Toxin-Induced Experimental Models of Learning and Memory Impairment
Abstract
:1. Introduction
2. Toxin-Induced Experimental Models of Memory Impairment
2.1. Scopolamine-Induced Memory Impairment
2.2. MPTP-Induced Memory Impairment
2.3. 6-Hydroxy Dopamine-Induced Memory Impairment
2.4. Amyloid Beta-Peptide-Induced Memory Impairment
2.5. Streptozotocin-Induced Memory Impairment
2.6. Quinolinic Acid-Induced Memory Impairment
2.7. 192 IgG-Saporin-Induced Memory Impairment
2.8. Okadaic Acid-Induced Memory Impairment
2.9. Domoic Acid-Induced Memory Impairment
2.10. Ethanol-Induced Memory Impairment
2.11. Colchicine-Induced Memory Impairment
2.12. Trimethyltin-Induced Memory Impairment
2.13. Ethylcholine Aziridinium-Induced Memory Impairment
2.14. Ibotenic Acid-Induced Memory Impairment
2.15. Metals-Induced Memory Impairment
3. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
6-OHDA | 6-hydroxydopamine |
Aβ | Amyloid beta |
Ach | Acetylcholine |
AChE | Acetylcholinesterase |
AD | Alzheimer’s disease |
Al | Aluminum |
AMPA | α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid |
APP | Aβ precursor protein |
As | Arsenic |
ASK1 | Apoptosis signal-regulating kinase 1 |
BBB | Blood-brain barrier |
CaMK-II | Calcium/calmodulin-dependent protein kinase II |
CBP | Cholinergic basal forebrain |
Cdk5 | Cyclin-dependent kinase 5 |
ChAT | Choline acetyltransferase |
CNS | Central nervous system |
cPLA2 | Cytosolic phospholipase A2 |
CREB | cAMP response element-binding protein |
CSF | Cerebrospinal fluid |
Cu | Copper |
DA | Dopamine |
DAT | Dopamine transporter |
DG | Dentate gyrus |
GFAP | Glial fibrillary acidic protein |
GSK-3 | Glycogen synthase kinase-3 |
HAChT | Cholinergic nerve terminal |
HAChT | High-affinity choline transport |
HD | Huntington’s disease |
Ibo | Ibotenic acid |
iNOS | Inducible nitric oxide synthase |
i.p | Intraperitoneal |
JNK | c-jun N-terminal kinase |
KA | Kainic acid |
LTP | Long-term potentiation |
MAO-B | Monoamine oxidase-B |
MAPK | Mitogen-activated protein kinase |
MFB | Medial forebrain bundle |
MPTP | 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine |
MWM | Morris water maze |
NBM | Nucleus basalis magnocellularis |
NGF | Nerve growth factor |
NMDA | N-methyl-d-aspartate |
NOS | Nitric oxide synthase |
OKA | Okadaic acid |
Pb | Lead |
PD | Parkinson’s disease |
PFC | Prefrontal cortex |
PI3K | Phosphoinositol 3-kinase |
PP | Protein phosphatase |
QA | Quinolinic acid |
RACK1 | Receptor for activated C-kinase 1 |
RIP | Ribosome-inactivating protein |
ROS | Reactive oxygen species |
SDAT | Sporadic dementia of Alzheimer’s type |
SNpc | Substantia nigra pars compacta |
STZ | Streptozotocin |
TMT | Trimethyltin |
VMAT2 | Vesicular monoamine transporter |
Zn | Zinc |
References
- Kandel, E.R.; Dudai, Y.; Mayford, M.R. The molecular and systems biology of memory. Cell 2014, 157, 163–186. [Google Scholar] [CrossRef] [PubMed]
- Johansen, J.P.; Cain, C.K.; Ostroff, L.E.; LeDoux, J.E. Molecular mechanisms of fear learning and memory. Cell 2011, 147, 509–524. [Google Scholar] [CrossRef] [PubMed]
- Dunning, J.; During, M.J. Molecular mechanisms of learning and memory. Expert Rev. Mol. Med. 2003, 5, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Kumar, H.; More, S.V.; Han, S.D.; Choi, J.Y.; Choi, D.K. Promising therapeutics with natural bioactive compounds for improving learning and memory—A review of randomized trials. Molecules 2012, 17, 10503–10539. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.; Grimwood, P.; Morris, R. Synaptic plasticity and memory: An evaluation of the hypothesis. Annu. Rev. Neurosci. 2000, 23, 649–711. [Google Scholar] [CrossRef] [PubMed]
- Sharma, B.; Singh, N. Pitavastatin and 4′-hydroxy-3′-methoxyacetophenone (HMAP) reduce cognitive dysfunction in vascular dementia during experimental diabetes. Curr. Neurovasc. Res. 2010, 7, 180–191. [Google Scholar] [CrossRef] [PubMed]
- Plassman, B.L.; Langa, K.M.; Fisher, G.G.; Heeringa, S.G.; Weir, D.R.; Ofstedal, M.B.; Burke, J.R.; Hurd, M.D.; Potter, G.G.; Rodgers, W.L. Prevalence of dementia in the united states: The aging, demographics, and memory study. Neuroepidemiology 2007, 29, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Wimo, A.; Winblad, B.; Aguero-Torres, H.; von Strauss, E. The magnitude of dementia occurrence in the world. Alzheimer Dis. Assoc. Disord. 2003, 17, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Tayeb, H.O.; Yang, H.D.; Price, B.H.; Tarazi, F.I. Pharmacotherapies for Alzheimer’s disease: Beyond cholinesterase inhibitors. Pharmacol. Ther. 2012, 134, 8–25. [Google Scholar] [CrossRef] [PubMed]
- Kidd, P.M. Alzheimer’s disease, amnestic mild cognitive impairment, and age-associated memory impairment: Current understanding and progress toward integrative prevention. Altern. Med. Rev. 2008, 13, 85–115. [Google Scholar] [PubMed]
- Husband, A.; Worsley, A. Different types of dementia. Pharm. J. 2006, 277, 579–582. [Google Scholar]
- Sodhi, R.K.; Singh, N.; Jaggi, A.S. Neuroprotective mechanisms of peroxisome proliferator-activated receptor agonists in Alzheimer’s disease. Naunyn Schmiedeberg Arch. Pharmacol. 2011, 384, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Van Dam, D.; De Deyn, P.P. Drug discovery in dementia: The role of rodent models. Nat. Rev. Drug Discov. 2006, 5, 956–970. [Google Scholar] [CrossRef] [PubMed]
- Balducci, C.; Forloni, G. APP transgenic mice: Their use and limitations. Neuromol. Med. 2011, 13, 117–137. [Google Scholar] [CrossRef] [PubMed]
- Laurijssens, B.; Aujard, F.; Rahman, A. Animal models of Alzheimer’s disease and drug development. Drug Discov. Today Technol. 2013, 10, e319–e327. [Google Scholar] [CrossRef] [PubMed]
- Elder, G.A.; Gama Sosa, M.A.; De Gasperi, R. Transgenic mouse models of Alzheimer’s disease. Mount Sinai J. Med. 2010, 77, 69–81. [Google Scholar] [CrossRef] [PubMed]
- Tayebati, S.K. Animal models of cognitive dysfunction. Mech. Ageing Dev. 2006, 127, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Agca, C.; Fritz, J.J.; Walker, L.C.; Levey, A.I.; Chan, A.W.; Lah, J.J.; Agca, Y. Development of transgenic rats producing human β-amyloid precursor protein as a model for Alzheimer’s disease: Transgene and endogenous APP genes are regulated tissue-specifically. BMC Neurosci. 2008, 9. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, K.; Matsubara, K.; Uezono, T.; Kimura, K.; Shiono, H. Reduced dorsal hippocampal glutamate release significantly correlates with the spatial memory deficits produced by benzodiazepines and ethanol. Neuroscience 1998, 83, 701–706. [Google Scholar] [CrossRef] [PubMed]
- Orzelska, J.; Talarek, S.; Listos, J.; Fidecka, S. Effects of nos inhibitors on the benzodiazepines-induced memory impairment of mice in the modified elevated plus-maze task. Behav. Brain Res. 2013, 244, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Viñals, X.; Moreno, E.; Lanfumey, L.; Cordomí, A.; Pastor, A.; de La Torre, R.; Gasperini, P.; Navarro, G.; Howell, L.A.; Pardo, L. Cognitive impairment induced by delta9-tetrahydrocannabinol occurs through heteromers between cannabinoid CB 1 and serotonin 5-HT 2A receptors. PLoS Biol. 2015, 13, e1002194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasanein, P.; Sharifi, M. Gaba a receptors in the central amygdala are involved in memory retention deficits induced by cannabinoids in rats. Pharmacol. Biochem. Behav. 2015, 138, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Newcomer, J.W.; Craft, S.; Hershey, T.; Askins, K.; Bardgett, M. Glucocorticoid-induced impairment in declarative memory performance in adult humans. J. Neurosci. 1994, 14, 2047–2053. [Google Scholar] [PubMed]
- Mohammadkhani, R.; Darbandi, N.; Vafaei, A.A.; Ahmadalipour, A.; Rashidy-Pour, A. Glucocorticoid-induced impairment of long-term memory retrieval in female rats: Influences of estrous cycle and estrogen. Neurobiol. Learn. Mem. 2015, 118, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Tongjaroenbuangam, W.; Ruksee, N.; Mahanam, T.; Govitrapong, P. Melatonin attenuates dexamethasone-induced spatial memory impairment and dexamethasone-induced reduction of synaptic protein expressions in the mouse brain. Neurochem. Int. 2013, 63, 482–491. [Google Scholar] [CrossRef] [PubMed]
- Ullah, F.; Ali, T.; Ullah, N.; Kim, M.O. Caffeine prevents d-galactose-induced cognitive deficits, oxidative stress, neuroinflammation and neurodegeneration in the adult rat brain. Neurochem. Int. 2015, 90, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Peng, L. Mice brain tissue injury induced by diisononyl phthalate exposure and the protective application of vitamin E. J. Biochem. Mol. Toxicol. 2015, 29, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Meignin, C.; Hilber, P.; Caston, J. Influence of stimulation of the olivocerebellar pathway by harmaline on spatial learning in the rat. Brain Res. 1999, 824, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Nasehi, M.; Ketabchi, M.; Khakpai, F.; Zarrindast, M.-R. The effect of CA1 dopaminergic system in harmaline-induced amnesia. Neuroscience 2015, 285, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Nasehi, M.; Jamshidi-Mehr, M.; Khakpai, F.; Zarrindast, M.-R. Possible involvement of CA1 5-HT1B/1D and 5-HT2A/2B/2C receptors in harmaline-induced amnesia. Pharmacol. Biochem. Behav. 2014, 125, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Chai, G.-S.; Jiang, X.; Ni, Z.-F.; Ma, Z.-W.; Xie, A.-J.; Cheng, X.-S.; Wang, Q.; Wang, J.-Z.; Liu, G.-P. Betaine attenuates Alzheimer-like pathological changes and memory deficits induced by homocysteine. J. Neurochem. 2013, 124, 388–396. [Google Scholar] [CrossRef] [PubMed]
- Obeid, R.; Herrmann, W. Mechanisms of homocysteine neurotoxicity in neurodegenerative diseases with special reference to dementia. FEBS Lett. 2006, 580, 2994–3005. [Google Scholar] [CrossRef] [PubMed]
- An, L.; Li, Z.; Yang, Z.; Zhang, T. Melamine induced cognitive impairment associated with oxidative damage in rat’s hippocampus. Pharmacol. Biochem. Behav. 2012, 102, 196–202. [Google Scholar] [CrossRef] [PubMed]
- An, L.; Yang, Z.; Zhang, T. Melamine induced spatial cognitive deficits associated with impairments of hippocampal long-term depression and cholinergic system in wistar rats. Neurobiol. Learn. Mem. 2013, 100, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Szabados, T.; Dul, C.; Majtényi, K.; Hargitai, J.; Pénzes, Z.; Urbanics, R. A chronic Alzheimer’s model evoked by mitochondrial poison sodium azide for pharmacological investigations. Behav. Brain Res. 2004, 154, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Hritcu, L.; Ciobica, A.; Stefan, M.; Mihasan, M.; Palamiuc, L.; Nabeshima, T. Spatial memory deficits and oxidative stress damage following exposure to lipopolysaccharide in a rodent model of Parkinson’s disease. Neurosci. Res. 2011, 71, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Tan, Y.; Zhang, F. Ameliorative effect of gastrodin on 3,3′-iminodipropionitrile-induced memory impairment in rats. Neurosci. Lett. 2015, 594, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Misik, J.; Vanek, J.; Musilek, K.; Kassa, J. Cholinergic antagonist 3-quinuclidinyl benzilate-impact on learning and memory in wistar rats. Behav. Brain Res. 2014, 266, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Sambeth, A.; Riedel, W.J.; Klinkenberg, I.; Kähkönen, S.; Blokland, A. Biperiden selectively induces memory impairment in healthy volunteers: No interaction with citalopram. Psychopharmacology 2015, 232, 1887–1897. [Google Scholar] [CrossRef] [PubMed]
