.; Hakama, M.; Tuohimaa, P. Prostate cancer risk and prediagnostic serum 25-hydroxyvitamin D levels (Finland). Cancer Causes Control 2000, 11, 847–852. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, G. Vitamin D deficiency and the epidemiology of prostate cancer. In Vitamin D: Physiology, Molecular Biology, and Clinical Applications; Holick, M., Ed.; Humana Press: New York, NY, USA, 2010; pp. 797–811. [Google Scholar]
- Moreno, J.; Krishnan, A.; Feldman, D. Molecular mechanisms mediating the anti-proliferative effects of vitamin D in prostate cancer. J. Steroid Biochem. Mol. Biol. 2005, 97, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Sung, V.; Feldman, D. 1,25-Dihydroxyvitamin D3 decreases human prostate cancer cell adhesion and migration. Mol. Cell. Endocrinol. 2000, 164, 133–143. [Google Scholar] [CrossRef]
- Schwartz, G.; Wang, M.; Zang, M.; Singh, R.; Siegal, G. 1α,25-dihydroxyvitamin D (calcitriol) inhibits the invasiveness of human prostate cancer cells. Cancer Epidemiol. Biomark. Prev. 1997, 6, 727–732. [Google Scholar]
- Young, M.; Schwartz, G.; Wang, L.; Jamieson, D.; Whitlatch, L.; Flanagan, J.; Lokeshwar, B.; Holick, M.; Chen, T. The prostate 25-hydroxyvitamin D-1 α-hydroxylase is not influenced by parathyroid hormone and calcium: Implications for prostate cancer chemoprevention by vitamin D. Carcinogenesis 2004, 25, 967–971. [Google Scholar] [CrossRef] [PubMed]
- Whitlatch, L.; Young, M.; Schwartz, G.; Flanagan, J.; Burnstein, K.; Lokeshwar, B.; Rich, E.; Holick, M.; Chen, T. 25-Hydroxyvitamin D-1α-hydroxylase activity is diminished in human prostate cancer cells and is enhanced by gene transfer. J. Steroid Biochem. Mol. Biol. 2002, 81, 135–140. [Google Scholar] [CrossRef]
- Gao, X.; LaValley, M.; Tucker, K. Prospective studies of dairy product and calcium intakes and prostate cancer risk: A meta-analysis. J. Natl. Cancer Inst. 2005, 97, 1768–1777. [Google Scholar] [CrossRef] [PubMed]
- Eisman, J.; Martin, T.; MacIntyre, I. Presence of 1,25-dihydroxy vitamin D receptor in normal and abnormal breast tissue. Prog. Biochem. Pharmacol. 1980, 17, 143–150. [Google Scholar] [PubMed]
- Simboli-Campbell, M.; Narvaez, C.; van Weelden, K.; Tenniswood, M.; Welsh, J. Comparative effects of 1,25(OH)2D3 and EB1089 on cell cycle kinetics and apoptosis in MCF-7 breast cancer cells. Breast Cancer Res. Treat. 1997, 42, 31–41. [Google Scholar] [CrossRef] [PubMed]
- James, S.; Mackay, A.; Colston, K. Effects of 1,25 dihydroxyvitamin D3 and its analogues on induction of apoptosis in breast cancer cells. J. Steroid Biochem. Mol. Biol. 1996, 58, 395–401. [Google Scholar] [CrossRef]
- James, S.; Mackay, A.; Binderup, L.; Colston, K. Effects of a new synthetic vitamin D analogue, EB1089, on the oestrogen-responsive growth of human breast cancer cells. J. Endocrinol. 1994, 141, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, A.; Swami, S.; Peng, L.; Wang, J.; Moreno, J.; Feldman, D. Tissue-selective regulation of aromatase expression by calcitriol: Implications for breast cancer therapy. Endocrinology 2010, 151, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Ching, S.; Kashinkunti, S.; Niehaus, M.; Zinser, G. Mammary adipocytes bioactivate 25-hydroxyvitamin D3 and signal via vitamin D3 receptor, modulating mammary epithelial cell growth. J. Cell. Biochem. 2011, 112, 3393–3405. [Google Scholar] [CrossRef] [PubMed]
- Vaisanen, S.; Dunlop, T.; Sinkkonen, L.; Frank, C.; Carlberg, C. Spatio-temporal activation of chromatin on the human CYP24 gene promoter in the presence of 1α,25-dihydroxyvitamin D3. J. Mol. Biol. 2005, 350, 65–77. [Google Scholar] [CrossRef] [PubMed]
