Recent Advances in Phospholipids from Colostrum, Milk and Dairy By-Products
Abstract
:1. Introduction
2. Colostrum, Milk and Dairy By-Product Phospholipid Composition
2.1. Phospholipid Content and Composition in Human Colostrum and Milk
2.2. Phospholipid Content and Composition in Bovine Colostrum and Milk
2.3. Phospholipid Content and Composition in Other Mammalian Milks
2.4. Phospholipid Content and Composition in Dairy By-Products
3. Analytical Approaches for Phospholipids Determination in Colostrum, Milk and Dairy By-Products
4. Health Benefits Provided by Colostrum, Milk and Dairy By-Product Phospholipids
4.1. Activity on Neurological and Neurocognitive Diseases
4.2. Anticancer Activity
4.3. Metabolic Syndrome, Lipid Metabolism and Cardiovascular Diseases
4.4. Anti-Bacterial and Anti-Inflammatory Activity
4.5. Skin and Hair Condition
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
LPC | lysophosphatidylcholine |
PC | phosphatidylcholine |
SM | sphingomyelin |
ePC | ether phosphatidylcholine |
LPE | lysophosphatidylethanolamine |
PE | phosphatidylethanolamine |
PE-cer | phosphoethanolamine-ceramide |
ePE | ether phosphatidylethanolamine |
PI | phosphatidylinositol |
PS | phosphatidylserine |
PA | phosphatidic acid |
MFGM | milk fat globule membrane |
EPLAS | phosphatidylethanolamine plasmalogen |
aaPC | alkyl-acyl phosphatidylcholine |
LPA | lysophosphatidic acid |
LPS | lysophosphatidylserine |
LaCcer | lactosylceramide |
GluCcer | glucosylceramide |
MFG | membrane fat globule |
ARCD | age-related cognitive decline |
CLA | conjugated linoleic acids |
PUFAs | polyunsaturated fatty acids |
SFAs | saturated fatty acids |
SPE | solid phase extraction |
ESI FT-ICR MS | electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry |
PLE | pressurized liquid extraction |
HAP | hydroxylapatite chromatography |
IHD | ischaemic heart disease |
References
- Pereira, P.C. Milk nutritional composition and its role in human health. Nutrition 2014, 30, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Parodi, P.W. Milk fat in human nutrition. Aust. J. Dairy Technol. 2004, 59, 3–59. [Google Scholar]
- Lopez, C.; Briard-Bion, V.; Menard, O.; Beaucher, E.; Rousseau, F.; Fauquant, J.; Leconte, N.; Benoit, R. Fat globules selected from whole milk according to their size: Different compositions and structure of the biomembrane, revealing sphingomyelin-rich domains. Food Chem. 2011, 125, 355–368. [Google Scholar] [CrossRef]
- Martini, M.; Salari, F.; Altomonte, I. The macrostructure of milk lipids: The fat globules. Crit. Rev. Food Sci. Nutr. 2016, 56, 1209–1221. [Google Scholar] [CrossRef] [PubMed]
- Contarini, G.; Povolo, M. Phospholipids in milk fat: Composition, biological and technological significance, and analytical strategies. Int. J. Mol. Sci. 2013, 14, 2808–2831. [Google Scholar] [CrossRef] [PubMed]
- Dewettinck, K.; Rombaut, R.; Thienpont, N.; Le, T.T.; Messens, K.; van Camp, J. Nutritional and technological aspects of milk fat globule membrane material. Int. Dairy J. 2008, 18, 436–457. [Google Scholar] [CrossRef]
- Zou, X.Q.; Guo, Z.; Huang, J.H.; Jin, Q.Z.; Cheong, L.Z.; Wang, X.G.; Xu, X.B. Human milk fat globules from different stages of lactation: A lipid composition analysis and microstructure characterization. J. Agric. Food Chem. 2012, 60, 7158–7167. [Google Scholar] [CrossRef] [PubMed]
- Claumarchirant, L.; Cilla, A.; Matencio, E.; Sanchez-Siles, L.M.; Castro-Gomez, P.; Fontecha, J.; Alegría, A.; Lagarda, M.J. Addition of milk fat globule membrane as an ingredient of infant formulas for resembling the polar lipids of human milk. Int. Dairy J. 2016, 61, 228–238. [Google Scholar] [CrossRef]
- Argov-Argaman, N.; Smilowitz, J.T.; Bricarello, D.A.; Barboza, M.; Lerno, L.; Froehlich, J.W.; Lee, H.; Zivkovic, A.M.; Lemay, D.G.; Freeman, S.; et al. Lactosomes: Structural and compositional classification of unique nanometer-sized protein lipid particles of human milk. J. Agric. Food Chem. 2010, 58, 11234–11242. [Google Scholar] [CrossRef] [PubMed]
- Benoit, B.; Fauquant, C.; Daira, P.; Peretti, N.; Guichardant, M.; Michalski, M.C. Phospholipid species and minor sterols in French human milks. Food Chem. 2010, 120, 684–691. [Google Scholar] [CrossRef]
- Lopez, C.; Ménard, O. Human milk fat globules: Polar lipid composition and in situ structural investigations revealing the heterogeneous distribution of proteins and the lateral segregation of sphingomyelin in the biological membrane. Colloids Surf. B 2011, 83, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Garcia, C.; Lutz, N.W.; Confort-Gouny, S.; Cozzone, P.J.; Armand, M.; Bernard, M. Phospholipid fingerprints of milk from different mammalians determined by 31P NMR: Towards specific interest in human health. Food Chem. 2012, 135, 1777–1783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russo, M.; Cichello, F.; Ragonese, C.; Donato, P.; Cacciola, F.; Dugo, P.; Mondello, L. Profiling and quantifying polar lipids in milk by hydrophilic interaction liquid chromatography coupled with evaporative light-scattering and mass spectrometry detection. Anal. Bioanal. Chem. 2013, 405, 4617–4626. [Google Scholar] [CrossRef] [PubMed]
- Giuffrida, F.; Cruz-Hernandez, C.; Fluck, B.; Tavazzi, I.; Thakkar, S.K.; Destaillats, F.; Braun, M. Quantification of phospholipids classes in human milk. Lipids 2013, 48, 1051–1058. [Google Scholar] [CrossRef] [PubMed]