- Oz, M.; Atalik, K.E.N.; Yerlikaya, F.H.; Demir, E.A. Curcumin alleviates cisplatin-induced learning and memory impairments. Neurobiol. Learn. Mem. 2015, 123, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Kosta, P.; Mehta, A.K.; Sharma, A.K.; Khanna, N.; Mediratta, P.K.; Mundhada, D.R.; Suke, S. Effect of piracetam and vitamin E on phosphamidon-induced impairment of memory and oxidative stress in rats. Drug Chem. Toxicol. 2013, 36, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Hu, Z.; Wang, H.; Zhu, H.; Dong, Z.; Jiang, W.; Zhao, H.; Li, N.; Mi, W.; Wang, W. Tris-(2,3-dibromopropyl) isocyanurate, a new emerging pollutant, impairs cognition and provokes depression-like behaviors in adult rats. PLoS ONE 2015, 10, e0140281. [Google Scholar] [CrossRef] [PubMed]
- Martin, Z.S.; Neugebauer, V.; Dineley, K.T.; Kayed, R.; Zhang, W.; Reese, L.C.; Taglialatela, G. Α-synuclein oligomers oppose long-term potentiation and impair memory through a calcineurin-dependent mechanism: Relevance to human synucleopathic diseases. J. Neurochem. 2012, 120, 440–452. [Google Scholar] [CrossRef] [PubMed]
- Drachman, D.A.; Leavitt, J. Human memory and the cholinergic system: A relationship to aging? Arch. Neurol. 1974, 30, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Von Linstow Roloff, E.; Harbaran, D.; Micheau, J.; Platt, B.; Riedel, G. Dissociation of cholinergic function in spatial and procedural learning in rats. Neuroscience 2007, 146, 875–889. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-Y.; Wang, X.; Tan, L.; Liu, D.; Liu, X.-H.; Wang, Q.; Wang, J.-Z.; Zhu, L.-Q. Lithium attenuates scopolamine-induced memory deficits with inhibition of GSK-3β and preservation of postsynaptic components. J. Alzheimers Dis. 2013, 37, 515–527. [Google Scholar] [PubMed]
- Chen, C.; Li, X.-H.; Zhang, S.; Tu, Y.; Wang, Y.-M.; Sun, H.-T. 7,8-dihydroxyflavone ameliorates scopolamine-induced Alzheimer-like pathologic dysfunction. Rejuvenation Res. 2014, 17, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Dhingra, D.; Parle, M.; Kulkarni, S. Effect of combination of insulin with dextrose, D(−) fructose and diet on learning and memory in mice. Indian J. Pharmacol. 2003, 35, 151–156. [Google Scholar]
- Goverdhan, P.; Sravanthi, A.; Mamatha, T. Neuroprotective effects of meloxicam and selegiline in scopolamine-induced cognitive impairment and oxidative stress. Int. J. Alzheimers Dis. 2012, 2012, 974013. [Google Scholar] [CrossRef] [PubMed]
- Schifilliti, D.; Santamaria, L.B.; Rosa, G.; Di Nino, G.; Mandal, P.K.; Fodale, V. Cholinergic central system, Alzheimer’s disease, and anesthetics liaison: A vicious circle? J. Alzheimers Dis. 2010, 22, 35–41. [Google Scholar] [PubMed]
- Kar, S.; Slowikowski, S.P.; Westaway, D.; Mount, H.T. Interactions between β-amyloid and central cholinergic neurons: Implications for Alzheimer’s disease. J. Psychiatry Neurosci. 2004, 29, 427–441. [Google Scholar] [PubMed]
- Yang, S.; Zhou, G.; Liu, H.; Zhang, B.; Li, J.; Cui, R.; Du, Y. Protective effects of p38 MAPK inhibitor SB202190 against hippocampal apoptosis and spatial learning and memory deficits in a rat model of vascular dementia. BioMed Res. Int. 2013, 2013. [Google Scholar] [CrossRef] [PubMed]
- Flicker, C.; Serby, M.; Ferris, S.H. Scopolamine effects on memory, language, visuospatial praxis and psychomotor speed. Psychopharmacology 1990, 100, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Riedel, G.; Kang, S.; Choi, D.; Platt, B. Scopolamine-induced deficits in social memory in mice: Reversal by donepezil. Behav. Brain Res. 2009, 204, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Klinkenberg, I.; Blokland, A. The validity of scopolamine as a pharmacological model for cognitive impairment: A review of animal behavioral studies. Neurosci. Biobehav. Rev. 2010, 34, 1307–1350. [Google Scholar] [CrossRef] [PubMed]
- Khakpai, F.; Nasehi, M.; Haeri-Rohani, A.; Eidi, A.; Zarrindast, M.R. Scopolamine induced memory impairment; possible involvement of nmda receptor mechanisms of dorsal hippocampus and/or septum. Behav. Brain Res. 2012, 231, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Konar, A.; Kumar, A.; Srivas, S.; Thakur, M.K. Hippocampal chromatin-modifying enzymes are pivotal for scopolamine-induced synaptic plasticity gene expression changes and memory impairment. J. Neurochem. 2015, 134, 642–651. [Google Scholar] [CrossRef] [PubMed]
- Portero-Tresserra, M.; Del Olmo, N.; Martí-Nicolovius, M.; Guillazo-Blanch, G.; Vale-Martínez, A. d-cycloserine prevents relational memory deficits and suppression of long-term potentiation induced by scopolamine in the hippocampus. Eur. Neuropsychopharmacol. 2014, 24, 1798–1807. [Google Scholar] [CrossRef] [PubMed]
- Blokland, A.; Honig, W.; Raaijmakers, W.G. Effects of intra-hippocampal scopolamine injections in a repeated spatial acquisition task in the rat. Psychopharmacology 1992, 109, 373–376. [Google Scholar] [CrossRef] [PubMed]
- Elvander, E.; Schött, P.; Sandin, J.; Bjelke, B.; Kehr, J.; Yoshitake, T.; Ögren, S. Intraseptal muscarinic ligands and galanin: Influence on hippocampal acetylcholine and cognition. Neuroscience 2004, 126, 541–557. [Google Scholar] [CrossRef] [PubMed]
- Rogers, J.L.; Kesner, R.P. Cholinergic modulation of the hippocampus during encoding and retrieval. Neurobiol. Learn. Mem. 2003, 80, 332–342. [Google Scholar] [CrossRef] [PubMed]
- Masuoka, T.; Fujii, Y.; Kamei, C. Effect of scopolamine on the hippocampal theta rhythm during an eight-arm radial maze task in rats. Eur. J. Pharmacol. 2006, 539, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Cozzolino, R.; Guaraldi, D.; Giuliani, A.; Ghirardi, O.; Ramacci, M.T.; Angelucci, L. Effects of concomitant nicotinic and muscarinic blockade on spatial memory disturbance in rats are purely additive: Evidence from the morris water task. Physiol. Behav. 1994, 56, 111–114. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo, I. Mechanism of action of scopolamine as an amnestic. Trends Pharmacol. Sci. 1989, 10, 175–177. [Google Scholar] [CrossRef] [PubMed]
- Jay, T.M. Dopamine: A potential substrate for synaptic plasticity and memory mechanisms. Prog. Neurobiol. 2003, 69, 375–390. [Google Scholar] [CrossRef] [PubMed]
- Seamans, J.K.; Yang, C.R. The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog. Neurobiol. 2004, 74, 1–58. [Google Scholar] [CrossRef] [PubMed]
- Da Cunha, C.; Wietzikoski, S.; Wietzikoski, E.C.; Miyoshi, E.; Ferro, M.M.; Anselmo-Franci, J.A.; Canteras, N.S. Evidence for the substantia nigra pars compacta as an essential component of a memory system independent of the hippocampal memory system. Neurobiol. Learn. Mem. 2003, 79, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Dovero, S.; Gross, C.; Bezard, E. Unexpected toxicity of very low dose MPTP in mice: A clue to the etiology of Parkinson’s disease? Synapse 2016, 70, 49–51. [Google Scholar] [CrossRef] [PubMed]
- Caballol, N.; Martí, M.J.; Tolosa, E. Cognitive dysfunction and dementia in Parkinson disease. Mov. Disord. 2007, 22, S358–S366. [Google Scholar] [CrossRef] [PubMed]
- Pillon, B.; Dubois, B.; Cusimano, G.; Bonnet, A.-M.; Lhermitte, F.; Agid, Y. Does cognitive impairment in Parkinson’s disease result from non-dopaminergic lesions? J. Neurol. Neurosurg. Psychiatry 1989, 52, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Yarnall, A.J.; Rochester, L.; Burn, D.J. Mild cognitive impairment in Parkinson’s disease. Age Aging 2013, 42, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Da Cunha, C.; Angelucci, M.E.M.; Canteras, N.S.; Wonnacott, S.; Takahashi, R.N. The lesion of the rat substantia nigra pars compacta dopaminergic neurons as a model for Parkinson’s disease memory disabilities. Cell. Mol. Neurobiol. 2002, 22, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Miyoshi, E.; Wietzikoski, S.; Camplessei, M.; Silveira, R.; Takahashi, R.N.; Da Cunha, C. Impaired learning in a spatial working memory version and in a cued version of the water maze in rats with MPTP-induced mesencephalic dopaminergic lesions. Brain Res. Bull. 2002, 58, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Kehagia, A.A.; Barker, R.A.; Robbins, T.W. Neuropsychological and clinical heterogeneity of cognitive impairment and dementia in patients with Parkinson’s disease. Lancet Neurol. 2010, 9, 1200–1213. [Google Scholar] [CrossRef] [PubMed]
- Schneider, J.; Kovelowski, C. Chronic exposure to low doses of MPTP. I. Cognitive deficits in motor asymptomatic monkeys. Brain Res. 1990, 519, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Da Cunha, C.; Gevaerd, M.S.; Vital, M.A.B.; Miyoshi, E.; Andreatini, R.; Silveira, R.; Takahashi, R.N.; Canteras, N.S. Memory disruption in rats with nigral lesions induced by MPTP: A model for early Parkinson’s disease amnesia. Behav. Brain Res. 2001, 124, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Schneider, J.S.; Pioli, E.Y.; Jianzhong, Y.; Li, Q.; Bezard, E. Levodopa improves motor deficits but can further disrupt cognition in a macaque Parkinson model. Mov. Disord. 2013, 28, 663–667. [Google Scholar] [CrossRef] [PubMed]
- Gevaerd, M.S.; Miyoshi, E.; Silveira, R.; Canteras, N.S.; Takahashi, R.N.; Da Cunha, C. L-Dopa restores striatal dopamine level but fails to reverse MPTP-induced memory deficits in rats. Int. J. Neuropsychopharmacol. 2001, 4, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Kaundal, R.K.; More, S.; Sharma, S.S. Beneficial effects of pioglitazone on cognitive impairment in MPTP model of Parkinson’s disease. Behav. Brain Res. 2009, 197, 398–403. [Google Scholar] [CrossRef] [PubMed]
- Langston, J.W.; Ballard, P.; Tetrud, J.W.; Irwin, I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 1983, 219, 979–980. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.; Aras, R.; Christian, W.V.; Rappold, P.M.; Hatwar, M.; Panza, J.; Jackson-Lewis, V.; Javitch, J.A.; Ballatori, N.; Przedborski, S. The organic cation transporter-3 is a pivotal modulator of neurodegeneration in the nigrostriatal dopaminergic pathway. Proc. Natl. Acad. Sci. USA 2009, 106, 8043–8048. [Google Scholar] [CrossRef] [PubMed]