- Albertson, D.; Ylstra, B.; Segraves, R.; Collins, C.; Dairkee, S.; Kowbel, D.; Kuo, W.; Gray, J.; Pinkel, D. Quantitative mapping of amplicon structure by array CGH identifies CYP24 as a candidate oncogene. Nat. Genet. 2000, 25, 144–146. [Google Scholar] [CrossRef] [PubMed]
- Garland, C.; Garland, F. Do sunlight and vitamin D reduce the likelihood of colon cancer? Int. J. Epidemiol. 1980, 9, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Cross, H.; Huber, C.; Peterlik, M. Antiproliferative effect of 1,25-dihydroxyvitamin D3 and its analogs on human colon adenocarcinoma cells (CaCo-2): Influence of extracellular calcium. Biochem. Biophys. Res. Commun. 1991, 179, 57–62. [Google Scholar] [CrossRef]
- Pereira, F.; Larriba, M.; Muñoz, A. Vitamin D and colon cancer. Endocr. Relat. Cancer 2012, 19, R51–R71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bises, G.; Kállay, E.; Weiland, T.; Wrba, F.; Wenzl, E.; Bonner, E.; Kriwanek, S.; Obrist, P.; Cross, H. 25-Hydroxyvitamin D3-1α-hydroxylase expression in normal and malignant human colon. J. Histochem. Cytochem. 2004, 52, 985–989. [Google Scholar] [CrossRef] [PubMed]
- Horváth, H.; Lakatos, P.; Kósa, J.; Bácsi, K.; Borka, K.; Bises, G.; Nittke, T.; Hershberger, P.; Speer, G.; Kállay, E. The candidate oncogene CYP24A1: A potential biomarker for colorectal tumorigenesis. J. Histochem. Cytochem. 2010, 58, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Höbaus, J.; Hummel, D.; Thiem, U.; Fetahu, I.; Aggarwal, A.; Müllauer, L.; Heller, G.; Egger, G.; Mesteri, I.; Baumgartner-Parzer, S.; et al. Increased copy-number and not DNA hypomethylation causes overexpression of the candidate proto-oncogene CYP24a1 in colorectal cancer. Int. J. Cancer 2013, 133, 1380–1388. [Google Scholar] [CrossRef] [PubMed]
- Nwosu, B.; Maranda, L. The effects of vitamin D supplementation on hepatic dysfunction, vitamin D status, and glycemic control in children and adolescents with vitamin D deficiency and either type 1 or type 2 diabetes mellitus. PLoS ONE 2014, 9, 6. [Google Scholar] [CrossRef] [PubMed]
- Carbone, F.; Mach, F.; Vuilleumier, N.; Montecucco, F. Potential pathophysiological role for the vitamin D deficiency in essential hypertension. World J. Cardiol. 2014, 6, 260–276. [Google Scholar] [PubMed]
- Ooi, J.; Chen, J.; Cantorna, M. Vitamin D regulation of immune function in the gut: Why do T cells have vitamin D receptors? Mol. Asp. Med. 2012, 33, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Pilz, S.; Iodice, S.; Zittermann, A.; Grant, W.; Gandini, S. Vitamin D status and mortality risk in CKD: A meta-analysis of prospective studies. Am. J. Kidney Dis. 2011, 58, 374–382. [Google Scholar] [CrossRef] [PubMed]
- Kim, S. The pleiomorphic actions of vitamin D and its importance for children. Ann. Pediatr. Endocrinol. Metab. 2013, 18, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Vaidya, A.; Forman, J. Vitamin D and vascular disease: The current and future status of vitamin D therapy in hypertension and kidney disease. Curr. Hypertens. Rep. 2012, 14, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Boucher, B. The 2010 recommendations of the american institute of medicine for daily intakes of vitamin D. Public Health Nutr. 2011, 14, 740. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Hewison, M.; Studzinski, G.; Li, Y.; Kalia, V. Role of vitamin D in cytotoxic T lymphocyte immunity to pathogens and cancer. Crit. Rev. Clin. Lab. Sci. 2016, 53, 132–145. [Google Scholar] [CrossRef] [PubMed]