- Sokol, E.; Ulven, T.; Færgeman, N.J.; Ejsing, C.S. Comprehensive and quantitative profiling of lipid species in human milk, cow milk and a phospholipid-enriched milk formula by GC and MS/MSALL. Eur. J. Lipid Sci. Technol. 2015, 117, 751–759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Contarini, G.; Povolo, M.; Pelizzola, V.; Monti, L.; Bruni, A.; Passolungo, L.; Abeni, F.; Degano, L. Bovine colostrum: Changes in lipid constituents in the first 5 days after parturition. J. Dairy Sci. 2014, 97, 5065–5072. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Guo, Z.; Jin, Q.; Huang, J.; Cheong, L.; Xu, X.; Wang, X. Composition and microstructure of colostrum and mature bovine milk fat globule membrane. Food Chem. 2015, 185, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Gallier, S.; Gragson, D.; Cabral, C.; Jimenez-Flores, R.; Everett, D.W. Composition and fatty acid distribution of bovine milk phospholipids from processed milk products. J. Agric. Food Chem. 2010, 58, 10503–10511. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Alcalá, L.M.; Fontecha, J. Major lipid classes separation of buttermilk, and cows, goats and ewes milk by high performance liquid chromatography with an evaporative light scattering detector focused on the phospholipid fraction. J. Chromatogr. A 2010, 1217, 3063–3066. [Google Scholar] [CrossRef] [PubMed]
- Gallier, S.; Gragson, D.; Jimenez-Flores, R.; Everett, D.W. Surface characterization of bovine milk phospholipid monolayers by langmuir isotherms and microscopic techniques. J. Agric. Food Chem. 2010, 58, 12275–12285. [Google Scholar] [CrossRef] [PubMed]
- Gallier, S.; Gragson, D.; Jimenez-Flores, R.; Everett, D. Using confocal laser scanning microscopy to probe the milk fat globule membrane and associated proteins. J. Agric. Food Chem. 2010, 58, 4250–4257. [Google Scholar] [CrossRef] [PubMed]
- Donato, P.; Cacciola, F.; Cichello, F.; Russo, M.; Dugo, P.; Mondello, L. Determination of phospholipids in milk samples by means of hydrophilic interaction liquid chromatography coupled to evaporative light scattering and mass spectrometry detection. J. Chromatogr. A 2011, 1218, 6476–6482. [Google Scholar] [CrossRef] [PubMed]
- Mesilati-Stahy, R.; Mida, K.; Argov-Argaman, N. Size-dependent lipid content of bovine milk fat globule and membrane phospholipids. J. Agric. Food Chem. 2011, 59, 7427–7435. [Google Scholar] [CrossRef] [PubMed]
- Kiebowicz, G.; Micek, P.; Wawrzenczyk, C. A new liquid chromatography method with charge aerosol detector (CAD) for the determination of phospholipid classes. Application to milk phospholipids. Talanta 2013, 105, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Huang, J.; Jin, Q.; Guo, Z.; Liu, Y.; Cheong, L.; Xu, X.; Wang, X. Lipid composition analysis of milk fats from different mammalian species: Potential for use as human milk fat substitutes. J. Agric. Food Chem. 2013, 61, 7070–7080. [Google Scholar] [CrossRef] [PubMed]
- Calvano, C.D.; de Ceglie, C.; Aresta, A.; Facchini, L.A.; Zambonin, C.G. MALDI-TOF mass spectrometric determination of intact phospholipids as markers of illegal bovine milk adulteration of high-quality milk. Anal. Bioanal. Chem. 2013, 405, 1641–1649. [Google Scholar] [CrossRef] [PubMed]
- Dugo, P.; Fawzy, N.; Cichello, F.; Cacciola, F.; Donato, P.; Mondello, L. Stop-flow comprehensive two-dimensional liquid chromatography combined with mass spectrometric detection for phospholipid analysis. J. Chromatogr. A 2013, 1278, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Craige Trenerry, V.; Akbaridoust, G.; Plozza, T.; Rochfort, S.; Wales, W.J.; Auldist, M.; Ajlouni, S. Ultra-high-performance liquid chromatography-ion trap mass spectrometry characterisation of milk polar lipids from dairy cows fed different diets. Food Chem. 2013, 141, 1451–1460. [Google Scholar] [CrossRef] [PubMed]
- Calvano, C.D.; de Ceglie, C.; Zambonina, C.G. Development of a direct in-matrix extraction (DIME) protocol for MALDI-TOF-MS detection of glycated phospholipids in heat-treated food samples. J. Mass Spectrom. 2014, 49, 831–839. [Google Scholar] [CrossRef] [PubMed]
- Argov-Argaman, N.; Mesilati-Stahy, R.; Magen, Y.; Moallem, U. Elevated concentrate-to-forage ratio in dairy cow rations is associated with a shift in the diameter of milk fat globules and remodeling of their membranes. J. Dairy Sci. 2014, 97, 6286–6295. [Google Scholar] [CrossRef] [PubMed]
- Lopez, C.; Briard-Bion, V.; Ménard, O. Polar lipids, sphingomyelin and long-chain unsaturated fatty acids from the milk fat globule membrane are increased in milks produced by cows fed fresh pasture based diet during spring. Food Res. Int. 2014, 58, 59–68. [Google Scholar] [CrossRef]
- Mesilati-Stahy, R.; Argov-Argaman, N. The relationship between size and lipid composition of the bovine milk fat globule is modulated by lactation stage. Food Chem. 2014, 145, 562–570. [Google Scholar] [CrossRef] [PubMed]
- Castro-Gómez, M.P.; Rodriguez-Alcalá, L.M.; Calvo, M.V.; Romero, J.; Mendiola, J.A.; Ibañez, E.; Fontecha, J. Total milk fat extraction and quantification of polar and neutral lipids of cow, goat, and ewe milk by using a pressurized liquid system and chromatographic techniques. J. Dairy Sci. 2014, 97, 6719–6728. [Google Scholar] [CrossRef] [PubMed]