- Javitch, J.A.; D’Amato, R.J.; Strittmatter, S.M.; Snyder, S.H. Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine: Uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity. Proc. Natl. Acad. Sci. USA 1985, 82, 2173–2177. [Google Scholar] [CrossRef] [PubMed]
- Bezard, E.; Gross, C.E.; Fournier, M.-C.; Dovero, S.; Bloch, B.; Jaber, M. Absence of MPTP-induced neuronal death in mice lacking the dopamine transporter. Exp. Neurol. 1999, 155, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Guillot, T.S.; Miller, G.W. Protective actions of the vesicular monoamine transporter 2 (VMAT2) in monoaminergic neurons. Mol. Neurobiol. 2009, 39, 149–170. [Google Scholar] [CrossRef] [PubMed]
- Panneton, W.M.; Kumar, V.; Gan, Q.; Burke, W.J.; Galvin, J.E. The neurotoxicity of dopal: Behavioral and stereological evidence for its role in Parkinson disease pathogenesis. PLoS ONE 2010, 5, e15251. [Google Scholar] [CrossRef] [PubMed]
- Sy, H.-N.; Wu, S.-L.; Wang, W.-F.; Chen, C.-H.; Huang, Y.-T.; Liou, Y.-M.; Chiou, C.-S.; Pawlak, C.R.; Ho, Y.-J. MPTP-induced dopaminergic degeneration and deficits in object recognition in rats are accompanied by neuroinflammation in the hippocampus. Pharmacol. Biochem. Behav. 2010, 95, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Moriguchi, S.; Yabuki, Y.; Fukunaga, K. Reduced calcium/calmodulin-dependent protein kinase II activity in the hippocampus is associated with impaired cognitive function in MPTP-treated mice. J. Neurochem. 2012, 120, 541–551. [Google Scholar] [CrossRef] [PubMed]
- Solari, N.; Bonito-Oliva, A.; Fisone, G.; Brambilla, R. Understanding cognitive deficits in Parkinson’s disease: Lessons from preclinical animal models. Learn. Mem. 2013, 20, 592–600. [Google Scholar] [CrossRef] [PubMed]
- Halliday, G.M.; Leverenz, J.B.; Schneider, J.S.; Adler, C.H. The neurobiological basis of cognitive impairment in Parkinson’s disease. Mov. Disord. 2014, 29, 634–650. [Google Scholar] [CrossRef] [PubMed]
- Magen, I.; Fleming, S.M.; Zhu, C.; Garcia, E.C.; Cardiff, K.M.; Dinh, D.; De La Rosa, K.; Sanchez, M.; Torres, E.R.; Masliah, E. Cognitive deficits in a mouse model of pre-manifest Parkinson’s disease. Eur. J. Neurosci. 2012, 35, 870–882. [Google Scholar] [CrossRef] [PubMed]
- Itier, J.-M.; Ibáñez, P.; Mena, M.A.; Abbas, N.; Cohen-Salmon, C.; Bohme, G.A.; Laville, M.; Pratt, J.; Corti, O.; Pradier, L. Parkin gene inactivation alters behaviour and dopamine neurotransmission in the mouse. Hum. Mol. Genet. 2003, 12, 2277–2291. [Google Scholar] [CrossRef] [PubMed]
- Nuber, S.; Petrasch-Parwez, E.; Winner, B.; Winkler, J.; von Hörsten, S.; Schmidt, T.; Boy, J.; Kuhn, M.; Nguyen, H.P.; Teismann, P. Neurodegeneration and motor dysfunction in a conditional model of Parkinson’s disease. J. Neurosci. 2008, 28, 2471–2484. [Google Scholar] [CrossRef] [PubMed]
- Ungerstedt, U.; Ljungberg, T.; Steg, G. Behavioral, physiological, and neurochemical changes after 6-hydroxydopamine-induced degeneration of the nigro-striatal dopamine neurons. Adv. Neurol. 1974, 5, 421–426. [Google Scholar] [PubMed]
- Blesa, J.; Phani, S.; Jackson-Lewis, V.; Przedborski, S. Classic and new animal models of Parkinson’s disease. BioMed Res. Int. 2012, 2012. [Google Scholar] [CrossRef] [PubMed]
- Villa, M.; Muñoz, P.; Ahumada-Castro, U.; Paris, I.; Jiménez, A.; Martínez, I.; Sevilla, F.; Segura-Aguilar, J. One-electron reduction of 6-hydroxydopamine quinone is essential in 6-hydroxydopamine neurotoxicity. Neurotox. Res. 2013, 24, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Hritcu, L.; Ciobica, A.; Artenie, V. Effects of right-unilateral 6-hydroxydopamine infusion-induced memory impairment and oxidative stress: Relevance for Parkinson’s disease. Open Life Sci. 2008, 3, 250–257. [Google Scholar] [CrossRef]
- Kuruvilla, K.P.; Nandhu, M.; Paul, J.; Paulose, C. Oxidative stress mediated neuronal damage in the corpus striatum of 6-hydroxydopamine lesioned Parkinson’s rats: Neuroprotection by serotonin, GABA and bone marrow cells supplementation. J. Neurolog. Sci. 2013, 331, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Bove, J.; Perier, C. Neurotoxin-based models of Parkinson’s disease. Neuroscience 2012, 211, 51–76. [Google Scholar] [CrossRef] [PubMed]
- Crocker, S.; Lamba, W.; Smith, P.; Callaghan, S.; Slack, R.; Anisman, H.; Park, D. C-jun mediates axotomy-induced dopamine neuron death in vivo. Proc. Natl. Acad. Sci. USA 2001, 98, 13385–13390. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Weng, Z.; Chu, C.T.; Zhang, L.; Cao, G.; Gao, Y.; Signore, A.; Zhu, J.; Hastings, T.; Greenamyre, J.T. Peroxiredoxin-2 protects against 6-hydroxydopamine-induced dopaminergic neurodegeneration via attenuation of the apoptosis signal-regulating kinase (ASK1) signaling cascade. J. Neurosci. 2011, 31, 247–261. [Google Scholar] [CrossRef] [PubMed]
- Depino, A.M.; Earl, C.; Kaczmarczyk, E.; Ferrari, C.; Besedovsky, H.; Del Rey, A.; Pitossi, F.J.; Oertel, W.H. Microglial activation with atypical proinflammatory cytokine expression in a rat model of Parkinson’s disease. Eur. J. Neurosci. 2003, 18, 2731–2742. [Google Scholar]
- Marinova-Mutafchieva, L.; Sadeghian, M.; Broom, L.; Davis, J.B.; Medhurst, A.D.; Dexter, D.T. Relationship between microglial activation and dopaminergic neuronal loss in the substantia nigra: A time course study in a 6-hydroxydopamine model of Parkinson’s disease. J. Neurochem. 2009, 110, 966–975. [Google Scholar] [CrossRef] [PubMed]
- Harms, A.S.; Barnum, C.J.; Ruhn, K.A.; Varghese, S.; Treviño, I.; Blesch, A.; Tansey, M.G. Delayed dominant-negative TNF gene therapy halts progressive loss of nigral dopaminergic neurons in a rat model of Parkinson’s disease. Mol. Ther. 2011, 19, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.J.; Zhang, L.; Liu, Z.; Zhou, P.; Lu, X. The expression and release of Hsp60 in 6-OHDA induced in vivo and in vitro models of Parkinson’s disease. Neurochem. Res. 2013, 38, 2180–2189. [Google Scholar] [CrossRef] [PubMed]
- Kupsch, A.; Schmidt, W.; Gizatullina, Z.; Debska-Vielhaber, G.; Voges, J.; Striggow, F.; Panther, P.; Schwegler, H.; Heinze, H.-J.; Vielhaber, S. 6-Hydroxydopamine impairs mitochondrial function in the rat model of Parkinson’s disease: Respirometric, histological, and behavioral analyses. J. Neural Transm. 2014, 121, 1245–1257. [Google Scholar] [CrossRef] [PubMed]
- Tadaiesky, M.; Dombrowski, P.; Figueiredo, C.; Cargnin-Ferreira, E.; Da Cunha, C.; Takahashi, R. Emotional, cognitive and neurochemical alterations in a premotor stage model of Parkinson’s disease. Neuroscience 2008, 156, 830–840. [Google Scholar] [CrossRef] [PubMed]
- Ferro, M.M.; Bellissimo, M.I.; Anselmo-Franci, J.A.; Angellucci, M.E.M.; Canteras, N.S.; Da Cunha, C. Comparison of bilaterally 6-OHDA-and MPTP-lesioned rats as models of the early phase of Parkinson’s disease: Histological, neurochemical, motor and memory alterations. J. Neurosci. Methods 2005, 148, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Lindgren, H.S.; Dunnett, S.B. Cognitive dysfunction and depression in Parkinson’s disease: What can be learned from rodent models? Eur. J. Neurosci. 2012, 35, 1894–1907. [Google Scholar] [CrossRef] [PubMed]
- Gasbarri, A.; Sulli, A.; Innocenzi, R.; Pacitti, C.; Brioni, J. Spatial memory impairment induced by lesion of the mesohippocampal dopaminergic system in the rat. Neuroscience 1996, 74, 1037–1044. [Google Scholar] [CrossRef] [PubMed]
- Mura, A.; Feldon, J. Spatial learning in rats is impaired after degeneration of the nigrostriatal dopaminergic system. Mov. Disord. 2003, 18, 860–871. [Google Scholar] [CrossRef] [PubMed]
- Costa, C.; Sgobio, C.; Siliquini, S.; Tozzi, A.; Tantucci, M.; Ghiglieri, V.; di Filippo, M.; Pendolino, V.; de Iure, A.; Marti, M. Mechanisms underlying the impairment of hippocampal long-term potentiation and memory in experimental Parkinson’s disease. Brain 2012, 135, 1884–1899. [Google Scholar] [CrossRef] [PubMed]
- Bonito-Oliva, A.; Pignatelli, M.; Spigolon, G.; Yoshitake, T.; Seiler, S.; Longo, F.; Piccinin, S.; Kehr, J.; Mercuri, N.B.; Nisticò, R. Cognitive impairment and dentate gyrus synaptic dysfunction in experimental Parkinsonism. Biol. Psychiatry 2014, 75, 701–710. [Google Scholar] [CrossRef] [PubMed]
- De Leonibus, E.; Pascucci, T.; Lopez, S.; Oliverio, A.; Amalric, M.; Mele, A. Spatial deficits in a mouse model of Parkinson disease. Psychopharmacology 2007, 194, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.; Mamiya, T.; Lu, L.; Mouri, A.; Zou, L.; Nagai, T.; Hiramatsu, M.; Ikejima, T.; Nabeshima, T. Silibinin prevents amyloid β peptide-induced memory impairment and oxidative stress in mice. Br. J. Pharmacol. 2009, 157, 1270–1277. [Google Scholar] [CrossRef] [PubMed]
- Nunan, J.; Small, D.H. Regulation of app cleavage by α-, β-and γ-secretases. FEBS Lett. 2000, 483, 6–10. [Google Scholar] [CrossRef] [PubMed]
- Small, D.H.; McLean, C.A. Alzheimer’s disease and the amyloid β protein. J. Neurochem. 1999, 73, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Lei, M.; Xu, H.; Li, Z.; Wang, Z.; O’Malley, T.T.; Zhang, D.; Walsh, D.M.; Xu, P.; Selkoe, D.J.; Li, S. Soluble aβ oligomers impair hippocampal LTP by disrupting glutamatergic/gabaergic balance. Neurobiol. Dis. 2016, 85, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Nunes-Tavares, N.; Santos, L.E.; Stutz, B.; Brito-Moreira, J.; Klein, W.L.; Ferreira, S.T.; de Mello, F.G. Inhibition of choline acetyltransferase as a mechanism for cholinergic dysfunction induced by amyloid-β peptide oligomers. J. Biol. Chem. 2012, 287, 19377–19385. [Google Scholar] [CrossRef] [PubMed]
- Götz, J.; Chen, F.; Van Dorpe, J.; Nitsch, R. Formation of neurofibrillary tangles in P301L tau transgenic mice induced by Aβ42 fibrils. Science 2001, 293, 1491–1495. [Google Scholar] [CrossRef] [PubMed]
- Hardy, J.; Selkoe, D.J. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science 2002, 297, 353–356. [Google Scholar] [CrossRef] [PubMed]
- Pennanen, L.; Götz, J. Different tau epitopes define Aβ42-mediated tau insolubility. Biochem. Biophys. Res. Commun. 2005, 337, 1097–1101. [Google Scholar] [CrossRef] [PubMed]
- Shipton, O.A.; Leitz, J.R.; Dworzak, J.; Acton, C.E.; Tunbridge, E.M.; Denk, F.; Dawson, H.N.; Vitek, M.P.; Wade-Martins, R.; Paulsen, O. Tau protein is required for amyloid β-induced impairment of hippocampal long-term potentiation. J. Neurosci. 2011, 31, 1688–1692. [Google Scholar] [CrossRef] [PubMed]
- Green, K.; Smith, I.; Laferla, F. Role of calcium in the pathogenesis of Alzheimer’s disease and transgenic models. In Calcium Signalling and Disease; Springer: Irvine, CA, USA, 2007; pp. 507–521. [Google Scholar]
- Daschil, N.; Obermair, G.J.; Flucher, B.E.; Stefanova, N.; Hutter-Paier, B.; Windisch, M.; Humpel, C.; Marksteiner, J. Cav1. 2 calcium channel expression in reactive astrocytes is associated with the formation of amyloid-β plaques in an Alzheimer’s disease mouse model. J. Alzheimers Dis. 2013, 37, 439–451. [Google Scholar] [PubMed]