- Etzioni, A.; Hochberg, Z.; Pollak, S.; Meshulam, T.; Zakut, V.; Tzehoval, E.; Keisari, Y.; Aviram, I.; Spirer, Z.; Benderly, A.; et al. Defective leukocyte fungicidal activity in end-organ resistance to 1,25-dihydroxyvitamin D. Pediatr. Res. 1989, 25, 276–279. [Google Scholar] [CrossRef] [PubMed]
- Tiosano, D.; Wildbaum, G.; Gepstein, V.; Verbitsky, O.; Weisman, Y.; Karin, N.; Eztioni, A. The role of vitamin D receptor in innate and adaptive immunity: A study in hereditary vitamin D-resistant rickets patients. J. Clin. Endocrinol. Metab. 2013, 98, 1685–1693. [Google Scholar] [CrossRef] [PubMed]
- Chun, R.; Liu, P.; Modlin, R.; Adams, J.; Hewison, M. Impact of vitamin D on immune function: Lessons learned from genome-wide analysis. Front. Physiol. 2014, 5, 151. [Google Scholar] [CrossRef] [PubMed]
- Korf, H.; Decallonne, B.; Mathieu, C. Vitamin D for infections. Curr. Opin. Endocrinol. Diabetes Obes. 2014, 21, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Hayes, M.; Bayley, D.; Drayson, M.; Freemont, A.; Denton, J.; Davies, M.; Mawer, E. Metabolism of 25-hydroxyvitamin D3 to 24,25-dihydroxyvitamin D3 by blood derived macrophages from a patient with alveolar rhabdomyosarcoma during short-term culture and 1α,25-dihydroxyvitamin D3 after long-term culture. J. Steroid Biochem. Mol. Biol. 1991, 38, 301–306. [Google Scholar] [CrossRef]
- Hewison, M. Vitamin D and immune function: Autocrine, paracrine or endocrine? Scand. J. Clin. Lab. Investig. Suppl. 2012, 243, 92–102. [Google Scholar]
- Reeme, A.; Robinson, R. Dietary vitamin D3 suppresses pulmonary immunopathology associated with late-stage tuberculosis in C3HeB/FeJ mice. J. Immunol. 2016, 196, 1293–1304. [Google Scholar] [CrossRef] [PubMed]
- Weber, G.; Chamorro, C.; Granath, F.; Liljegren, A.; Zreika, S.; Saidak, Z.; Sandstedt, B.; Rotstein, S.; Mentaverri, R.; Sánchez, F.; et al. Human antimicrobial protein hCAP18/LL-37 promotes a metastatic phenotype in breast cancer. Breast Cancer Res. 2009, 11, R6. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; Shen, J.; Cheng, A.; Lu, L.; Chan, R.; Li, Z.; Wang, X.; Wong, C.; Zhang, L.; Ng, S.; et al. FK-16 derived from the anticancer peptide LL-37 induces caspase-independent apoptosis and autophagic cell death in colon cancer cells. PLoS ONE 2013, 8, e63641. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, C. Inflammaging as a major characteristic of old people: Can it be prevented or cured? Nutr. Rev. 2007, 65, S173–S176. [Google Scholar] [CrossRef] [PubMed]
- Minciullo, P.; Catalano, A.; Mandraffino, G.; Casciaro, M.; Crucitti, A.; Maltese, G.; Morabito, N.; Lasco, A.; Gangemi, S.; Basile, G. Inflammaging and anti-inflammaging: The role of cytokines in extreme longevity. Arch. Immunol. Ther. Exp. (Warsz) 2016, 62, 111–126. [Google Scholar] [CrossRef] [PubMed]
- Jagger, A.; Shimojima, Y.; Goronzy, J.; Weyand, C. Regulatory T cells and the immune aging process: A mini-review. Gerontology 2014, 60, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Knippenberg, S.; Smolders, J.; Thewissen, M.; Peelen, E.; Tervaert, J.; Hupperts, R.; Damoiseaux, J. Effect of vitamin D3 supplementation on peripheral B cell differentiation and isotype switching in patients with multiple sclerosis. Mult. Scler. 2011, 17, 1418–1423. [Google Scholar] [CrossRef] [PubMed]