- Mesilati-Stahy, R.; Moallem, U.; Magen, Y.; Argov-Argaman, N. Altered concentrate to forage ratio in cows ration enhanced bioproduction of specific size subpopulation of milk fat globules. Food Chem. 2015, 179, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Moate, P.; Cocks, B.; Rochfort, S. Comprehensive polar lipid identification and quantification in milk byliquid chromatography-mass spectrometry. J. Chromatogr. B 2015, 978–979, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Alcalá, L.M.; Castro-Gómez, P.; Felipe, X.; Noriega, L.; Fontecha, J. Effect of processing of cow milk by high pressures under conditions up to 900 MPa on the composition of neutral, polar lipids and fatty acids. LWT Food Sci. Technol. 2015, 62, 265–270. [Google Scholar] [CrossRef]
- Mesilati-Stahy, R.; Malka, H.; Argov-Argaman, N. Influence of glucogenic dietary supplementation and reproductive state of dairy cows on the composition of lipids in milk. Animal 2015, 9, 1008–1015. [Google Scholar] [CrossRef] [PubMed]
- Ferreiro, T.; Gayoso, L.; Rodríguez-Otero, J.L. Milk phospholipids: Organic milk and milk rich in conjugated linoleic acid compared with conventional milk. J. Dairy Sci. 2015, 98, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Barry, K.M.; Dinan, T.G.; Murray, B.A.; Kelly, P.M. Comparison of dairy phospholipid preparative extraction protocols in combination with analysis by high performance liquid chromatography coupled to a charged aerosol detector. Int. Dairy J. 2016, 56, 179–185. [Google Scholar] [CrossRef]
- Walczak, J.; Pomastowski, P.; Bocian, S.; Buszewski, B. Determination of phospholipids in milk using a new phosphodiester stationary phase by liquid chromatography-matrix assisted desorption ionization mass spectrometry. J. Chromatogr. A 2016, 1432, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.R.; Elias-Argote, X.E.; Jiménez-Flores, R.; Gigante, M.L. Use of ultrafiltration and supercritical fluid extraction to obtain a whey buttermilk powder enriched in milk fat globule membrane phospholipids. Int. Dairy J. 2010, l20, 598–602. [Google Scholar] [CrossRef]
- Le, T.T.; Miocinovic, J.; Nguyen, T.M.; Rombaut, R.; van Camp, J.; Dewettinck, K. Improved solvent extraction procedure and high-performance liquid chromatography evaporative light-scattering detector method for analysis of polar lipids from dairy materials. J. Agric. Food Chem. 2011, 59, 10407–10413. [Google Scholar] [CrossRef] [PubMed]
- Verardo, V.; Gómez-Caravaca, A.M.; Gori, A.; Losi, G.; Caboni, M.F. Bioactive lipids in the butter production chain from Parmigiano Reggiano cheese area. J. Sci. Food Agric. 2013, 93, 3625–3633. [Google Scholar] [CrossRef] [PubMed]
- Konrad, G.; Kleinschmidt, T.; Lorenz, C. Ultrafiltration of whey buttermilk to obtain a phospholipid concentrate. Int. Dairy J. 2013, 30, 39–44. [Google Scholar] [CrossRef]
- Pinto, G.; Caira, S.; Mamone, G.; Ferranti, P.; Addeo, F.; Picariello, G. Fractionation of complex lipid mixtures by hydroxyapatitechromatography for lipidomic purposes. J. Chromatogr. A 2014, 1360, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Svanborg, S.; Johansen, A.G.; Abrahamsen, R.K.; Skeie, S.B. The composition and functional properties of whey protein concentrates produced from buttermilk are comparable with those of whey protein concentrates produced from skimmed milk. J. Dairy Sci. 2015, 98, 5829–5840. [Google Scholar] [CrossRef] [PubMed]
- Guerra, E.; Verardo, V.; Caboni, M.F. Determination of bioactive compounds in cream obtained as a by-product during cheese-making: Influence of cows’ diet on lipid quality. Int. Dairy J. 2015, 42, 16–25. [Google Scholar] [CrossRef]
- Zhu, D.; Damodaran, S. Dairy lecithin from cheese whey fat globule membrane: Its extraction, composition, oxidative stability, and emulsifying properties. J. Am. Oil Chem. Soc. 2013, 90, 217–224. [Google Scholar] [CrossRef]
- Yassin, A.M.; Hamid, M.I.A.; Farid, O.A.; Amer, H.; Warda, M. Dromedary milk exosomes as mammary transcriptome nano-vehicle: Their isolation, vesicular and phospholipidomic characterizations. J. Adv. Res. 2016, 7, 749–756. [Google Scholar] [CrossRef]
- Zancada, L.; Pérez-Díez, F.; Sánchez-Juanes, F.; Alonso, J.M.; García-Pardo, L.A.; Hueso, P. Phospholipid classes and fatty acid composition of ewe’s and goat’s milk. Grasas y Aceites 2013, 64, 304–310. [Google Scholar]
- Argov-Argaman, N.; Hadaya, O.; Glasser, T.; Muklada, H.; Dvash, L.; Mesilati-Stahy, R.; Yan Landau, S. Milk fat globule size, phospholipid contents and composition of milk from purebred and Alpine-crossbred Mid-Eastern goats under confinement or grazing condition. Int. Dairy J. 2016, 58, 2–8. [Google Scholar] [CrossRef]
- Argov-Argaman, N.; Mida, K.; Cohen, B.C.; Visker, M.; Hettinga, K. Milk fat content and DGAT1 genotype determine lipid composition of the milk fat globule membrane. PLoS ONE 2013, 8, e68707. [Google Scholar] [CrossRef] [PubMed]
- Restuccia, D.; Spizzirri, U.G.; Puoci, F.; Cirillo, G.; Vinci, G.; Picci, N. Determination of phospholipids in food samples. Food Rev. Int. 2012, 28, 1–46. [Google Scholar] [CrossRef]
- Rombaut, R.; Camp, J.V.; Dewettinck, K. Analysis of phospho- and sphingolipids in dairy products by a new HPLC method. J. Dairy Sci. 2005, 88, 482–488. [Google Scholar] [CrossRef]