- Parajuli, B.; Sonobe, Y.; Horiuchi, H.; Takeuchi, H.; Mizuno, T.; Suzumura, A. Oligomeric amyloid β induces IL-1β processing via production of ros: Implication in Alzheimer’s disease. Cell Death Dis. 2013, 4, e975. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.-M.; Han, Y.-W.; Han, X.-H.; Zhang, K.; Chang, Y.-N.; Hu, Z.-M.; Qi, H.-X.; Ting, C.; Zhen, Z.; Hong, W. Upstream regulators and downstream effectors of NF-κB in Alzheimer’s Disease. J. Neurol. Sci. 2016, 366, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Ivins, K.J.; Thornton, P.L.; Rohn, T.T.; Cotman, C.W. Neuronal apoptosis induced by β-amyloid is mediated by caspase-8. Neurobiol. Dis. 1999, 6, 440–449. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Park, G.H.; Kim, C.-Y.; Jang, J.-H. [6]-Gingerol attenuates β-amyloid-induced oxidative cell death via fortifying cellular antioxidant defense system. Food Chem. Toxicol. 2011, 49, 1261–1269. [Google Scholar] [CrossRef] [PubMed]
- Yun, H.-M.; Kim, J.A.; Hwang, C.J.; Jin, P.; Baek, M.K.; Lee, J.M.; Hong, J.E.; Lee, S.M.; Han, S.B.; Oh, K.W. Neuroinflammatory and amyloidogenic activities of IL-32β in Alzheimer’s disease. Mol. Neurobiol. 2015, 52, 341–352. [Google Scholar] [CrossRef] [PubMed]
- Yamin, G. NMDA receptor-dependent signaling pathways that underlie amyloid β-protein disruption of LTP in the hippocampus. J. Neurosci. Res. 2009, 87, 1729–1736. [Google Scholar] [CrossRef] [PubMed]
- Tong, L.; Balazs, R.; Thornton, P.L.; Cotman, C.W. β-amyloid peptide at sublethal concentrations downregulates brain-derived neurotrophic factor functions in cultured cortical neurons. J. Neurosci. 2004, 24, 6799–6809. [Google Scholar] [CrossRef] [PubMed]
- Dineley, K.T.; Westerman, M.; Bui, D.; Bell, K.; Ashe, K.H.; Sweatt, J.D. β-amyloid activates the mitogen-activated protein kinase cascade via hippocampal α7 nicotinic acetylcholine receptors: In vitro and in vivo mechanisms related to Alzheimer’s disease. J. Neurosci. 2001, 21, 4125–4133. [Google Scholar] [PubMed]
- Liu, W.; Dou, F.; Feng, J.; Yan, Z. Rack1 is involved in β-amyloid impairment of muscarinic regulation of gabaergic transmission. Neurobiol. Aging 2011, 32, 1818–1826. [Google Scholar] [CrossRef] [PubMed]
- Desbène, C.; Malaplate-Armand, C.; Youssef, I.; Garcia, P.; Stenger, C.; Sauvée, M.; Fischer, N.; Rimet, D.; Koziel, V.; Escanyé, M.-C. Critical role of cPLA 2 in aβ oligomer-induced neurodegeneration and memory deficit. Neurobiol. Aging 2012, 33, 1123.e17–1123.e29. [Google Scholar] [CrossRef] [PubMed]
- Lawlor, P.A.; Young, D. Aβ infusion and related models of Alzheimer dementia. Anim. Models Dement. 2011, 48, 347–370. [Google Scholar]
- Kim, H.Y.; Lee, D.K.; Chung, B.-R.; Kim, H.V.; Kim, Y. Intracerebroventricular injection of amyloid-β peptides in normal mice to acutely induce Alzheimer-like cognitive deficits. J. Vis. Exp. 2016, (109). [Google Scholar] [CrossRef] [PubMed]
- Kalweit, A.N.; Yang, H.; Colitti-Klausnitzer, J.; Fülöp, L.; Bozsó, Z.; Penke, B.; Manahan-Vaughan, D. Acute intracerebral treatment with amyloid-β (1–42) alters the profile of neuronal oscillations that accompany LTP induction and results in impaired LTP in freely behaving rats. Front. Behav. Neurosci. 2015, 9. [Google Scholar] [CrossRef] [PubMed]
- Olariu, A.; Yamada, K.; Mamiya, T.; Hefco, V.; Nabeshima, T. Memory impairment induced by chronic intracerebroventricular infusion of β-amyloid (1–40) involves downregulation of protein kinase C. Brain Res. 2002, 957, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Nag, S.; Yee, B.; Tang, F. Reduction in somatostatin and substance p levels and choline acetyltransferase activity in the cortex and hippocampus of the rat after chronic intracerebroventricular infusion of β-amyloid (1–40). Brain Res. Bull. 1999, 50, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Harkany, T.; Abraham, I.; Timmerman, W.; Laskay, G.; Toth, B.; Sasvari, M.; Konya, C.; Sebens, J.; Korf, J.; Nyakas, C. β-amyloid neurotoxicity is mediated by a glutamate-triggered excitotoxic cascade in rat nucleus basalis. Eur. J. Neurosci. 2000, 12, 2735–2745. [Google Scholar] [CrossRef] [PubMed]
- Desrumaux, C.; Pisoni, A.; Meunier, J.; Deckert, V.; Athias, A.; Perrier, V.; Villard, V.; Lagrost, L.; Verdier, J.-M.; Maurice, T. Increased amyloid-β peptide-induced memory deficits in phospholipid transfer protein (PLTP) gene knockout mice. Neuropsychopharmacology 2013, 38, 817–825. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.; Lou, F.; Hou, W.; Liu, M.; Guo, H.; Zhang, X. Acetylpuerarin reduces inflammation and improves memory function in a rat model of Alzheimer’s disease induced by αβ1–42. Die Pharm. Int. J. Pharm. Sci. 2013, 68, 904–908. [Google Scholar]
- Wiley, P. Isolation and chemistry of streptozotocin. In Streptozotocin: Fundamentals and Therapy; Elsevier North-Holland Biomedical Press: New York, NY, USA, 1981. [Google Scholar]
- Haidara, M.A.; Mikhailidis, D.P.; Rateb, M.A.; Ahmed, Z.A.; Yassin, H.Z.; Ibrahim, I.M.; Rashed, L.A. Evaluation of the effect of oxidative stress and vitamin E supplementation on renal function in rats with streptozotocin-induced type 1 diabetes. J. Diabetes Complicat. 2009, 23, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Lannert, H.; Hoyer, S. Intracerebroventricular administration of streptozotocin causes long-term diminutions in learning and memory abilities and in cerebral energy metabolism in adult rats. Behav. Neurosci. 1998, 112, 1199–1208. [Google Scholar] [CrossRef] [PubMed]
- Salkovic-Petrisic, M.; Osmanovic-Barilar, J.; Knezovic, A.; Hoyer, S.; Mosetter, K.; Reutter, W. Long-term oral galactose treatment prevents cognitive deficits in male wistar rats treated intracerebroventricularly with streptozotocin. Neuropharmacology 2014, 77, 68–80. [Google Scholar] [PubMed]
- Mayer, G.; Nitsch, R.; Hoyer, S. Effects of changes in peripheral and cerebral glucose metabolism on locomotor activity, learning and memory in adult male rats. Brain Res. 1990, 532, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Biessels, G.-J.; Kamal, A.; Ramakers, G.M.; Urban, I.J.; Spruijt, B.M.; Erkelens, D.W.; Gispen, W.H. Place learning and hippocampal synaptic plasticity in streptozotocin-induced diabetic rats. Diabetes 1996, 45, 1259–1266. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Yu, G.; Chi, L.; Zhu, J.; Zhang, W.; Zhang, Y.; Zhang, L. Neuroprotective effects of edaravone on cognitive deficit, oxidative stress and tau hyperphosphorylation induced by intracerebroventricular streptozotocin in rats. Neurotoxicology 2013, 38, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Dalla, Y.; Singh, N.; Jaggi, A.S.; Singh, D. Memory restorative role of statins in experimental dementia: An evidence of their cholesterol dependent and independent actions. Pharmacol. Rep. 2010, 62, 784–796. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, R.; Tyagi, E.; Shukla, R.; Nath, C. Insulin receptor signaling in rat hippocampus: A study in STZ (ICV) induced memory deficit model. Eur. Neuropsychopharmacol. 2011, 21, 261–273. [Google Scholar] [CrossRef] [PubMed]
- Sodhi, R.K.; Singh, N. Liver X receptor agonist T0901317 reduces neuropathological changes and improves memory in mouse models of experimental dementia. Eur. J. Pharmacol. 2014, 732, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Hoyer, S.; Lannert, H. Long-term effects of corticosterone on behavior, oxidative and energy metabolism of parietotemporal cerebral cortex and hippocampus of rats: Comparison to intracerebroventricular streptozotocin. J. Neural. Transm. 2008, 115, 1241–1249. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.B.; Khan, M.M.; Khan, A.; Ahmed, M.E.; Ishrat, T.; Tabassum, R.; Vaibhav, K.; Ahmad, A.; Islam, F. Naringenin ameliorates Alzheimer’s disease (AD)-type neurodegeneration with cognitive impairment (AD-TNDCI) caused by the intracerebroventricular-streptozotocin in rat model. Neurochem. Int. 2012, 61, 1081–1093. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.E.; Khan, M.M.; Javed, H.; Vaibhav, K.; Khan, A.; Tabassum, R.; Ashafaq, M.; Islam, F.; Safhi, M.M.; Islam, F. Amelioration of cognitive impairment and neurodegeneration by catechin hydrate in rat model of streptozotocin-induced experimental dementia of Alzheimer’s type. Neurochem. Int. 2013, 62, 492–501. [Google Scholar] [CrossRef] [PubMed]
- Mansouri, M.T.; Naghizadeh, B.; Ghorbanzadeh, B.; Farbood, Y.; Sarkaki, A.; Bavarsad, K. Gallic acid prevents memory deficits and oxidative stress induced by intracerebroventricular injection of streptozotocin in rats. Pharmacol. Biochem. Behav. 2013, 111, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Sodhi, R.K.; Jaggi, A.S.; Singh, N. Animal models of dementia and cognitive dysfunction. Life Sci. 2014, 109, 73–86. [Google Scholar]
- Salkovic-Petrisic, M.; Knezovic, A.; Hoyer, S.; Riederer, P. What have we learned from the streptozotocin-induced animal model of sporadic Alzheimer’s disease, about the therapeutic strategies in Alzheimer’s research. J. Neural. Transm. 2013, 120, 233–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.-M.; Ji, E.-S.; Kim, S.-H.; Kim, T.-W.; Ko, I.-G.; Jin, J.-J.; Kim, C.-J.; Kim, T.-W.; Kim, D.-H. Treadmill exercise improves short-term memory by enhancing hippocampal cell proliferation in quinolinic acid-induced huntington’s disease rats. J. Exerc. Rehabil. 2015, 11, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Beal, M.F.; Kowall, N.W.; Ellison, D.W.; Mazurek, M.F.; Swartz, K.J.; Martin, J.B. Replication of the neurochemical characteristics of huntington’s disease by quinolinic acid. Nature 1985, 321, 168–171. [Google Scholar] [CrossRef] [PubMed]
- Lugo-Huitrón, R.; Ugalde Muñiz, P.; Pineda, B.; Pedraza-Chaverrí, J.; Ríos, C.; Pérez-de la Cruz, V. Quinolinic acid: An endogenous neurotoxin with multiple targets. Oxidat. Med. Cell. Longev. 2013, 2013. [Google Scholar] [CrossRef] [PubMed]
- Orlando, L.R.; Alsdorf, S.A.; Penney, J.B.; Young, A.B. The role of group I and group II metabotropic glutamate receptors in modulation of striatal NMDA and quinolinic acid toxicity. Exp. Neurol. 2001, 167, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Kumar, U. Characterization of striatal cultures with the effect of QUIN and NMDA. Neurosci. Res. 2004, 49, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Brew, B.J.; Guillemin, G.J. Characterization of the kynurenine pathway in NSC-34 cell line: Implications for amyotrophic lateral sclerosis. J. Neurochem. 2011, 118, 816–825. [Google Scholar] [CrossRef] [PubMed]
- Ting, K.K.; Brew, B.J.; Guillemin, G.J. Effect of quinolinic acid on human astrocytes morphology and functions: Implications in Alzheimer’s disease. J. Neuroinflamm. 2009, 6. [Google Scholar] [CrossRef]