- Rolf, L.; Muris, A.; Hupperts, R.; Damoiseaux, J. Illuminating vitamin D effects on B-cells—The multiple sclerosis perspective. Immunology 2016, 147, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Cantorna, M.; Waddell, A. The vitamin D receptor turns off chronically activated t cells. Ann. N. Y. Acad. Sci. 2014, 1317, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Van Belle, T.; Vanherwegen, A.; Feyaerts, D.; de Clercq, P.; Verstuyf, A.; Korf, H.; Gysemans, C.; Mathieu, C. 1,25-Dihydroxyvitamin D3 and its analog TX527 promote a stable regulatory T cell phenotype in t cells from type 1 diabetes patients. PLoS ONE 2014, 9, e109194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, G.; Gysemans, C.; Demengeot, J.; da Cunha, J.; Vanherwegen, A.; Overbergh, L.; van Belle, T.; Pauwels, F.; Verstuyf, A.; Korf, H.; et al. 1,25-Dihydroxyvitamin D3 promotes tolerogenic dendritic cells with functional migratory properties in nod mice. J. Immunol. 2014, 192, 4210–4220. [Google Scholar] [CrossRef] [PubMed]
- Barragan, M.; Good, M.; Kolls, J. Regulation of dendritic cell function by vitamin D. Nutrients 2015, 7, 8127–8151. [Google Scholar] [CrossRef] [PubMed]
- Kundu, R.; Chain, B.; Coussens, A.; Khoo, B.; Noursadeghi, M. Regulation of CYP27B1 and CYP24A1 hydroxylases limits cell-autonomous activation of vitamin D in dendritic cells. Eur. J. Immunol. 2014, 44, 1781–1790. [Google Scholar] [CrossRef] [PubMed]
- Grishkan, I.; Fairchild, A.; Calabresi, P.; Gocke, A. 1,25-dihydroxyvitamin D3 selectively and reversibly impairs T helper-cell CNS localization. Proc. Natl. Acad. Sci. USA 2013, 110, 21101–21106. [Google Scholar] [CrossRef] [PubMed]
- Bruce, D.; Whitcomb, J.; August, A.; McDowell, M.; Cantorna, M. Elevated non-specific immunity and normal listeria clearance in young and old vitamin D receptor knockout mice. Int. Immunol. 2009, 21, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Antico, A.; Tampoia, M.; Tozzoli, R.; Bizzaro, N. Can supplementation with vitamin D reduce the risk or modify the course of autoimmune diseases? A systematic review of the literature. Autoimmun. Rev. 2012, 12, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Burton, J.; Kimball, S.; Vieth, R.; Bar-Or, A.; Dosch, H.; Cheung, R.; Gagne, D.; D’Souza, C.; Ursell, M.; O’Connor, P. A phase I/II dose-escalation trial of vitamin D3 and calcium in multiple sclerosis. Neurology 2010, 74, 1852–1859. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Harrison, J.; Uskokovic, M.; Kutner, A.; Studzinski, G. Translational study of vitamin D differentiation therapy of myeloid leukemia: Effects of the combination with a p38 mapk inhibitor and an antioxidant. Leukemia 2005, 19, 1812–1817. [Google Scholar] [CrossRef] [PubMed]
- Gocek, E.; Kielbinski, M.; Baurska, H.; Haus, O.; Kutner, A.; Marcinkowska, E. Different susceptibilities to 1,25-dihydroxyvitamin D3-induced differentiation of aml cells carrying various mutations. Leuk. Res. 2010, 34, 649–657. [Google Scholar] [CrossRef] [PubMed]
- Honma, Y.; Hozumi, M.; Abe, E.; Konno, K.; Fukushima, M.; Hata, S.; Nishii, Y.; DeLuca, H.F.; Suda, T. 1-α,25-dihydroxyvitamin D3 and 1-α-hydroxyvitamin D3 prolong survival time of mice inoculated with myeloid leukemia cells. Proc. Natl. Acad. Sci. USA 1983, 80, 201–204. [Google Scholar] [CrossRef] [PubMed]
- Shabtay, A.; Sharabani, H.; Barvish, Z.; Kafka, M.; Amichay, D.; Levy, J.; Sharoni, Y.; Uskokovic, M.; Studzinski, G.; Danilenko, M. Synergistic antileukemic activity of carnosic acid-rich rosemary extract and the 19-nor gemini vitamin D analogue in a mouse model of systemic acute myeloid leukemia. Oncology 2008, 75, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Hellström, E.; Robèrt, K.; Gahrton, G.; Mellstedt, H.; Lindemalm, C.; Einhorn, S.; Björkholm, M.; Grimfors, G.; Udén, A.; Samuelsson, J. Therapeutic effects of low-dose cytosine arabinoside, α-interferon, 1 α-hydroxyvitamin D3 and retinoic acid in acute leukemia and myelodysplastic syndromes. Eur. J. Haematol. 