- Lopez, C.; Briard-Bion, V.; Menard, O.; Rousseau, F.; Pradel, P.; Besle, J.M. Phospholipid, sphingolipid, and fatty acid compositions of the milk fat globule membrane are modified by diet. J. Agric. Food Chem. 2008, 56, 5226–5236. [Google Scholar] [CrossRef] [PubMed]
- Frega, N.G.; Pacetti, D.; Boselli, E. Characterization of phospholipid molecular species by means of HPLC-Tandem Mass Spectrometry. In Tandem Mass Spectrometry—Applications and Principles; Prasain, J.K., Ed.; InTech: Rijeka, Croatia, 2012; pp. 637–672. [Google Scholar]
- MacKenzie, A.; Vyssotski, M.; Nekrasov, E. Quantitative analysis of dairy phospholipids by 31P NMR. J. Am. Oil Chem. Soc. 2009, 86, 757–763. [Google Scholar] [CrossRef]
- Culeddu, N.; Bosco, M.; Toffanin, R.; Pollesello, P. 31P NMR analysis of phospholipids in crude extracts from different sources: Improved efficiency of the solvent system. Magn. Reson. Chem. 1998, 36, 907–912. [Google Scholar] [CrossRef]
- Gallier, S.; Gordon, K.C.; Singh, H. Chemical and structural characterisation of almond oil bodies and bovine milk fat globules. Food Chem. 2012, 132, 1996–2006. [Google Scholar] [CrossRef]
- Gallier, S.; Vocking, K.; Post, J.B.; van de Heijning, B.; Acton, D.; van der Beek, E.M.; van Baalen, T. A novel infant milk formula concept: Mimicking the human milk fat globule structure. Colloids Surf. B 2015, 136, 329–339. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.T.H.; Ong, L.; Beaucher, E.; Madec, M.N.; Kentish, S.E.; Gras, S.L.; Lopez, C. Buffalo milk fat globules and their biological membrane: In situ structural investigations. Food Res. Int. 2015, 67, 35–43. [Google Scholar] [CrossRef]
- Yao, Y.; Zhao, G.; Yan, Y.; Mu, Y.; Jin, Q.; Zou, X.; Wang, X. Milk fat globules by confocal Raman microscopy: Differences in human, bovine and caprine milk. Food Res. Int. 2016, 80, 61–69. [Google Scholar] [CrossRef]
- Cifelli, C.J.; Houchins, J.A.; Demmer, E.; Fulgoni, V.L., III. Increasing plant based foods or dairy foods differentially affects nutrient intakes: Dietary scenarios using NHANES 2007–2010. Nutrients 2016, 8, 422. [Google Scholar] [CrossRef] [PubMed]
- Brown-Riggs, C. Nutrition and health disparities: The role of dairy in improving minority health outcomes. Int. J. Environ. Res. Public Health 2016, 13, 28. [Google Scholar] [CrossRef] [PubMed]
- Wellard, L.; Hughes, C.; Watson, W.L. Investigating nutrient profiling and Health Star Ratings on core dairy products in Australia. Public Health Nutr. 2016, 19, 2860–2865. [Google Scholar] [CrossRef] [PubMed]
- Visioli, F.; Strata, A. Milk, dairy products, and their functional effects in humans: A narrative review of recent evidence. Adv. Nutr. 2014, 5, 131–143. [Google Scholar] [CrossRef] [PubMed]
- Kliem, K.E.; Givens, D.I. Dairy products in the food chain: Their impact on health. Annu. Rev. Food Sci. Technol. 2011, 2, 21–36. [Google Scholar] [CrossRef] [PubMed]
- Küllenberg, D.; Taylor, L.A.; Schneider, M.; Massing, U. Health effects of dietary phospholipids. Lipids Health Dis. 2012, 11, 3. [Google Scholar] [CrossRef] [PubMed]
- Park, K.M.; Fulgoni, V.L., III. The association between dairy product consumption and cognitive function in the National Health and Nutrition Examination Survey. Br. J. Nutr. 2013, 109, 1135–1142. [Google Scholar] [CrossRef] [PubMed]
- Sébédio, J.L.; Malpuech-Brugère, C. Metabolic syndrome and dairy product consumption: Where do we stand? Food Res. Int. 2016, 89, 1077–1084. [Google Scholar] [CrossRef]
- Astrup, A.; Rice Bradley, B.H.; Brenna, J.T.; Delplanque, B.; Ferry, M.; Torres-Gonzalez, M. Regular-fat dairy and human health: A synopsis of symposia presented in Europe and North America (2014–2015). Nutrients 2016, 8, 463. [Google Scholar] [CrossRef] [PubMed]
- Díaz-López, A.; Bulló, M.; Martínez-González, M.A.; Corella, D.; Estruch, R.; Fitó, M.; Gómez-Gracia, E.; Fiol, M.; de la Corte, F.J.G.; Ros, E.; et al. Dairy product consumption and risk of type 2 diabetes in an elderly Spanish Mediterranean population at high cardiovascular risk. Eur. J. Nutr. 2016, 55, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Vesper, H.; Schmelz, E.M.; Nikolova-Karakashian, M.N.; Dillehay, D.L.; Lynch, D.V.; Merrill, A.H. Sphingolipids in food and the emerging importance of sphingolipids to nutrition. J. Nutr. 1999, 129, 1239–1250. [Google Scholar] [PubMed]
- El-Loly, M.M. Composition, properties and nutritional aspects of milk fat globule membrane—A Review. Pol. J. Food Nutr. Sci. 2011, 61, 7–32. [Google Scholar] [CrossRef]
- Castro-Gómez, P.; Garcia-Serrano, A.; Visioli, F.; Fontecha, J. Relevance of dietary glycerophospholipids and sphingolipids to human health. Prostaglandins Leukot. Essent. Fat. Acids 2015, 101, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Haramizu, S.; Ota, N.; Otsuka, A.; Hashizume, K.; Sugita, S.; Hase, T.; Murase, T.; Shimotoyodome, A. Dietary milk fat globule membrane improves endurance capacity in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014, 307, R1009–R1017. [Google Scholar] [CrossRef] [PubMed]
- Haramizu, S.; Mori, T.; Yano, M.; Ota, N.; Hashizume, K.; Otsuka, A.; Hase, T.; Shimotoyodome, A. Habitual exercise plus dietary supplementation with milk fat globule membrane improves muscle function deficits via neuromuscular development in senescence-accelerated mice. SpringerPlus 2014, 3, 339. [Google Scholar] [CrossRef] [PubMed]