- Santamaría, A.; Galván-Arzate, S.; Lisý, V.; Ali, S.F.; Duhart, H.M.; Osorio-Rico, L.; Ríos, C.; Sut’astný, F. Quinolinic acid induces oxidative stress in rat brain synaptosomes. Neuroreport 2001, 12, 871–874. [Google Scholar] [CrossRef] [PubMed]
- Goda, K.; Kishimoto, R.; Shimizu, S.; Hamane, Y.; Ueda, M. Quinolinic acid and active oxygens. In Recent Advances in Tryptophan Research; Springer: New York, NY, USA, 1996; pp. 247–254. [Google Scholar]
- Sˇtípek, S.; Sˇtastný, F.E.; Pláteník, J.; Crkovská, J.I.; Zima, T. The effect of quinolinate on rat brain lipid peroxidation is dependent on iron. Neurochem. Int. 1997, 30, 233–237. [Google Scholar] [CrossRef]
- Pláteník, J.; Stopka, P.; Vejražka, M.; Štípek, S. Quinolinic acid—Iron (II) complexes: Slow autoxidation, but enhanced hydroxyl radical production in the fenton reaction. Free Radic. Res. 2001, 34, 445–459. [Google Scholar] [CrossRef] [PubMed]
- Nakao, N.; Grasbon-Frodl, E.; Widner, H.; Brundin, P. Antioxidant treatment protects striatal neurons against excitotoxic insults. Neuroscience 1996, 73, 185–200. [Google Scholar] [CrossRef] [PubMed]
- Bordelon, Y.M.; Chesselet, M.F.; Nelson, D.; Welsh, F.; Erecińska, M. Energetic dysfunction in quinolinic acid-lesioned rat striatum. J. Neurochem. 1997, 69, 1629–1639. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.G.; McGeer, E.G.; McGeer, P.L. Effect of MK-801, kynurenate, glycine, dextrorphan and 4-acetylpyridine on striatal toxicity of quinolinate. Brain Res. 1989, 481, 356–360. [Google Scholar] [CrossRef] [PubMed]
- Steiner, J.; Bogerts, B.; Sarnyai, Z.; Walter, M.; Gos, T.; Bernstein, H.-G.; Myint, A.-M. Bridging the gap between the immune and glutamate hypotheses of schizophrenia and major depression: Potential role of glial nmda receptor modulators and impaired blood-brain barrier integrity. World J. Biol. Psychiatry 2012, 13, 482–492. [Google Scholar] [CrossRef] [PubMed]
- Št’astný, F.; Škultétyová, I.; Pliss, L.; Ježová, D. Quinolinic acid enhances permeability of rat brain microvessels to plasma albumin. Brain Res. Bull. 2000, 53, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Braidy, N.; Grant, R.; Adams, S.; Guillemin, G.J. Neuroprotective effects of naturally occurring polyphenols on quinolinic acid-induced excitotoxicity in human neurons. FEBS J. 2010, 277, 368–382. [Google Scholar] [CrossRef] [PubMed]
- Pierozan, P.; Zamoner, A.; Soska, Â.K.; Silvestrin, R.B.; Loureiro, S.O.; Heimfarth, L.; Souza, T.M.; Wajner, M.; Pessoa-Pureur, R. Acute intrastriatal administration of quinolinic acid provokes hyperphosphorylation of cytoskeletal intermediate filament proteins in astrocytes and neurons of rats. Exp. Neurol. 2010, 224, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Guillemin, G.J.; Croitoru-Lamoury, J.; Dormont, D.; Armati, P.J.; Brew, B.J. Quinolinic acid upregulates chemokine production and chemokine receptor expression in astrocytes. Glia 2003, 41, 371–381. [Google Scholar] [CrossRef] [PubMed]
- Guillemin, G.J. Quinolinic acid, the inescapable neurotoxin. FEBS J. 2012, 279, 1356–1365. [Google Scholar] [CrossRef] [PubMed]
- Shear, D.A.; Dong, J.; Haik-Creguer, K.L.; Bazzett, T.J.; Albin, R.L.; Dunbar, G.L. Chronic administration of quinolinic acid in the rat striatum causes spatial learning deficits in a radial arm water maze task. Exp. Neurol. 1998, 150, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Block, F.; Kunkel, M.; Schwarz, M. Quinolinic acid lesion of the striatum induces impairment in spatial learning and motor performance in rats. Neurosci. Lett. 1993, 149, 126–128. [Google Scholar] [CrossRef] [PubMed]
- Popoli, P.; Pezzola, A.; Domenici, M.R.; Sagratella, S.; Diana, G.; Caporali, M.G.; Bronzetti, E.; Vega, J.; Scotti de Carolis, A. Behavioral and electrophysiological correlates of the quinolinic acid rat model of huntington’s disease in rats. Brain Res. Bull. 1994, 35, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Holscher, C.; Schmidt, W.J. Quinolinic acid lesion of the rat entorhinal cortex pars medialis produces selective amnesia in allocentric working memory (WM), but not in egocentric WM. Behav. Brain Res. 1994, 63, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Kostrzewa, R.M. Handbook of Neurotoxicity; Springer: New York, NY, USA, 2014. [Google Scholar]
- Wrenn, C.C.; Wiley, R.G. The behavioral functions of the cholinergic basalforebrain: Lessons from 192 IgG-saporin. Int. J. Dev. Neurosci. 1998, 16, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Thomas, L.B.; Book, A.A.; Schweitzer, J.B. Immunohistochemical detection of a monoclonal antibody directed against the NGF receptor in basal forebrain neurons following intraventricular injection. J. Neurosci. Methods 1991, 37, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Wiley, R.G. Neural lesioning with ribosome-inactivating proteins: Suicide transport and immunolesioning. Trends Neurosci. 1992, 15, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Hawkes, C.; Jhamandas, J.; Kar, S. Selective loss of basal forebrain cholinergic neurons by 192 IgG-saporin is associated with decreased phosphorylation of Ser9 glycogen synthase kinase-3β. J. Neurochem. 2005, 95, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Berger-Sweeney, J. The effects of neonatal basal forebrain lesions oncognition: Towards understanding the developmental roleof the cholinergic basal forebrain. Int. J. Dev. Neurosci. 1998, 16, 603–612. [Google Scholar] [CrossRef] [PubMed]
- Pioro, E.P.; Cuello, A.C. Purkinje cells of adult rat cerebellum express nerve growth factor receptor immunoreactivity: Light microscopic observations. Brain Res. 1988, 455, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Alloza, M.; Zaldua, N.; Diez-Ariza, M.; Marcos, B.; Lasheras, B.; Gil-Bea, F.J.; Ramirez, M.J. Effect of selective cholinergic denervation on the serotonergic system: Implications for learning and memory. J. Neuropathol. Exp. Neurol. 2006, 65, 1074–1081. [Google Scholar] [CrossRef] [PubMed]
- Berger-Sweeney, J.; Heckers, S.; Mesulam, M.-M.; Wiley, R.G.; Lappi, D.A.; Sharma, M. Differential effects on spatial navigation of immunotoxin-induced cholinergic lesions of the medial septal area and nucleus basalis magnocellularis. J. Neurosci. 1994, 14, 4507–4519. [Google Scholar] [PubMed]
- Cutuli, D.; Foti, F.; Mandolesi, L.; De Bartolo, P.; Gelfo, F.; Federico, F.; Petrosini, L. Cognitive performances of cholinergically depleted rats following chronic donepezil administration. J. Alzheimers Dis. 2009, 17, 161–176. [Google Scholar] [PubMed]
- De Bartolo, P.; Cutuli, D.; Ricceri, L.; Gelfo, F.; Foti, F.; Laricchiuta, D.; Scattoni, M.L.; Calamandrei, G.; Petrosini, L. Does age matter? Behavioral and neuro-anatomical effects of neonatal and adult basal forebrain cholinergic lesions. J. Alzheimers Dis. 2010, 20, 207–227. [Google Scholar] [PubMed]
- Antonini, V.; Prezzavento, O.; Coradazzi, M.; Marrazzo, A.; Ronsisvalle, S.; Arena, E.; Leanza, G. Anti-amnesic properties of (±)-PPCC, a novel sigma receptor ligand, on cognitive dysfunction induced by selective cholinergic lesion in rats. J. Neurochem. 2009, 109, 744–754. [Google Scholar] [CrossRef] [PubMed]
- Kamat, P.K.; Rai, S.; Nath, C. Okadaic acid induced neurotoxicity: An emerging tool to study Alzheimer’s disease pathology. Neurotoxicology 2013, 37, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Kamat, P.K.; Tota, S.; Saxena, G.; Shukla, R.; Nath, C. Okadaic acid (ICV) induced memory impairment in rats: A suitable experimental model to test anti-dementia activity. Brain Res. 2010, 1309, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Cohen, P.; Holmes, C.F.; Tsukitani, Y. Okadaic acid: A new probe for the study of cellular regulation. Trends Biochem. Sci. 1990, 15, 98–102. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, H.; Martin, B.L.; Brautigan, D.L.; Karaki, H.; Ozaki, H.; Kato, Y.; Fusetani, N.; Watabe, S.; Hashimoto, K.; Uemura, D.; et al. Calyculin a and okadaic acid: Inhibitors of protein phosphatase activity. Biochem. Biophys. Res. Commun. 1989, 159, 871–877. [Google Scholar] [CrossRef] [PubMed]
- Maidana, M.; Carlis, V.; Galhardi, F.G.; Yunes, J.S.; Geracitano, L.; Monserrat, J.M.; Barros, D.M. Effects of microcystins over short-and long-term memory and oxidative stress generation in hippocampus of rats. Chem. Biol. Interact. 2006, 159, 223–234. [Google Scholar] [CrossRef] [PubMed]
- Cagnoli, C.M.; Kharlamov, E.; Atabay, C.; Uz, T.; Manev, H. Apoptosis induced in neuronal cultures by either the phosphatase inhibitor okadaic acid or the kinase inhibitor staurosporine is attenuated by isoquinolinesulfonamides H-7, H-8, and H-9. J. Mol. Neurosci. 1996, 7, 65–76. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Yamada, K.; Zou, L.B.; Nabeshima, T. Spatial memory deficit and neurodegeneration induced by the direct injection of okadaic acid into the hippocampus in rats. J. Neural. Transm. 2001, 108, 1435–1443. [Google Scholar] [CrossRef] [PubMed]
- Koss, D.J.; Hindley, K.P.; Riedel, G.; Platt, B. Modulation of hippocampal calcium signalling and plasticity by serine/threonine protein phosphatases. J. Neurochem. 2007, 102, 1009–1023. [Google Scholar] [CrossRef] [PubMed]
- Fernández, M.T.; Zitko, V.; Gascón, S.; Torreblanca, A.; Novelli, A. Neurotoxic effect of okadaic acid, a seafood-related toxin, on cultured cerebellar neuronsa. Ann. N. Y. Acad. Sci. 1993, 679, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Kamat, P.K.; Tota, S.; Shukla, R.; Ali, S.; Najmi, A.K.; Nath, C. Mitochondrial dysfunction: A crucial event in okadaic acid (ICV) induced memory impairment and apoptotic cell death in rat brain. Pharmacol. Biochem. Behav. 2011, 100, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Kamat, P.K.; Tota, S.; Rai, S.; Swarnkar, S.; Shukla, R.; Nath, C. A study on neuroinflammatory marker in brain areas of okadaic acid (ICV) induced memory impaired rats. Life Sci. 2012, 90, 713–720. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.P.; Tramontina, A.C.; Biasibetti, R.; Batassini, C.; Lopes, M.W.; Wartchow, K.M.; Bernardi, C.; Tortorelli, L.S.; Leal, R.B.; Gonçalves, C.-A. Neuroglial alterations in rats submitted to the okadaic acid-induced model of dementia. Behav. Brain Res. 2012, 226, 420–427. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Choi, S.; Cuny, G.D.; Ding, K.; Dobson, B.C.; Glicksman, M.A.; Auerbach, K.; Stein, R.L. Kinetic studies of Cdk5/p25 kinase: Phosphorylation of tau and complex inhibition by two prototype inhibitors. Biochemistry 2008, 47, 8367–8377. [Google Scholar] [CrossRef] [PubMed]
