Peptides from Colochirus robustus Enhance Immune Function via Activating CD3ζ- and ZAP-70-Mediated Signaling in C57BL/6 Mice
Abstract
:1. Introduction
2. Results
2.1. Effect of Sea Cucumber Polypeptides (SCP) on the Body Weight
2.2. Molecular Weight Distribution and Amino Acid Composition
2.3. Effect of SCP on Cellular Composition of Spleen
2.4. Effect of SCP on Lymphocyte Proliferation and Serum Albumin (ALB) Levels
2.5. Effect of SCP on Natural Killer (NK) Cell Activity
2.6. Effect of SCP on Cytokine Production
2.7. Effect of Hydrolytic Amino Acids (HAA) on Lymphocyte Proliferation
2.8. Effect of HAA on Cytokine Production
2.9. Effect of HAA on CD3ζ and ζ-Chain-Associated Protein Kinase 70 (ZAP-70) Expressions
3. Discussion
4. Materials and Methods
4.1. Reagents
4.2. Preparation of Sea Cucumber Polypeptides (SCP)
4.3. Analysis of Amino Acid Composition and Molecular Weight Distribution
4.4. Animal Treatment
4.5. Hydrolytic Amino Acids (HAA) Preparation
4.6. Analysis of Splenocyte Phenotype
4.7. Lymphocyte Proliferation Assay
4.8. Serum Albumin (ALB) Concentration Assay
4.9. Measurement of Cytokines
4.10. Natural Killer (NK) Cell Activity Assay
4.11. CD3ζ and ZAP-70 Expression
4.12. Statistical Analysis
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chen, S.; Xue, C.; Yin, L.A.; Tang, Q.; Yu, G.; Chai, W. Comparison of structures and anticoagulant activities of fucosylated chondroitin sulfates from different sea cucumbers. Carbohyd. Polym. 2011, 83, 688–696. [Google Scholar] [CrossRef]
- Baharara, J.; Amini, E.; Nikdel, N.; Salek-Abdollahi, F. The Cytotoxicity of Dacarbazine Potentiated by Sea Cucumber Saponin in Resistant B16F10 Melanoma Cells through Apoptosis Induction. Avicenna. J. Med. Biotechnol. 2016, 8, 112–119. [Google Scholar] [PubMed]
- Aminin, D.L.; Agafonova, I.G.; Berdyshev, E.V.; Isachenko, E.G.; Avilov, S.A.; Stonik, V.A. Immunomodulatory Properties of Cucumariosides from the Edible Far-Eastern Holothurian Cucumaria japonica. J. Med. Food 2001, 4, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Mamelona, J.; Pelletier, É.; Girard-Lalancette, K.; Legault, J.; Karboune, S.; Kermasha, S. Quantification of phenolic contents and antioxidant capacity of Atlantic sea cucumber, Cucumaria frondosa. Food Chem. 2007, 104, 1040–1047. [Google Scholar] [CrossRef]
- Bordbar, S.; Anwar, F.; Saari, N. High-Value Components and Bioactives from Sea Cucumbers for Functional Foods—A Review. Mar. Drugs 2011, 9, 1761–1805. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Himaya, S.W.A. Chapter 20—Triterpene Glycosides from sea cucumbers and their biological activities. Advan. Food Nutr. Res. 2012, 65, 297–319. [Google Scholar]
- Wijesinghe, W.A.; Jeon, Y.J.; Ramasamy, P.; Wahid, M.E.; Vairappan, C.S. Anticancer activity and mediation of apoptosis in human HL-60 leukaemia cells by edible sea cucumber (Holothuria edulis) extract. Food Chem. 2013, 139, 326–331. [Google Scholar] [CrossRef] [PubMed]
- Vishkaei, M.S.; Ebrahimpour, A.; Abdulhamid, A.; Ismail, A.; Saari, N. Angiotensin-I Converting Enzyme (ACE) Inhibitory and Anti-Hypertensive Effect of Protein Hydrolysate from Actinopyga lecanora (Sea Cucumber) in Rats. Mar. Drugs 2016, 14, 176. [Google Scholar] [CrossRef] [PubMed]