- Hernell, O.; Timby, N.; Domellöf, M.; Lönnerdal, B. Clinical benefits of milk fat globule membranes for infants and children. J. Pediatr. 2016, 173S, S60–S65. [Google Scholar] [CrossRef] [PubMed]
- Conway, V.; Gauthier, S.F.; Pouliot, Y. Buttermilk: Much more than a source of milk phospholipids. Anim. Front. 2014, 4, 44–51. [Google Scholar] [CrossRef]
- Camfield, D.A.; Owen, L.; Scholey, A.B.; Pipingas, A.; Stough, C. Dairy constituents and neurocognitive health in ageing. Br. J. Nutr. 2011, 106, 159–174. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Radlowski, E.C.; Conrad, M.S.; Li, Y.; Dilger, R.N.; Johnson, R.W. Early supplementation of, phospholipids and gangliosides affects brain and cognitive development in neonatal piglets. J. Nutr. 2014, 144, 1903–1909. [Google Scholar] [CrossRef] [PubMed]
- Hellhammer, J.; Waladkhani, A.R.; Hero, T.; Buss, C. Effects of milk phospholipid on memory and psychological stress response. Br. Food J. 2010, 112, 1124–1137. [Google Scholar] [CrossRef]
- Nagai, K. Bovine milk phospholipid fraction protects Neuro2a cells from endoplasmic reticulum stress via PKC activation and autophagy. J. Biosci. Bioeng. 2012, 114, 466–471. [Google Scholar] [CrossRef] [PubMed]
- Schipper, L.; van Dijk, G.; Broersen, L.M.; Loos, M.; Bartke, N.; Scheurink, A.J.V.; van der Beek, E.M. A postnatal diet containing phospholipids, processed to yield large, phospholipid-coated lipid droplets, affects specific cognitive behaviors in healthy male mice. J. Nutr. 2016, 146, 1155–1161. [Google Scholar] [CrossRef] [PubMed]
- Guan, J.; MacGibbon, A.; Zhang, R.; Elliffe, D.M.; Moon, S.; Liu, D.X. Supplementation of complex milk lipid concentrate (CMLc) improved the memory of aged rats. Nutr. Neurosci. 2015, 18, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Guan, J.; MacGibbon, A.; Fong, B.; Zhang, R.; Liu, K.; Rowan, A.; McJarrow, P. Long-term supplementation with β serum concentrate (BSC), a complex of milk lipids, during post-natal brain development improves memory in rats. Nutrients 2015, 7, 4526–4541. [Google Scholar] [CrossRef] [PubMed]
- Schubert, M.; Contreras, C.; Franz, N.; Hellhammer, J. Milk-based phospholipids increase morning cortisol availability and improve memory in chronically stressed men. Nutr. Res. 2011, 31, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Gurnida, D.A.; Rowan, A.M.; Idjradinata, P.; Muchtadi, D.; Sekarwana, N. Association of complex lipids containing gangliosides with cognitive development of6-month-old infants. Early Hum. Dev. 2012, 88, 595–601. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Hosozawa, M.; Kudo, N.; Yoshikawa, N.; Hisata, K.; Shoji, H.; Shinohara, K.; Shimizu, T. The pilot study: Sphingomyelin-fortified milk has a positive association with the neurobehavioural development of very low birth weight infants during infancy, randomized control trial. Brain Dev. 2013, 35, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Timby, N.; Domellöf, E.; Hernell, O.; Lönnerdal, B.; Domellöf, M. Neurodevelopment, nutrition, and growth until 12 mo of age in infants fed a low-energy, low-protein formula supplemented with bovine milk fat globule membranes: A randomized controlled trial. Am. J. Clin. Nutr. 2014, 99, 860–868. [Google Scholar] [CrossRef] [PubMed]
- Kuchta, A.M.; Kelly, P.M.; Stanton, C.; Devery, R.A. Milk fat globule membrane—A source of polar lipids for colon health? A review. Int. J. Dairy Technol. 2012, 65, 315–333. [Google Scholar] [CrossRef]
- Kuchta-Noctor, A.M.; Murray, B.A.; Stanton, C.; Devery, R.; Kelly, P.M. Anticancer Activity of Buttermilk Against SW480 Colon Cancer Cells is Associated with Caspase-Independent Cell Death and Attenuation of Wnt, Akt, and ERK Signaling. Nutr. Cancer 2016, 68, 1234–1246. [Google Scholar]
- Castro-Gómez, P.; Rodríguez-Alcalá, L.M.; Monteiro, K.M.; Ruiz, A.L.T.G.; Carvalho, J.E.; Fontecha, J. Antiproliferative activity of buttermilk lipid fractions isolated using Food grade and non-food grade solvents on human cancer cell lines. Food Chem. 2016, 212, 695–702. [Google Scholar] [CrossRef] [PubMed]
- Snow, D.R.; Jimenez-Flores, R.; Ward, R.E.; Cambell, J.; Young, M.J.; Nemere, I.; Hintze, K.J. Dietary milk fat globule membrane reduces the incidence of aberrant crypt foci in Fischer-344 rats. J. Agric. Food Chem. 2010, 58, 2157–2163. [Google Scholar] [CrossRef] [PubMed]
- Maswadeh, H.M.; Aljarbou, A.N.; Alorainy, M.S.; Alsharidah, M.S.; Khan, M.A. Etoposide incorporated into camel milk phospholipids liposomes shows increased activity against fibrosarcoma in a mouse model. BioMed Res. Int. 2015, 2015, 743051. [Google Scholar] [CrossRef] [PubMed]
- Huth, P.J.; Park, K.M. Influence of dairy product and milk fat consumption on cardiovascular disease risk: A review of the evidence. Adv. Nutr. 2012, 3, 266–285. [Google Scholar] [CrossRef] [PubMed]
- Rueda, R. The role of complex lipids in attaining metabolic health. Curr. Cardiovasc. Risk Rep. 2014, 8, 371. [Google Scholar] [CrossRef]
- Lecomte, M.; Bourlieu, C.; Meugnier, E.; Penhoat, A.; Cheillan, D.; Pineau, G.; Loizon, E.; Trauchessec, M.; Claude, M.; Ménard, O.; et al. Milk polar lipids affect in vitro digestive lipolysis and postprandial lipid metabolism in mice. J. Nutr. 2015, 145, 1770–1777. [Google Scholar] [CrossRef] [PubMed]