1988, 40, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Hellström, E.; Robèrt, K.; Samuelsson, J.; Lindemalm, C.; Grimfors, G.; Kimby, E.; Oberg, G.; Winqvist, I.; Billström, R.; Carneskog, J. Treatment of myelodysplastic syndromes with retinoic acid and 1α-hydroxy-vitamin D3 in combination with low-dose Ara-C is not superior to Ara-C alone. Results from a randomized study. The Scandinavian Myelodysplasia Group (SMG). Eur. J. Haematol. 1990, 45, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Irino, S.; Taoka, T. Treatment of myelodysplastic syndrome and acute myelogenous leukemia with vitamin D3 [1 α(OH)D3]. Gan To Kagaku Ryoho 1988, 15, 1183–1190. [Google Scholar] [PubMed]
- Nakayama, S.; Ishikawa, T.; Yabe, H.; Nagai, K.; Kasakura, S.; Uchino, H. Successful treatment of a patient with acute myeloid leukemia with 1 α(OH)D3. Nihon Ketsueki Gakkai Zasshi 1988, 51, 1026–1030. [Google Scholar] [PubMed]
- Takahashi, T.; Ichiba, S.; Okuno, Y.; Sugiyama, H.; Sakai, Y.; Imura, H.; Iho, S.; Hoshino, T.; Suzuki, A.; Okada, T. Therapeutic effectiveness of vitamin D3 in patients with myelodysplastic syndromes, leukemias and myeloproliferative disorders. Rinsho Ketsueki 1989, 30, 1–10. [Google Scholar] [PubMed]
- Petrini, M.; Caracciolo, F.; Corini, M.; Valentini, P.; Sabbatini, A.; Grassi, B. Low-dose ara-C and 1(OH)D3 administration in acute non lymphoid leukemia: Pilot study. Haematologica 1991, 76, 200–203. [Google Scholar] [PubMed]
- Petrini, M.; Dastoli, G.; Valentini, P.; Mattii, L.; Trombi, L.; Testi, R.; Ambrogi, F.; Grassi, B. Synergistic effects of alpha interferon and 1,25 dihydroxyvitamin D3: Preliminary evidence suggesting that interferon induces expression of the vitamin receptor. Haematologica 1991, 76, 467–471. [Google Scholar] [PubMed]
- Slapak, C.; Desforges, J.; Fogaren, T.; Miller, K. Treatment of acute myeloid leukemia in the elderly with low-dose cytarabine, hydroxyurea, and calcitriol. Am. J. Hematol. 1992, 41, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Ferrero, D.; Bruno, B.; Pregno, P.; Stefani, S.; Larizza, E.; Ciravegna, G.; Luraschi, A.; Vietti-Ramus, G.; Schinco, P.; Bazzan, M.; et al. Combined differentiating therapy for myelodysplastic syndromes: A phase II study. Leuk. Res. 1996, 20, 867–876. [Google Scholar] [CrossRef]
- Ferrero, D.; Campa, E.; Dellacasa, C.; Campana, S.; Foli, C.; Boccadoro, M. Differentiating agents + low-dose chemotherapy in the management of old/poor prognosis patients with acute myeloid leukemia or myelodysplastic syndrome. Haematologica 2004, 89, 619–620. [Google Scholar] [PubMed]
- Woo, T.; Choo, R.; Jamieson, M.; Chander, S.; Vieth, R. Pilot study: Potential role of vitamin D (cholecalciferol) in patients with PSA relapse after definitive therapy. Nutr. Cancer 2005, 51, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Wagner, D.; Trudel, D.; van der Kwast, T.; Nonn, L.; Giangreco, A.; Li, D.; Dias, A.; Cardoza, M.; Laszlo, S.; Hersey, K.; et al. Randomized clinical trial of vitamin D3 doses on prostatic vitamin D metabolite levels and KI67 labeling in prostate cancer patients. J. Clin. Endocrinol. Metab. 2013, 98, 1498–1507. [Google Scholar] [CrossRef] [PubMed]