- Lucas, J.J.; Hernández, F.; Gómez-Ramos, P.; Morán, M.A.; Hen, R.; Avila, J. Decreased nuclear β-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3β conditional transgenic mice. EMBO J. 2001, 20, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Arendt, T.; Holzer, M.; Bruckner, M.K.; Janke, C.; Gartner, U. The use of okadaic acid in vivo and the induction of molecular changes typical for Alzheimer’s disease. Neuroscience 1998, 85, 1337–1340. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Grundke-Iqbal, I.; Iqbal, K.; Gong, C.X. Contributions of protein phosphatases pp1, pp2a, pp2b and pp5 to the regulation of tau phosphorylation. Eur. J. Neurosci. 2005, 22, 1942–1950. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-de-la-Rosa, M.; Silva, I.; Nilsen, J.; Perez, M.M.; Garcia-Segura, L.M.; Avila, J.; Naftolin, F. Estradiol prevents neural tau hyperphosphorylation characteristic of Alzheimer’s disease. Ann. N. Y. Acad. Sci. 2005, 1052, 210–224. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Simpkins, J.W. Okadaic acid induces tau phosphorylation in SH-SY5Y cells in an estrogen-preventable manner. Brain Res. 2010, 1345, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Simpkins, J.W. An okadaic acid-induced model of tauopathy and cognitive deficiency. Brain Res. 2010, 1359, 233–246. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, J.; Candenas, M.; Souto, M.; Trujillo, M.; Norte, M. Okadaic acid, useful tool for studying cellular processes. Curr. Med. Chem. 2002, 9, 229–262. [Google Scholar] [CrossRef] [PubMed]
- Perez-Gomez, A.; Tasker, R.A. Domoic acid as a neurotoxin. In Handbook of Neurotoxicity; Springer: New York, NY, USA, 2014; pp. 399–419. [Google Scholar]
- Nijjar, M.; Nijjar, S.S. Domoic acid-induced neurodegeneration resulting in memory loss is mediated by Ca2+ overload and inhibition of Ca2+ calmodulin-stimulated adenylate cyclase in rat brain. Int. J. Mol. Med. 2000, 6, 377–466. [Google Scholar] [CrossRef] [PubMed]
- Berman, F.W.; Murray, T.F. Domoic acid neurotoxicity in cultured cerebellar granule neurons is mediated predominantly by NMDA receptors that are activated as a consequence of excitatory amino acid release. J. Neurochem. 1997, 69, 693–703. [Google Scholar] [CrossRef] [PubMed]
- Berman, F.W.; LePage, K.T.; Murray, T.F. Domoic acid neurotoxicity in cultured cerebellar granule neurons is controlled preferentially by the NMDA receptor Ca2+ influx pathway. Brain Res. 2002, 924, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Ankarcrona, M.; Dypbukt, J.M.; Bonfoco, E.; Zhivotovsky, B.; Orrenius, S.; Lipton, S.A.; Nicotera, P. Glutamate-induced neuronal death: A succession of necrosis or apoptosis depending on mitochondrial function. Neuron 1995, 15, 961–973. [Google Scholar] [CrossRef] [PubMed]
- Bonfoco, E.; Krainc, D.; Ankarcrona, M.; Nicotera, P.; Lipton, S.A. Apoptosis and necrosis: Two distinct events induced, respectively, by mild and intense insults with N-methyl-d-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc. Natl. Acad. Sci. USA 1995, 92, 7162–7166. [Google Scholar] [CrossRef] [PubMed]
- Giordano, G.; White, C.C.; McConnachie, L.A.; Fernandez, C.; Kavanagh, T.J.; Costa, L.G. Neurotoxicity of domoic acid in cerebellar granule neurons in a genetic model of glutathione deficiency. Mol. Pharmacol. 2006, 70, 2116–2126. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.; Pak, C.W.; Currás-Collazo, M.C. Sequential involvement of distinct glutamate receptors in domoic acid-induced neurotoxicity in rat mixed cortical cultures: Effect of multiple dose/duration paradigms, chronological age, and repeated exposure. Toxicol. Sci. 2006, 89, 243–256. [Google Scholar] [CrossRef] [PubMed]
- Mayer, A.M.; Hall, M.; Fay, M.J.; Lamar, P.; Pearson, C.; Prozialeck, W.C.; Lehmann, V.K.; Jacobson, P.B.; Romanic, A.M.; Uz, T. Effect of a short-term in vitro exposure to the marine toxin domoic acid on viability, tumor necrosis factor-α, matrix metalloproteinase-9 and superoxide anion release by rat neonatal microglia. BMC Pharmacol. 2001, 1. [Google Scholar] [CrossRef] [Green Version]
- Sutherland, R.J.; Hoesing, J.M.; Whishaw, I.Q. Domoic acid, an environmental toxin, produces hippocampal damage and severe memory impairment. Neurosci. Lett. 1990, 120, 221–223. [Google Scholar] [CrossRef] [PubMed]
- Petrie, B.F.; Pinsky, C.; Standish, N.M.; Bose, R.; Glavin, G.B. Parenteral domoic acid impairs spatial learning in mice. Pharmacol. Biochem. Behav. 1992, 41, 211–214. [Google Scholar] [CrossRef] [PubMed]
- Strain, S.M.; Tasker, R.A. Hippocampal damage produced by systemic injections of domoic acid in mice. Neuroscience 1991, 44, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Schmued, L.C.; Scallet, A.C.; Slikker, W., Jr. Domoic acid-induced neuronal degeneration in the primate forebrain revealed by degeneration specific histochemistry. Brain Res. 1995, 695, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Teitelbaum, J.S.; Zatorre, R.J.; Carpenter, S.; Gendron, D.; Evans, A.C.; Gjedde, A.; Cashman, N.R. Neurologic sequelae of domoic acid intoxication due to the ingestion of contaminated mussels. N. Engl. J. Med. 1990, 322, 1781–1787. [Google Scholar] [CrossRef] [PubMed]
- Kuhlmann, A.C.; Guilarte, T.R. The peripheral benzodiazepine receptor is a sensitive indicator of domoic acid neurotoxicity. Brain Res. 1997, 751, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Spinetta, M.J.; Woodlee, M.T.; Feinberg, L.M.; Stroud, C.; Schallert, K.; Cormack, L.K.; Schallert, T. Alcohol-induced retrograde memory impairment in rats: Prevention by caffeine. Psychopharmacology 2008, 201, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Nader, K.; Wang, S.-H. Fading in. Learn. Mem. 2006, 13, 530–535. [Google Scholar] [CrossRef] [PubMed]
- Vetreno, R.P.; Hall, J.M.; Savage, L.M. Alcohol-related amnesia and dementia: Animal models have revealed the contributions of different etiological factors on neuropathology, neurochemical dysfunction and cognitive impairment. Neurobiol. Learn. Mem. 2011, 96, 596–608. [Google Scholar] [CrossRef] [PubMed]
- Lindquist, D.H.; Sokoloff, G.; Milner, E.; Steinmetz, J.E. Neonatal ethanol exposure results in dose-dependent impairments in the acquisition and timing of the conditioned eyeblink response and altered cerebellar interpositus nucleus and hippocampal CA1 unit activity in adult rats. Alcohol 2013, 47, 447–457. [Google Scholar] [CrossRef] [PubMed]
- Rezayof, A.; Alijanpour, S.; Zarrindast, M.-R.; Rassouli, Y. Ethanol state-dependent memory: Involvement of dorsal hippocampal muscarinic and nicotinic receptors. Neurobiol. Learn. Mem. 2008, 89, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.; Tawari, S.; Mundhada, D.; Nadeem, S. Protective effect of berberine, an isoquinoline alkaloid ameliorates ethanol-induced oxidative stress and memory dysfunction in rats. Pharmacol. Biochem. Behav. 2015, 136, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Wozniak, D.F.; Hartman, R.E.; Boyle, M.P.; Vogt, S.K.; Brooks, A.R.; Tenkova, T.; Young, C.; Olney, J.W.; Muglia, L.J. Apoptotic neurodegeneration induced by ethanol in neonatal mice is associated with profound learning/memory deficits in juveniles followed by progressive functional recovery in adults. Neurobiol. Dis. 2004, 17, 403–414. [Google Scholar] [CrossRef] [PubMed]
- Kuzmin, A.; Chefer, V.; Bazov, I.; Meis, J.; Ögren, S.; Shippenberg, T.; Bakalkin, G. Upregulated dynorphin opioid peptides mediate alcohol-induced learning and memory impairment. Transl. Psychiatry 2013, 3. [Google Scholar] [CrossRef] [PubMed]
- Ryabinin, A.E. Role of hippocampus in alcohol-induced memory impairment: Implications from behavioral and immediate early gene studies. Psychopharmacology 1998, 139, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.Y.; Gao, R.; Zhang, L.; Luo, J.; Jiang, H.; Wang, S. Curcumin ameliorates ethanol-induced memory deficits and enhanced brain nitric oxide synthase activity in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 2013, 44, 210–216. [Google Scholar] [CrossRef] [PubMed]
- White, A.M.; Matthews, D.B.; Best, P.J. Ethanol, memory, and hippocampal function: A review of recent findings. Hippocampus 2000, 10, 88–93. [Google Scholar] [CrossRef]
- Mailliard, W.S.; Diamond, I. Recent advances in the neurobiology of alcoholism: The role of adenosine. Pharmacol. Ther. 2004, 101, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Westergren, S.; Rydenhag, B.; Bassen, M.; Archer, T.; Conradi, N. Effects of prenatal alcohol exposure on activity and learning in sprague-dawley rats. Pharmacol. Biochem. Behav. 1996, 55, 515–520. [Google Scholar] [CrossRef]
- Abadi, T.H.N.; Vaghef, L.; Babri, S.; Mahmood-Alilo, M.; Beirami, M. Effects of different exercise protocols on ethanol-induced spatial memory impairment in adult male rats. Alcohol 2013, 47, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Sanday, L.; Patti, C.L.; Zanin, K.A.; Fernandes-Santos, L.; Oliveira, L.C.; Kameda, S.R.; Tufik, S.; Frussa-Filho, R. Ethanol-induced memory impairment in a discriminative avoidance task is state-dependent. Alcohol 2013, 37, E30–E39. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Seghal, N.; Naidu, P.S.; Padi, S.S.; Goyal, R. Colchicines-induced neurotoxicity as an animal model of sporadic dementia of Alzheimer’s type. Pharmacol. Rep. 2007, 59, 274–283. [Google Scholar] [PubMed]
- Yu, Z.; Cheng, G.; Hu, B. Mechanism of colchicine impairment on learning and memory, and protective effect of CGP 36742 in mice. Brain Res. 1997, 750, 53–58. [Google Scholar] [CrossRef]
- Nakagawa, Y.; Nakamura, S.; Kaśe, Y.; Noguchi, T.; Ishihara, T. Colchicine lesions in the rat hippocampus mimic the alterations of several markers in Alzheimer’s disease. Brain Res. 1987, 408, 57–64. [Google Scholar] [CrossRef]
- Evrard, P.A.; Ragusi, C.; Boschi, G.; Verbeeck, R.K.; Scherrmann, J.-M. Simultaneous microdialysis in brain and blood of the mouse: Extracellular and intracellular brain colchicine disposition. Brain Res. 1998, 786, 122–127. [Google Scholar] [CrossRef]
- Ganguly, R.; Guha, D. Alteration of brain monoamines & EEG wave pattern in rat model of Alzheimer’s disease & protection by moringa oleifera. Indian J. Med. Res. 2008, 128, 744–751. [Google Scholar] [PubMed]
- Saini, N.; Singh, D.; Sandhir, R. Neuroprotective effects of bacopa monnieri in experimental model of dementia. Neurochem. Res. 2012, 37, 1928–1937. [Google Scholar] [CrossRef] [PubMed]
- Subbaramaiah, K.; Hart, J.C.; Norton, L.; Dannenberg, A.J. Microtubule-interfering agents stimulate the transcription of cyclooxygenase-2 evidence for involvement of ERK1/2 and p38 mitogen-activated protein kinase pathways. J. Biol. Chem. 2000, 275, 14838–14845. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Dogra, S.; Prakash, A. Protective effect of naringin, a citrus flavonoid, against colchicine-induced cognitive dysfunction and oxidative damage in rats. J. Med. Food 2010, 13, 976–984. [Google Scholar] [CrossRef] [PubMed]
- Raghavendra, M.; Maiti, R.; Kumar, S.; Acharya, S. Role of aqueous extract of azadirachta indica leaves in an experimental model of Alzheimer’s disease in rats. Int. J. Appl. Basic Med. Res. 2013, 3, 37–47. [Google Scholar] [PubMed]