- Norris, G.H.; Jiang, C.; Ryan, J.; Porter, C.M.; Blesso, C.N. Milk sphingomyelin improves lipid metabolism and alters gut microbiota in high fat diet-fed mice. J. Nutr. Biochem. 2016, 30, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Oosting, A.; van Vlies, N.; Kegler, D.; Schipper, L.; Abrahamse-Berkeveld, M.; Ringler, S.; Verkade, H.J.; van der Beek, E.M. Effect of dietary lipid structure in early postnatal life on mouse adipose tissue development and function in adulthood. Br. J. Nutr. 2014, 111, 215–226. [Google Scholar] [CrossRef] [PubMed]
- Baars, A.; Oosting, A.; Engels, E.; Kegler, D.; Kodde, A.; Schipper, L.; Verkade, H.J.; van der Beek, E.M. Milk fat globule membrane coating of large lipid droplets in the diet of young mice prevents body fat accumulation in adulthood. Br. J. Nutr. 2016, 115, 1930–1937. [Google Scholar] [CrossRef] [PubMed]
- Oosting, A.; Kegler, D.; Wopereis, H.J.; Teller, I.C.; van de Heijning, B.J.M.; Verkade, H.J.; van der Beek, E.M. Size and phospholipid coating of lipid droplets in the diet of young mice modify body fat accumulation in adulthood. Pediatr. Res. 2012, 72, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Kamili, A.; Wat, E.; Chung, R.W.S.; Tandy, S.; Weir, J.M.; Meikle, P.J.; Cohn, J.S. Hepatic accumulation of intestinal cholesterol is decreased and fecal cholesterol excretion is increased in mice fed a high-fat diet supplemented with milk phospholipids. Nutr. Metab. 2010, 7, 90. [Google Scholar] [CrossRef] [PubMed]
- Conway, V.; Couture, P.; Richard, C.; Gauthier, S.F.; Pouliot, Y.; Lamarche, B. Impact of buttermilk consumption on plasma lipids and surrogate markers of cholesterol homeostasis in men and women. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 1255–1262. [Google Scholar] [CrossRef] [PubMed]
- Keller, S.; Malarski, A.; Reuther, C.; Kertscher, R.; Kiehntopf, M.; Jahreis, G. Milk phospholipid and plant sterol-dependent modulation of plasma lipids in healthy volunteers. Eur. J. Nutr. 2013, 52, 1169–1179. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, S.; Takahashi, T.; Tanaka, L.; Haruta, Y.; Shiota, M.; Hosokawa, M.; Miyashita, K. The effect of milk polar lipids separated from butter serum on the lipid levels in the liver and the plasma of obese-model mouse (KK-Ay). J. Funct. Foods 2011, 3, 313–320. [Google Scholar] [CrossRef]
- Bjørnshave, A.; Hermansen, K. Effects of dairy protein and fat on the metabolic syndrome and type 2 diabetes. Rev. Diabet. Stud. 2014, 11, 153–166. [Google Scholar] [CrossRef] [PubMed]
- Ten Bruggencate, S.J.; Frederiksen, P.D.; Pedersen, S.M.; Floris-Vollenbroek, E.G.; Lucas-van de Bos, E.; van Hoffen, E.; Wejse, P.L. Dietary milk-fat-globule membrane affects resistance to diarrheagenic Escherichia coli in healthy adults in a randomized, placebo-controlled, double-blind study. J. Nutr. 2016, 146, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Veereman-Wauters, G.; Staelens, S.; Rombaut, R.; Dewettinck, K.; Deboutte, D.; Brummer, R.J.; Boone, M.; Le Ruyet, P. Milk fat globule membrane (INPULSE) enriched formula milk decreases febrile episodes and may improve behavioral regulation in young children. Nutrition 2012, 28, 749–752. [Google Scholar] [CrossRef] [PubMed]
- Fuller, K.L.; Kuhlenschmidt, T.B.; Kuhlenschmidt, M.S.; Jiménez-Flores, R.; Donovan, S.M. Milk fat globule membrane isolated from buttermilk or whey cream and their lipid components inhibit infectivity of rotavirus in vitro. J. Dairy Sci. 2013, 96, 3488–3497. [Google Scholar] [CrossRef] [PubMed]
- Morifuji, M.; Oba, C.; Ichikawa, S.; Ito, K.; Kawahata, K.; Asami, Y.; Ikegami, S.; Itoh, H.; Sugawara, T. A novel mechanism for improvement of dry skin by dietary milk phospholipids: Effect on epidermal covalently bound ceramides and skin inflammation in hairless mice. J. Dermatol. Sci. 2015, 78, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Higurashi, S.; Haruta-Ono, Y.; Urazono, H.; Kobayashi, T.; Kadooka, Y. Improvement of skin condition by oral supplementation with sphingomyelin-containing milk phospholipids in a double-blind, placebo-controlled, randomized trial. J. Dairy Sci. 2015, 98, 6706–6712. [Google Scholar] [CrossRef] [PubMed]
- Kumura, H.; Sawada, T.; Oda, Y.; Konno, M.; Kobayashi, K. Potential of polar lipids from bovine milk to regulate the rodent dorsal hair cycle. J. Dairy Sci. 2012, 95, 3629–3633. [Google Scholar] [CrossRef] [PubMed]
Sample | Phospholipids Identified | Total PL Amounts | Year | Reference |
---|---|---|---|---|
Human colostrum and milk | ||||
Human colostrum | PI, PS, PE, PC, SM | 4.42 mg/g fat | 2012 | [7] |
Human colostrum | PI, PS, PE, PC, SM | 31.4–37.2 mg/100 mL | 2016 | [8] |
Human milk | PI, PA | Not reported | 2010 | [9] |
Human milk | PI, PS, PE, PC, SM | Not reported | 2010 | [10] |
Human milk | PI, PS, PE, PC, SM | 3.05–4.08 mg/g fat | 2011 | [11] |
Human milk | LPE, EPLAS, PE, SM, PS, PI, PC | 152.9–473.6 µg/mL | 2012 | [12] |
Human milk | PI, PS, PE, PC, SM | 5.06–5.86 mg/g fat | 2012 | [7] |
Human milk | PI, PS, PE, PC, SM, LPC | 182.4 mg/L | 2013 | [13] |
Human milk | PI, PS, PE, PC, SM | 12.9–38.4 mg/100 g | 2013 | [14] |