- Beer, T.; Ryan, C.; Venner, P.; Petrylak, D.; Chatta, G.; Ruether, J.; Redfern, C.; Fehrenbacher, L.; Saleh, M.; Waterhouse, D.; et al. Double-blinded randomized study of high-dose calcitriol plus docetaxel compared with placebo plus docetaxel in androgen-independent prostate cancer: A report from the ascent investigators. J. Clin. Oncol. 2007, 25, 669–674. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, G. Vitamin D and intervention trials in prostate cancer: From theory to therapy. Ann. Epidemiol. 2009, 19, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Batai, K.; Murphy, A.; Nonn, L.; Kittles, R. Vitamin D and immune response: Implications for prostate cancer in African Americans. Front. Immunol. 2016, 7, 53. [Google Scholar] [CrossRef] [PubMed]
- Albanes, D.; Mondul, A.; Yu, K.; Parisi, D.; Horst, R.; Virtamo, J.; Weinstein, S. Serum 25-hydroxy vitamin D and prostate cancer risk in a large nested case-control study. Cancer Epidemiol. Biomark. Prev. 2011, 20, 1850–1860. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Grandi, N.; Raum, E.; Haug, U.; Arndt, V.; Brenner, H. Meta-analysis: Serum vitamin D and breast cancer risk. Eur. J. Cancer 2010, 46, 2196–2205. [Google Scholar] [CrossRef] [PubMed]
- Gandini, S.; Boniol, M.; Haukka, J.; Byrnes, G.; Cox, B.; Sneyd, M.; Mullie, P.; Autier, P. Meta-analysis of observational studies of serum 25-hydroxyvitamin D levels and colorectal, breast and prostate cancer and colorectal adenoma. Int. J. Cancer 2011, 128, 1414–1424. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Li, M.; Gu, X.; Liu, Y.; Li, X.; Li, C.; Wang, Y.; Xie, D.; Wang, F.; Yu, C.; et al. Higher blood 25(OH)D level may reduce the breast cancer risk: Evidence from a chinese population based case-control study and meta-analysis of the observational studies. PLoS ONE 2013, 8, e49312. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Je, Y. Vitamin D intake, blood 25(OH)D levels, and breast cancer risk or mortality: A meta-analysis. Br. J. Cancer 2014, 110, 2772–2784. [Google Scholar] [CrossRef] [PubMed]
- Chlebowski, R.; Johnson, K.; Kooperberg, C.; Pettinger, M.; Wactawski-Wende, J.; Rohan, T.; Rossouw, J.; Lane, D.; O’Sullivan, M.; Yasmeen, S.; et al. Calcium plus vitamin D supplementation and the risk of breast cancer. J. Natl. Cancer Inst. 2008, 100, 1581–1591. [Google Scholar] [CrossRef] [PubMed]
- Vrieling, A.; Seibold, P.; Johnson, T.; Heinz, J.; Obi, N.; Kaaks, R.; Flesch-Janys, D.; Chang-Claude, J. Circulating 25-hydroxyvitamin D and postmenopausal breast cancer survival: Influence of tumor characteristics and lifestyle factors? Int. J. Cancer 2014, 134, 2972–2983. [Google Scholar] [CrossRef] [PubMed]
- Zeichner, S.; Koru-Sengul, T.; Shah, N.; Liu, Q.; Markward, N.; Montero, A.; Glück, S.; Silva, O.; Ahn, E. Improved clinical outcomes associated with vitamin D supplementation during adjuvant chemotherapy in patients with HER2+ nonmetastatic breast cancer. Clin. Breast Cancer 2015, 15, e1–e11. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, E.; Kohler, L.; Kunihiro, A.; Jurutka, P. Vitamin D and colorectal, breast, and prostate cancers: A review of the epidemiological evidence. J. Cancer 2016, 7, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Ng, K.; Sargent, D.; Goldberg, R.; Meyerhardt, J.; Green, E.; Pitot, H.; Hollis, B.; Pollak, M.; Fuchs, C. Vitamin D status in patients with stage IV colorectal cancer: Findings from intergroup trial N9741. J. Clin. Oncol. 2011, 29, 1599–1606. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Grandi, N.; Raum, E.; Haug, U.; Arndt, V.; Brenner, H. Meta-analysis: Serum vitamin D and colorectal adenoma risk. Prev. Med. 2011, 53, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Baron, J.; Barry, E.; Mott, L.; Rees, J.; Sandler, R.; Snover, D.; Bostick, R.; Ivanova, A.; Cole, B.; Ahnen, D.; et al. A trial of calcium and vitamin D for the prevention of colorectal adenomas. N. Engl. J. Med. 2015, 373, 1519–1530. [Google Scholar] [CrossRef] [PubMed]