- Kumar, A.; Dogra, S.; Prakash, A. Neuroprotective effects of centella asiatica against intracerebroventricular colchicine-induced cognitive impairment and oxidative stress. Int. J. Alzheimers Dis. 2009, 2009, 972178. [Google Scholar] [PubMed]
- Kumar, A.; Seghal, N.; Padi, S.V.; Naidu, P.S. Differential effects of cyclooxygenase inhibitors on intracerebroventricular colchicine-induced dysfunction and oxidative stress in rats. Eur. J. Pharmacol. 2006, 551, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Tota, S.; Nath, C.; Najmi, A.K.; Shukla, R.; Hanif, K. Inhibition of central angiotensin converting enzyme ameliorates scopolamine induced memory impairment in mice: Role of cholinergic neurotransmission, cerebral blood flow and brain energy metabolism. Behav. Brain Res. 2012, 232, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Besser, R.; Krämer, G.; Thümler, R.; Bohl, J.; Gutmann, L.; Hopf, H. Acute trimethyltin limbic-cerebellar syndrome. Neurology 1987, 37, 945. [Google Scholar] [CrossRef] [PubMed]
- Earley, B.; Burke, M.; Leonard, B.E. Behavioural, biochemical and histological effects of trimethyltin (TMT) induced brain damage in the rat. Neurochem. Int. 1992, 21, 351–366. [Google Scholar] [CrossRef]
- Balaban, C.D.; O’Callaghan, J.P.; Billingsley, M.L. Trimethyltin-induced neuronal damage in the rat brain: Comparative studies using silver degeneration stains, immunocytochemistry and immunoassay for neuronotypic and gliotypic proteins. Neuroscience 1988, 26, 337–361. [Google Scholar] [CrossRef]
- Dyer, R.S.; Walsh, T.J.; Wonderlin, W.F.; Bercegeay, M. The trimethyltin syndrome in rats. Neurobehav. Toxicol. Teratol. 1982, 4, 127–133. [Google Scholar] [PubMed]
- Ishikawa, K.; Kubo, T.; Shibanoki, S.; Matsumoto, A.; Hata, H.; Asai, S. Hippocampal degeneration inducing impairment of learning in rats: Model of dementia? Behav. Brain Res. 1997, 83, 39–44. [Google Scholar] [CrossRef]
- Nonneman, A.J.; Woodruff, M.L. Toxin-Induced Models of Neurological Disorders; Springer Science & Business Media: New York, NY, USA, 2013. [Google Scholar]
- Feldman, R.G.; White, R.F.; Eriator, I.I. Trimethyltin encephalopathy. Arch. Neurol. 1993, 50, 1320–1324. [Google Scholar] [CrossRef] [PubMed]
- Shin, E.-J.; Suh, S.; Lim, Y.; Jhoo, W.-K.; Hjelle, O.; Ottersen, O.; Shin, C.; Ko, K.; Kim, W.-K.; Kim, D. Ascorbate attenuates trimethyltin-induced oxidative burden and neuronal degeneration in the rat hippocampus by maintaining glutathione homeostasis. Neuroscience 2005, 133, 715–727. [Google Scholar] [CrossRef] [PubMed]
- Tran, H.-Y.P.; Shin, E.-J.; Saito, K.; Nguyen, X.-K.T.; Chung, Y.H.; Jeong, J.H.; Bach, J.-H.; Park, D.H.; Yamada, K.; Nabeshima, T. Protective potential of IL-6 against trimethyltin-induced neurotoxicity in vivo. Free Radic. Biol. Med. 2012, 52, 1159–1174. [Google Scholar] [CrossRef] [PubMed]
- Geloso, M.C.; Corvino, V.; Michetti, F. Trimethyltin-induced hippocampal degeneration as a tool to investigate neurodegenerative processes. Neurochem. Int. 2011, 58, 729–738. [Google Scholar] [CrossRef] [PubMed]
- Harry, G.J.; Tyler, K.; d’Hellencourt, C.L.; Tilson, H.A.; Maier, W.E. Morphological alterations and elevations in tumor necrosis factor-α, interleukin (IL)-1α, and IL-6 in mixed glia cultures following exposure to trimethyltin: Modulation by proinflammatory cytokine recombinant proteins and neutralizing antibodies. Toxicol. Appl. Pharmacol. 2002, 180, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Ogita, K.; Nitta, Y.; Watanabe, M.; Nakatani, Y.; Nishiyama, N.; Sugiyama, C.; Yoneda, Y. In vivo activation of c-Jun N-terminal kinase signaling cascade prior to granule cell death induced by trimethyltin in the dentate gyrus of mice. Neuropharmacology 2004, 47, 619–630. [Google Scholar] [CrossRef] [PubMed]
- Shirakawa, T.; Nakano, K.; Hachiya, N.S.; Kato, N.; Kaneko, K. Temporospatial patterns of COX-2 expression and pyramidal cell degeneration in the rat hippocampus after trimethyltin administration. Neurosci. Res. 2007, 59, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Kuramoto, N.; Seko, K.; Sugiyama, C.; Shuto, M.; Ogita, K. Trimethyltin initially activates the caspase 8/caspase 3 pathway for damaging the primary cultured cortical neurons derived from embryonic mice. J. Neurosci. Res. 2011, 89, 552–561. [Google Scholar] [CrossRef] [PubMed]
- Fiedorowicz, A.; Figiel, I.; Kamińska, B.; Zaremba, M.; Wilk, S.; Oderfeld-Nowak, B. Dentate granule neuron apoptosis and glia activation in murine hippocampus induced by trimethyltin exposure. Brain Res. 2001, 912, 116–127. [Google Scholar] [CrossRef]
- Harry, G.J.; Funk, J.A.; d’Hellencourt, C.L.; McPherson, C.A.; Aoyama, M. The type 1 interleukin 1 receptor is not required for the death of murine hippocampal dentate granule cells and microglia activation. Brain Res. 2008, 1194, 8–20. [Google Scholar] [CrossRef] [PubMed]
- Casalbore, P.; Barone, I.; Felsani, A.; D’Agnano, I.; Michetti, F.; Maira, G.; Cenciarelli, C. Neural stem cells modified to express BDNF antagonize trimethyltin-induced neurotoxicity through PI3K/Akt and MAP kinase pathways. J. Cell. Physiol. 2010, 224, 710–721. [Google Scholar] [CrossRef] [PubMed]
- Wine, R.N.; McPherson, C.A.; Harry, G.J. IGF-1 and pakt signaling promote hippocampal CA1 neuronal survival following injury to dentate granule cells. Neurotox. Res. 2009, 16, 280–292. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Yang, M.; Kim, S.-H.; Kim, J.-C.; Wang, H.; Shin, T.; Moon, C. Possible role of the glycogen synthase kinase-3 signaling pathway in trimethyltin-induced hippocampal neurodegeneration in mice. PLoS ONE 2013, 8, e70356. [Google Scholar] [CrossRef] [PubMed]
- Fisher, A.; Hanin, I.; Yoshinda, M. Progress in Alzheimer’s and Parkinson’s Diseases; Springer Science & Business Media: New York, NY, USA, 2012; Volume 49. [Google Scholar]
- Fisher, A.; Mantione, C.R.; Abraham, D.J.; Hanin, I. Long-term central cholinergic hypofunction induced in mice by ethylcholine aziridinium ion (AF64A) in vivo. J. Pharmacol. Exp. Ther. 1982, 222, 140–145. [Google Scholar] [PubMed]
- Mantione, C.R.; Fisher, A.; Hanin, I. The AF64A-treated mouse: Possible model for central cholinergic hypofunction. Science 1981, 213, 579–580. [Google Scholar] [CrossRef] [PubMed]
- Walsh, T.J.; Tilson, H.A.; DeHaven, D.L.; Mailman, R.B.; Fisher, A.; Hanin, I. AF64A, a cholinergic neurotoxin, selectively depletes acetylcholine in hippocampus and cortex, and produces long-term passive avoidance and radial-arm maze deficits in the rat. Brain Res. 1984, 321, 91–102. [Google Scholar] [CrossRef]
- Leventer, S.; McKeag, D.; Clancy, M.; Wulfert, E.; Hanin, I. Intracerebroventricular administration of ethylcholine mustard aziridinium ion (AF64A) reduces release of acetylcholine from rat hippocampal slices. Neuropharmacology 1985, 24, 453–459. [Google Scholar] [CrossRef]
- Hanin, I. The af64a model of cholinergic hypofunction: An update. Life Sci. 1996, 58, 1955–1964. [Google Scholar] [CrossRef]
- Yamazaki, N.; Kato, K.; Kurihara, E.; Nagaoka, A. Cholinergic drugs reverse af64a-induced impairment of passive avoidance learning in rats. Psychopharmacology 1991, 103, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Bailey, E.L.; Overstreet, D.H.; Crocker, A.D. Effects of intrahippocampal injections of the cholinergic neurotoxin AF64A on open-field activity and avoidance learning in the rat. Behav. Neural. Biol. 1986, 45, 263–274. [Google Scholar] [CrossRef]
- Cheng, D.H.; Tang, X.C. Comparative studies of huperzine A, E2020, and tacrine on behavior and cholinesterase activities. Pharmacol. Biochem. Behav. 1998, 60, 377–386. [Google Scholar] [CrossRef]
- Yamada, K.; Furukawa, S.; Iwasaki, T.; Ichitani, Y. Nicotine improves af64a-induced spatial memory deficits in morris water maze in rats. Neurosci. Lett. 2010, 469, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Uabundit, N.; Wattanathorn, J.; Mucimapura, S.; Ingkaninan, K. Cognitive enhancement and neuroprotective effects of bacopa monnieri in Alzheimer’s disease model. J. Ethnopharmacol. 2010, 127, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Johnston, G.; Curtis, D.; De Groat, W.; Duggan, A. Central actions of ibotenic acid and muscimol. Biochem. Pharmacol. 1968, 17, 2488–2489. [Google Scholar] [CrossRef]
- Schwarcz, R.; Hökfelt, T.; Fuxe, K.; Jonsson, G.; Goldstein, M.; Terenius, L. Ibotenic acid-induced neuronal degeneration: A morphological and neurochemical study. Exp. Brain Res. 1979, 37, 199–216. [Google Scholar] [CrossRef] [PubMed]
- Fibiger, H.C. Cholinergic mechanisms in learning, memory and dementia: A review of recent evidence. Trends Neurosci. 1991, 14, 220–223. [Google Scholar] [CrossRef]
- Karthick, C.; Periyasamy, S.; Jayachandran, K.S.; Anusuyadevi, M. Intrahippocampal administration of ibotenic acid induced cholinergic dysfunction via NR2A/NR2B expression: Implications of resveratrol against Alzheimer disease pathophysiology. Front. Mol. Neurosci. 2016, 9. [Google Scholar] [CrossRef] [PubMed]
- Hung, M.-C.; Shibasaki, K.; Nishizono, S.; Sato, M.; Ikeda, I.; Masuda, Y.; Kunou, M.; Kawamura, M.; Yamashita, M.; Inoue, S. Ibotenic acid-induced lesions of the medial septum increase hippocampal membrane associated protein kinase C activity and reduce acetylcholine synthesis: Prevention by a phosphatidylcholine/vitamin B12 diet. J. Nutr. Biochem. 2000, 11, 159–164. [Google Scholar] [CrossRef]
- Beason Held, L.L.; Rosene, D.L.; Killiany, R.J.; Moss, M.B. Hippocampal formation lesions produce memory impairment in the rhesus monkey. Hippocampus 1999, 9, 562–574. [Google Scholar] [CrossRef]
- Murray, E.A.; Mishkin, M. Object recognition and location memory in monkeys with excitotoxic lesions of the amygdala and hippocampus. J. Neurosci. 1998, 18, 6568–6582. [Google Scholar] [PubMed]
- Jarrard, L.E. On the use of ibotenic acid to lesion selectively different components of the hippocampal formation. J. Neurosci. Methods 1989, 29, 251–259. [Google Scholar] [CrossRef]
- Clark, R.E.; Zola, S.M.; Squire, L.R. Impaired recognition memory in rats after damage to the hippocampus. J. Neurosci. 2000, 20, 8853–8860. [Google Scholar] [PubMed]
- Zola, S.M.; Squire, L.R.; Teng, E.; Stefanacci, L.; Buffalo, E.A.; Clark, R.E. Impaired recognition memory in monkeys after damage limited to the hippocampal region. J. Neurosci. 2000, 20, 451–463. [Google Scholar] [PubMed]
- Hu, Y.; Xia, Z.; Sun, Q.; Orsi, A.; Rees, D. A new approach to the pharmacological regulation of memory: Sarsasapogenin improves memory by elevating the low muscarinic acetylcholine receptor density in brains of memory-deficit rat models. Brain Res. 2005, 1060, 26–39. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Yan, W.; Cai, F.; Li, C.; Chen, N.; Wang, J. Spatial learning and memory impairment and pathological change in rats induced by acute exposure to microcystin-LR. Environ. Toxicol. 2014, 29, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, K.; Yoshimi, K.; Tonohiro, T.; Yamada, N.; Oda, T.; Kaneko, I. Co-injection of beta-amyloid with ibotenic acid induces synergistic loss of rat hippocampal neurons. Neuroscience 1998, 84, 479–487. [Google Scholar] [CrossRef]