Human milk | PI, PS, PE, PC, SM | Not reported | 2015 | [15] |
Human milk | PI, PS, PE, PC, SM | 26.0–53.5 mg/100 mL | 2016 | [8] |
Bovine colostrum, milk and dairy by-products | ||||
Bovine colostrum | PI, PS, PE, PC, SM | 0.02–0.04 g/100 g milk | 2014 | [16] |
Bovine colostrum | PI, PS, PE, PC, SM | 4.78 mg/g fat | 2015 | [17] |
Bovine milk | LPC, PC, SM, ePC, LPE, PE-cer, ePE, PI, PS, PA | Not reported | 2010 | [18] |
Bovine milk | LaCcer, PE, PI, PS, PC, SM | Not reported | 2010 | [19] |
Bovine milk | PG, PA, PI, PS, PE, PC, SM, LPC, LPE, PE-cer, ePC, ePE | Not reported | 2010 | [20] |
Bovine milk | PI, PS, PE, PC, SM, LPC, ePC, ePE | Not reported | 2010 | [21] |
Bovine milk | PI, PS, PE, PC, SM, LPC | 46.2 µg/mL | 2011 | [22] |
Bovine milk | PI, PS, PE, PC, SM | Not reported | 2011 | [23] |
Bovine milk | PI, PS, PE, PC, SM | 6.25 mg/g fat | 2011 | [3] |
Bovine milk | EPLAS, PE, PS, PI, PC | 63.0–483.7 µg/mL | 2012 | [12] |
Bovine milk | PI, PS, PE, PC, SM | 22.7–31.3 mg/100 mL | 2013 | [24] |
Bovine milk | PI, PS, PE, PC, SM | 4.78 mg/g fat | 2013 | [25] |
Bovine milk | PI, PE, PC, SM | Not reported | 2013 | [26] |
Bovine milk | PI, PS, PE, PC, SM, LPC | Not reported | 2013 | [27] |
Bovine milk | PI, PE, PC, SM | Not reported | 2013 | [28] |
Bovine milk | PI, PS, PE, PC, SM, LPC | 195.2–413.4 mg/L | 2013 | [13] |
Bovine milk | Lactosylated-PE, PG, PI, PE, PS | Not reported | 2014 | [29] |
Bovine milk | PI, PS, PE, PC, SM | Not reported | 2014 | [30] |
Bovine milk | PI, PS, PE, PC, SM | 2.7–3.5 mg/g fat | 2014 | [31] |
Bovine milk | PI, PS, PE, PC, SM | Not reported | 2014 | [32] |
Bovine milk | PA, PI, PS, PE, PC, SM | Not reported | 2014 | [33] |
Bovine milk | PI, PS, PE, PC, SM | Not reported | 2015 | [34] |
Bovine milk | GluCer, LacCer, PI, PE, PS, PC, SM | 0.20–0.40 mg/mL | 2015 | [35] |
Bovine milk | PI, PS, PE, PC, SM | 0.24 g/100 g fat | 2015 | [36] |
Bovine milk | PI, PS, PE, PC, SM | Not reported | 2015 | [37] |
Bovine milk | PI, PS, PE, PC, SM | 0.81–0.90 g/100 g fat | 2015 | [38] |
Bovine milk | PI, PS, PE, PC, SM | 5.21 mg/g fat | 2015 | [17] |
Bovine milk | PI, PS, PE, PC, SM | Not reported | 2015 | [15] |
Bovine milk | PI, PS, PE, PC, SM | Not reported | 2016 | [39] |
Bovine milk | PI, PS, PE, PC, SM, LPC | Not reported | 2016 | [40] |
Bovine buttermilk | PI, PS, PE, PC, SM | Not reported | 2010 | [41] |
Bovine buttermilk | GluCcer, LaCcer, PA, PE, PI, PS, PC, SM | Not reported | 2010 | [19] |
Bovine buttermilk | PG, PA, PI, PS, PE, PC, SM, LPC, LPE, PE-cer, ePC, ePE | Not reported | 2010 | [20] |
Bovine buttermilk | PI, PS, PE, PC, SM, LPC, ePC, ePE | Not reported | 2010 | [21] |
Bovine buttermilk | LPC, PC, SM, ePC, lyso-PE, PE-cer, ePE, PI, PS, PA | Not reported | 2010 | [18] |
Bovine buttermilk (microfiltered) | GluCer, LacCer, PI, PE, PS, PC, SM | 9.95 mg/g | 2011 | [42] |
Bovine buttermilk powder | GluCer, LacCer, PI, PE, PS, PC, SM | 32.9 mg/g | 2011 | [42] |
Bovine buttermilk | PC, PE, PI, PS, SM | 80.4–124.8 g/kg of fat or 231–438 mg/kg of product | 2013 | [43] |
Bovine buttermilk | PC, PE, PI, PS, SM | 0.30–0.53 g/L | 2013 | [44] |
Bovine buttermilk | PI, PS, PE, PC, SM, LPC, LPE | Not reported | 2014 | [45] |
Bovine buttermilk | PI, PS, PE, PC, SM, LPC, LPE | 1.44 g/kg | 2015 | [46] |
Bovine buttermilk | PI, PS, PE, PC, SM | Not reported | 2016 | [39] |
Bovine butter serum | PI, PS, PE, PC, SM | Not reported | 2016 | [39] |
Bovine cream by-products | PI, PS, PE, PC, SM | 3.5–3.8 mg/g fat | 2015 | [47] |
Bovine whey | PI, PS, PE, PC, SM | 31.05 g/100 g MFMG | 2013 | [48] |
Other mammalian milk | ||||
Buffalo milk | PI, PS, PE, PC, SM | 3.22 mg/g fat | 2013 | [25] |
Camel milk | PA, EPLAS, PE, SM, PS, PI, aaPC, PC | 257.0–660.3 µg/mL | 2012 | [12] |
Camel milk | PI, PS, PE, PC, SM | 4.65 mg/g fat | 2013 | [25] |
Donkey milk | PI, PS, PE, PC, SM | 2.9 µg/mL | 2011 | [22] |
Donkey milk | PI, PS, PE, PC, SM | 4.01 mg/g fat | 2013 | [25] |
Donkey milk | PI, PS, PE, PC, SM, LPC | 32.7–38.9 mg/L | 2013 | [13] |
Dromedary milk | PI, PE, PS, PC | 60–66 µg/mL | 2016 | [49] |
Goat milk | LaCcer, PE, PI, PS, PC, SM | Not reported | 2010 | [19] |
Goat milk | PI, PE, PC, SM, LPC | Not reported | 2013 | [26] |
Goat milk | PI, PS, PE, PC, SM | 281.6 mg/L | 2013 | [50] |
Goat milk | PI, PS, PE, PC, SM, LPC | 195.5–202.1 mg/L | 2013 | [13] |
Goat milk | PI, PS, PE, PC, SM | Not reported | 2014 | [33] |
Goat milk | PI, PS, PE, PC, SM | 0.05–0.08 g/g fat | 2016 | [51] |
Mare milk | LPA, LPE, PA, EPLAS, PE, SM, PS, LPC, PI, aaPC, PC | 52.6–87.9 µg/mL | 2012 | [12] |
Sheep milk | LaCcer, PE, PI, PS, PC, SM | Not reported | 2010 | [19] |
Sheep milk | PI, PS, PE, PC, SM | 308.1 mg/L | 2013 | [50] |
Sheep milk | PI, PS, PE, PC, SM | 4.30 mg/g fat | 2013 | [25] |
Sheep milk | PI, PE, PC, SM, LPC | Not reported | 2013 | [26] |
Sheep milk | PI, PS, PE, PC, SM | Not reported | 2014 | [33] |
Sample | Phospholipid Identified | Extraction Method | Determination Method | Year | Ref. |
---|---|---|---|---|---|
Human milk | PI, PS, PE, PC, SM | Folch method | TLC | 2010 | [10] |
Bovine milk, bovine buttermilk | LPC, PC, SM, ePC, LPE, PE-cer, ePE, PI, PS, PA | Folch method and SPE purification | Infusion in ESI-MS/MS | 2010 | [18] |
Bovine milk and buttermilk, goat milk, ewe milk | GluCcer, LaCcer, PE, PI, PS, PC, SM | Folch method | HPLC-ELSD | 2010 | [19] |