- Barry, E.; Rees, J.; Peacock, J.; Mott, L.; Amos, C.; Bostick, R.; Figueiredo, J.; Ahnen, D.; Bresalier, R.; Burke, C.; et al. Genetic variants in CYP2R1, CYP24A1, and VDR modify the efficacy of vitamin D3 supplementation for increasing serum 25-hydroxyvitamin D levels in a randomized controlled trial. J. Clin. Endocrinol. Metab. 2014, 99, E2133–E2137. [Google Scholar] [CrossRef] [PubMed]
- Bikle, D. Vitamin D and cancer: The promise not yet fulfilled. Endocrine 2014, 46, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Brouwer-Brolsma, E.; Bischoff-Ferrari, H.; Bouillon, R.; Feskens, E.; Gallagher, C.; Hypponen, E.; Llewellyn, D.; Stoecklin, E.; Dierkes, J.; Kies, A.; et al. Vitamin D: Do we get enough? A discussion between vitamin D experts in order to make a step towards the harmonisation of dietary reference intakes for vitamin D across europe. Osteoporos. Int. 2013, 24, 1567–1577. [Google Scholar] [CrossRef] [PubMed]
- Bade, B.; Zdebik, A.; Wagenpfeil, S.; Gräber, S.; Geisel, J.; Vogt, T.; Reichrath, J. Low serum 25-hydroxyvitamin D concentrations are associated with increased risk for melanoma and unfavourable prognosis. PLoS ONE 2014, 9, e112863. [Google Scholar] [CrossRef] [PubMed]
- Saw, R.; Armstrong, B.; Mason, R.; Morton, R.; Shannon, K.; Spillane, A.; Stretch, J.; Thompson, J. Adjuvant therapy with high dose vitamin D following primary treatment of melanoma at high risk of recurrence: A placebo controlled randomised phase II trial (ANZMTG 02.09 Mel-D). BMC Cancer 2014, 14, 780. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, R.; Delansorne, R.; Wakimoto, N.; Doan, N.; Akagi, T.; Shen, M.; Ho, Q.; Said, J.; Koeffler, H. Inecalcitol, an analog of 1α,25(OH)2 D3, induces growth arrest of androgen-dependent prostate cancer cells. Int. J. Cancer 2012, 130, 2464–2473. [Google Scholar] [CrossRef] [PubMed]
- Medioni, J.; Deplanque, G.; Ferrero, J.; Maurina, T.; Rodier, J.; Raymond, E.; Allyon, J.; Maruani, G.; Houillier, P.; Mackenzie, S.; et al. Phase I safety and pharmacodynamic of inecalcitol, a novel VDR agonist with docetaxel in metastatic castration-resistant prostate cancer patients. Clin. Cancer Res. 2014, 20, 4471–4477. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, J.; Akman, S.; Melin, S.; Case, L.; Schwartz, G. Oral paricalcitol (19-nor-1,25-dihydroxyvitamin D2) in women receiving chemotherapy for metastatic breast cancer: A feasibility trial. Cancer Biol. Ther. 2013, 14, 476–480. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, A.; Trump, D.; Johnson, C.; Feldman, D. The role of vitamin D in cancer prevention and treatment. Rheum. Dis. Clin. N. Am 2012, 38, 161–178. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcinkowska, E.; Wallace, G.R.; Brown, G. The Use of 1α,25-Dihydroxyvitamin D3 as an Anticancer Agent. Int. J. Mol. Sci. 2016, 17, 729. https://doi.org/10.3390/ijms17050729
Marcinkowska E, Wallace GR, Brown G. The Use of 1α,25-Dihydroxyvitamin D3 as an Anticancer Agent. International Journal of Molecular Sciences. 2016; 17(5):729. https://doi.org/10.3390/ijms17050729
Chicago/Turabian StyleMarcinkowska, Ewa, Graham R. Wallace, and Geoffrey Brown. 2016. "The Use of 1α,25-Dihydroxyvitamin D3 as an Anticancer Agent" International Journal of Molecular Sciences 17, no. 5: 729. https://doi.org/10.3390/ijms17050729
APA StyleMarcinkowska, E., Wallace, G. R., & Brown, G. (2016). The Use of 1α,25-Dihydroxyvitamin D3 as an Anticancer Agent. International Journal of Molecular Sciences, 17(5), 729. https://doi.org/10.3390/ijms17050729