- Nakamura, S.; Murayama, N.; Noshita, T.; Katsuragi, R.; Ohno, T. Cognitive dysfunction induced by sequential injection of amyloid-β and ibotenate into the bilateral hippocampus; protection by memantine and MK-801. Eur. J. Pharmacol. 2006, 548, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Robbins, T.W.; Everitt, B.J.; Marston, H.M.; Wilkinson, J.; Jones, G.H.; Page, K.J. Comparative effects of ibotenic acid- and quisqualic acid-induced lesions of the substantia innominata on attentional function in the rat: Further implications for the role of the cholinergic neurons of the nucleus basalis in cognitive processes. Behav. Brain Res. 1989, 35, 221–240. [Google Scholar] [CrossRef]
- Heo, H.; Shin, Y.; Cho, W.; Choi, Y.; Kim, H.; Kwon, Y.K. Memory improvement in ibotenic acid induced model rats by extracts of scutellaria baicalensis. J. Ethnopharmacol. 2009, 122, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.-Q.; Zhang, L.; Yang, C.; Rong, C.-P.; He, W.-Q.; Zhang, C.-X.; Li, S.; Su, R.-Y.; Chang, X.; Qin, J.-H. Alleviating effects of bushen-yizhi formula on ibotenic acid-induced cholinergic impairments in rat. Rejuvenation Res. 2015, 18, 111–127. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, P.; Wang, Y.; Liu, J.; Zhang, Z.; Cheng, W.; Wang, Y. Ameliorative effects of a combination of baicalin, jasminoidin and cholic acid on ibotenic acid-induced dementia model in rats. PLoS ONE 2013, 8, e56658. [Google Scholar]
- Hosseini, N.; Alaei, H.; Reisi, P.; Radahmadi, M. The effect of treadmill running on passive avoidance learning in animal model of Alzheimer disease. Int. J. Prev. Med. 2013, 4, 187–192. [Google Scholar] [PubMed]
- Bonda, D.J.; Lee, H.-G.; Blair, J.A.; Zhu, X.; Perry, G.; Smith, M.A. Role of metal dyshomeostasis in Alzheimer’s disease. Metallomics 2011, 3, 267–270. [Google Scholar] [CrossRef] [PubMed]
- Jellinger, K.A. The relevance of metals in the pathophysiology of neurodegeneration, pathological considerations. Int. Rev. Neurobiol. 2013, 110, 1–47. [Google Scholar] [PubMed]
- Jomova, K.; Valko, M. Advances in metal-induced oxidative stress and human disease. Toxicology 2011, 283, 65–87. [Google Scholar] [CrossRef] [PubMed]
- Sharma, B.; Sharma, P. Arsenic toxicity induced endothelial dysfunction and dementia: Pharmacological interdiction by histone deacetylase and inducible nitric oxide synthase inhibitors. Toxicol. Appl. Pharmacol. 2013, 273, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Li, S.; Sun, Y.; Dong, W.; Piao, F.; Piao, Y.; Guan, H.; Yu, S. Arsenic downregulates gene expression at the postsynaptic density in mouse cerebellum, including genes responsible for long-term potentiation and depression. Toxicol. Lett. 2014, 228, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Rahman, A.; Brew, B.J.; Guillemin, G.J. Lead dysregulates serine/threonine protein phosphatases in human neurons. Neurochem. Res. 2011, 36, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.-C.; Liu, X.-Q.; Wang, W.; Shen, X.-F.; Che, H.-L.; Guo, Y.-Y.; Zhao, M.-G.; Chen, J.-Y.; Luo, W.-J. Involvement of microglia activation in the lead induced long-term potentiation impairment. PLoS ONE 2012, 7, e43924. [Google Scholar] [CrossRef] [PubMed]
- Kozin, S.A.; Mezentsev, Y.V.; Kulikova, A.A.; Indeykina, M.I.; Golovin, A.V.; Ivanov, A.S.; Tsvetkov, P.O.; Makarov, A.A. Zinc-induced dimerization of the amyloid-β metal-binding domain 1–16 is mediated by residues 11–14. Mol. BioSyst. 2011, 7, 1053–1055. [Google Scholar] [CrossRef] [PubMed]
- Brewer, G.J.; Kaur, S. Zinc deficiency and zinc therapy efficacy with reduction of serum free copper in Alzheimer’s disease. Int. J. Alzheimers Dis. 2013, 2013. [Google Scholar] [CrossRef] [PubMed]
- Arnal, N.; Castillo, O.; de Alaniz, M.J.; Marra, C.A. Effects of copper and/or cholesterol overload on mitochondrial function in a rat model of incipient neurodegeneration. Int. J. Alzheimers Dis. 2013, 2013. [Google Scholar] [CrossRef] [PubMed]
- Grasso, G.; Pietropaolo, A.; Spoto, G.; Pappalardo, G.; Tundo, G.R.; Ciaccio, C.; Coletta, M.; Rizzarelli, E. Copper (I) and copper (II) inhibit aβ peptides proteolysis by insulin-degrading enzyme differently: Implications for metallostasis alteration in Alzheimer’s disease. Chem. Eur. J. 2011, 17, 2752–2762. [Google Scholar] [CrossRef] [PubMed]
- Zeng, G.-F.; Zhang, Z.-Y.; Lu, L.; Xiao, D.-Q.; Zong, S.-H.; He, J.-M. Protective effects of ginger root extract on Alzheimer disease-induced behavioral dysfunction in rats. Rejuvenation Res. 2013, 16, 124–133. [Google Scholar] [CrossRef] [PubMed]
- Oshima, E.; Ishihara, T.; Yokota, O.; Nakashima-Yasuda, H.; Nagao, S.; Ikeda, C.; Naohara, J.; Terada, S.; Uchitomi, Y. Accelerated tau aggregation, apoptosis and neurological dysfunction caused by chronic oral administration of aluminum in a mouse model of tauopathies. Brain Pathol. 2013, 23, 633–644. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, S.; Zhao, Y.; Hill, J.M.; Culicchia, F.; Kruck, T.P.; Percy, M.E.; Pogue, A.I.; Walton, J.; Lukiw, W.J. Selective accumulation of aluminum in cerebral arteries in Alzheimer’s disease (AD). J. Inorg. Biochem. 2013, 126, 35–37. [Google Scholar] [CrossRef] [PubMed]
- Lemire, J.; Mailloux, R.; Puiseux-Dao, S.; Appanna, V. Aluminum-induced defective mitochondrial metabolism perturbs cytoskeletal dynamics in human astrocytoma cells. J. Neurosci. Res. 2009, 87, 1474–1483. [Google Scholar] [CrossRef] [PubMed]
- Korchazhkina, O.V.; Ashcroft, A.E.; Kiss, T.; Exley, C. The degradation of aβ_ {25–35} by the serine protease plasmin is inhibited by aluminium. J. Alzheimers Dis. 2002, 4, 357–367. [Google Scholar] [PubMed]
- Liang, R.-F.; Li, W.-Q.; Wang, X.-H.; Zhang, H.-F.; Wang, H.; Wang, J.-X.; Zhang, Y.; Wan, M.-T.; Pan, B.-L.; Niu, Q. Aluminium-maltolate-induced impairment of learning, memory and hippocampal long-term potentiation in rats. Ind. Health 2012, 50, 428–436. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Jin, C.; Lu, X.; Yang, J.; Wu, S.; Liu, Q.; Chen, R.; Bai, C.; Zhang, D.; Zheng, L. Aluminium chloride impairs long-term memory and downregulates cAMP-PKA-CREB signalling in rats. Toxicology 2014, 323, 95–108. [Google Scholar] [CrossRef] [PubMed]
Toxin | Mechanism of Action | Experimental Model | Type of Memory Impairment | References |
---|---|---|---|---|
Diazepam | Suppression of LTP, reinforcement of GABAergic transmission | Morris water maze task and modified elevated plus-maze task | Anterograde amnesia, spatial memory deficits | [19,20] |
Delta9-tetrahydrocannabinol and WIN55, 212-2 | Reinforcement of GABAergic transmission, molecular interaction between CB1R and 5-HT2AR | Step through test, novel object recognition test | Spatial memory, working memory, verbal learning deficits | [21,22] |
Glucocorticoids | Site-preferential downregulation of hippocampal GC receptors, involution of the dendritic processes of hippocampal neurons, inhibition of long-term potentiation | Inhibitory avoidance task, Morris water maze task | Long-term memory impairment, Spatial memory deficit | [23,24,25] |
Galactose | Induces oxidative stress which triggers memory impairment | Y-maze task | Spatial learning and memory impairment | [26] |
Diisononyl phthalate | Oxidative stress, inflammatory responses, apoptosis, and hippocampus pathological alterations | Morris water maze task | Spatial learning deficit | [27] |
Harmaline | Involvement of serotonergic system of the dorsal hippocampus, Involvement of CA1 dopaminergic mechanism, interference with the GABAergic systems | Initial learning test, Retrieval test | Spatial learning and memory deficits | [28,29,30] |
Homocysteine | Accumulation amyloid and tau protein, activation of NMDA receptors | Morris water maze task | Impairment of short- and long-term memories | [31,32] |
Melamine | Impairments of hippocampal long-term depression and cholinergic system, oxidative stress in hippocampus | Morris water maze task | Spatial cognitive deficits | [33,34] |
Sodium azide | Inhibits mitochondrial respiratory chain, produces free radicals, diminishes aerobic energy metabolism and causes excitotoxic damage, decreases cholinergic input to the hippocampus | Morris water maze task, step-through passive avoidance | Spatial learning and memory deficits | [35] |
Lipopolysaccharide | Oxidative and proinflammatory stress | Radial arm-maze task, Y-maze task | Spatial memory deficits | [36] |
3,3′-Iminodipropionitrile | Morphometric changes in the hippocampus | Passive avoidance task, Y-maze test | Short and long term memory deficits | [37] |
3-Quinuclidinyl benzilate | Competitive antagonist of cholinergic receptors | Step-through passive avoidance task, water maze test | Spatial memory deficits | [38] |
Biperiden | Muscarinic antagonist | Verbal recognition task, Spatial memory task | Various memory deficits | [39] |
Cisplatin | DNA damage, inflammation, mitochondrial dysfunction, apoptotic cell death, and oxidative damage | Water maze test | Spatial memory deficits | [40] |
Phosphamidon | Inhibition of the activities of acetylcholinesterase | Passive avoidance and elevated plus maze | Short and long term memory | [41] |
Tris-(2,3-ibromopropyl) Isocyanurate | Upregulation of inflammatory and oxidative stress markers, overexpression of pro-apoptotic proteins, down-expression of neurogenesis-related proteins in hippocampus, and hippocampal neurons damage | Forced swimming test, Morris water maze test | Spatial memory deficits | [42] |
α-Synuclein | Oppose long-term potentiation and impair memory through a calcineurin-dependent mechanism | Fear conditioning | Long term memory deficit | [43] |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
More, S.V.; Kumar, H.; Cho, D.-Y.; Yun, Y.-S.; Choi, D.-K. Toxin-Induced Experimental Models of Learning and Memory Impairment. Int. J. Mol. Sci. 2016, 17, 1447. https://doi.org/10.3390/ijms17091447
More SV, Kumar H, Cho D-Y, Yun Y-S, Choi D-K. Toxin-Induced Experimental Models of Learning and Memory Impairment. International Journal of Molecular Sciences. 2016; 17(9):1447. https://doi.org/10.3390/ijms17091447
Chicago/Turabian StyleMore, Sandeep Vasant, Hemant Kumar, Duk-Yeon Cho, Yo-Sep Yun, and Dong-Kug Choi. 2016. "Toxin-Induced Experimental Models of Learning and Memory Impairment" International Journal of Molecular Sciences 17, no. 9: 1447. https://doi.org/10.3390/ijms17091447
APA StyleMore, S. V., Kumar, H., Cho, D.-Y., Yun, Y.-S., & Choi, D.-K. (2016). Toxin-Induced Experimental Models of Learning and Memory Impairment. International Journal of Molecular Sciences, 17(9), 1447. https://doi.org/10.3390/ijms17091447