Bovine milk, bovine buttermilk | PG, PA, PI, PS, PE, PC, SM, LPC, LPE, PE-cer, ePC, ePE | Folch method and SPE purification | Infusion in ESI-MS/MS | 2010 | [20] |
Bovine milk, bovine buttermilk | PI, PS, PE, PC, SM, LPC, ePC, ePE | Folch method and SPE purification | Infusion in ESI-MS/MS | 2010 | [21] |
Bovine buttermilk | PI, PS, PE, PC, SM | Mojonnier ether extraction method | TLC and HPLC-ELSD | 2010 | [41] |
Human milk | PI, PA | Folch method | ESI FT-ICRMS | 2010 | [9] |
Human milk | PI, PS, PE, PC, SM | Folch method | HPLC-ELSD | 2011 | [11] |
Bovine milk, donkey milk | PI, PS, PE, PC, SM, LPC | Folch method and SPE purification | HPLC-ELSD HPLC-ESI-IT-TOF-MS | 2011 | [22] |
Bovine milk | PI, PS, PE, PC, SM | Folch method | HPLC-ELSD | 2011 | [23] |
Bovine milk | PI, PS, PE, PC, SM | Folch method | HPLC-ELSD | 2011 | [3] |
Bovine buttermilk powder | GluCer, LacCer, PI, PE, PS, PC, SM | Folch method | HPLC-ELSD | 2011 | [42] |
Bovine milk, Human milk, camel milk, mare milk | LPE, EPLAS, PE, PS, PI, PC, SM, LPC, LPA, aaPC | Folch method | 31P NMR | 2012 | [12] |
Human colostrum, human milk | PI, PS, PE, PC, SM | Folch method | HPLC-ELSD | 2012 | [7] |
Human milk, donkey milk, bovine milk, goat milk | PI, PS, PE, PC, SM, LPC | Folch method | HPLC-ELSD HPLC-ESI-IT-TOF-MS | 2013 | [13] |
Human milk | PI, PS, PE, PC, SM | Folch method | HPLC-ELSD | 2013 | [14] |
Bovine milk | PI, PS, PE, PC, SM | Folch method and SPE purification | HPLC-charged aerosol detector (CAD) | 2013 | [24] |
Bovine milk, buffalo milk, sheep milk, donkey milk, camel milk | PI, PS, PE, PC, SM | Folch method | HPLC-ELSD | 2013 | [25] |
Bovine milk, goat milk, sheep milk | PI, PE, PC, SM, LPC | Bligh–Dyer method | MALDI-TOF-MS | 2013 | [26] |
Bovine milk | PI, PS, PE, PC, SM, LPC | Folch method | LC × LC-MS | 2013 | [27] |
Bovine milk | PI, PE, PC, SM | Folch method (modified) and SPE purification | HPLC-ESI-IT-MS | 2013 | [28] |
Goat milk, ewe milk | PI, PS, PE, PC, SM | Folch and Bligh–Dyer method | HPTLC | 2013 | [50] |
Bovine buttermilk | PC, PE, PI, PS, SM | Folch method | HPLC-ELSD HPLC-ESI-MS | 2013 | [43] |
Bovine buttermilk | PC, PE, PI, PS, SM | Röse-Gottlieb method | 31P NMR | 2013 | [44] |
Bovine whey | PI, PS, PE, PC, SM | Ethanol extraction | HPTLC | 2013 | [48] |
Bovine colostrum | PI, PS, PE, PC, SM | Folch method | HPLC-ELSD | 2014 | [16] |
Bovine milk | PI, PS, PE, PC, SM | Folch method | HPLC-ELSD | 2014 | [23] |
Bovine milk | Lactosylated-PE, PG, PI, PE, PS | Bligh and Dyer extraction | MALDI-TOF-MS | 2014 | [29] |
Bovine milk | PI, PS, PE, PC, SM | Folch method | HPLC-ELSD | 2014 | [30] |
Bovine milk | PI, PS, PE, PC, SM | Folch method | HPLC-ELSD | 2014 | [31] |
Bovine milk, goat milk, sheep milk | PA, PI, PS, PE, PC, SM | Dichloromethane-methanol solution (2/1, v/v)/PLE | HPLC-ELSD | 2014 | [33] |
Bovine buttermilk | PI, PS, PE, PC, SM, LPC, LPE | Bligh and Dyer method | HAP chromatography and MALDI-TOF-MS | 2014 | [45] |
Human milk, bovine milk | PI, PS, PE, PC, SM | Chloroform/methanol 2/1 v/v | TripleTOF-MS | 2015 | [15] |
Bovine colostrum, bovine milk | PI, PS, PE, PC, SM | Folch method | HPLC-ELSD | 2015 | [17] |
Bovine milk | PI, PS, PE, PC, SM | Folch method | HPLC-ELSD | 2015 | [34] |
Bovine milk | GluCer, LacCer, PI, PE, PS, PC, SM | Chloroform/methanol 2/1 v/v | HPLC-LTQ Orbitrap-MS | 2015 | [35] |
Bovine milk | PI, PS, PE, PC, SM | Chloroform/methanol/distilled water (0.8% w/vNaCl) (8:4:3 v/v/v) | HPLC-ELSD | 2015 | [36] |
Bovine milk | PI, PS, PE, PC, SM | Folch method | HPLC-ELSD | 2015 | [37] |
Bovine milk | PI, PS, PE, PC, SM | Folch method | HPLC-ELSD | 2015 | [38] |
Bovine buttermilk | PI, PS, PE, PC, SM, LPC, LPE | Bligh and Dyer method | HPLC-ELSD | 2015 | [46] |
Bovine cream by-products | PI, PS, PE, PC, SM | Folch method and SPE purification | HPLC-ELSD HPLC-ESI-MS | 2015 | [47] |
Bovine milk, bovine buttermilk, bovine butter serum | PI, PS, PE, PC, SM | Folch and Röse–Gottlieb method | HPLC-charged aerosol detector (CAD) | 2016 | [39] |
Bovine milk | PI, PS, PE, PC, SM, LPC | Folch method and SPE purification | HPLC-MALDI-TOF/TOF-MS | 2016 | [40] |
Dromedary milk | PI, PE, PS, PC | Folch method | HPLC-UV | 2016 | [49] |
Goat milk | PI, PS, PE, PC, SM | Methanol-chloroform-water (1:2:0.6, v/v/v) and chloroform/ethanol (3%, v/v) | HPLC-ELSD | 2016 | [51] |
Human colostrum, human milk | PI, PS, PE, PC, SM | Dichloromethane-methanol solution (2/1, v/v) | HPLC-ELSD | 2016 | [8] |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verardo, V.; Gómez-Caravaca, A.M.; Arráez-Román, D.; Hettinga, K. Recent Advances in Phospholipids from Colostrum, Milk and Dairy By-Products. Int. J. Mol. Sci. 2017, 18, 173. https://doi.org/10.3390/ijms18010173
Verardo V, Gómez-Caravaca AM, Arráez-Román D, Hettinga K. Recent Advances in Phospholipids from Colostrum, Milk and Dairy By-Products. International Journal of Molecular Sciences. 2017; 18(1):173. https://doi.org/10.3390/ijms18010173
Chicago/Turabian StyleVerardo, Vito, Ana Maria Gómez-Caravaca, David Arráez-Román, and Kasper Hettinga. 2017. "Recent Advances in Phospholipids from Colostrum, Milk and Dairy By-Products" International Journal of Molecular Sciences 18, no. 1: 173. https://doi.org/10.3390/ijms18010173