- Santiago, L.L.; Hernández, M.A.; Vallejo, C.B.; Mata, H.V.; González, C.A.F. Food-derived immunomodulatory peptides. J. Sci. Food Agr. 2016, 96, 3631–3641. [Google Scholar] [CrossRef] [PubMed]
- Phelan, M.; Aherne, A.; Fitzgerald, R.J.; O'Brien, N.M. Casein-derived bioactive peptides: Biological effects, industrial uses, safety aspects and regulatory status. Int. Dairy J. 2009, 19, 643–654. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, W.; Wang, Z.; Jia, Q.; Zhang, Y.; Jiang, G. Effect of polypeptide extract from scorpion venom (PESV) on immune escape of Lewis lung carcinomas. China J. Chin. Mate. Med. 2010, 35, 2324–2327. [Google Scholar]
- Sun, Y.; Hu, X.; Li, W. Antioxidant, antitumor and immunostimulatory activities of the polypeptide from Pleurotus eryngii mycelium. Int. J. Biol. Macromol. 2017, 97, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Li, T.; Cheng, X.; Ji, X.; Gao, D.; Du, M.; Jiang, N.; Liu, X.; Mao, X. Sea cucumber peptides exert anti-inflammatory activity through suppressing NF-κB and MAPK and inducing HO-1 in RAW264.7 macrophages. Food Funct. 2016, 7, 2773–2779. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Du, X.; Tang, J.; Cao, X.; Han, X.; Chen, Z.; Chen, Y.; Zeng, X. Enhancement of the immune responses to foot-and-mouth disease vaccination in mice by oral administration of a novel polysaccharide from the roots of Radix Cyathulae officinalis Kuan (RC). Cell. Immunol. 2013, 281, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Haibo, F.; Fan, J.; Qiu, H.; Wang, Z.; Yan, Z.; Yuan, L.; Guan, L.; Du, X.; Song, Z.; Han, X. Chuanminshen violaceum polysaccharides improve the immune responses of foot-and-mouth disease vaccine in mice. Int. J. Biol. Macromol. 2015, 78, 405–416. [Google Scholar]
- Feng, H.; Du, X.; Liu, J.; Han, X.; Cao, X.; Zeng, X. Novel polysaccharide from Radix Cyathulae officinalis Kuan can improve immune response to ovalbumin in mice. Int. J. Biol. Macromol. 2014, 65, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Chu, D.H.; Morita, C.T.; Weiss, A. The Syk family of protein tyrosine kinases in T-cell activation and development. Immunol. Rev. 1998, 165, 167–180. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Li, B.; Liu, Z.; Dong, S.; Zhao, X.; Zeng, M. Antihypertensive effect and purification of an ACE inhibitory peptide from sea cucumber gelatin hydrolysate. Process Biochem. 2007, 42, 1586–1591. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, B.; Dong, S.; Liu, Z.; Zhao, X.; Wang, J.; Zeng, M. A novel ACE inhibitory peptide isolated from Acaudina molpadioidea hydrolysate. Peptides 2009, 30, 1028–1033. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Wang, C.; Jiang, A. Antioxidant peptides isolated from sea cucumber Stichopus Japonicus. Eur. Food Res. Technol. 2012, 234, 441–447. [Google Scholar] [CrossRef]
- He, L.X.; Zhang, Z.F.; Sun, B.; Chen, Q.H.; Liu, R.; Ren, J.W.; Wang, J.B.; Li, Y. Sea cucumber (Codonopsis pilosula) oligopeptides: Immunomodulatory effects based on stimulating Th cells, cytokine secretion and antibody production. Food Funct. 2016, 7, 1208–1216. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, S.F.; Pouliot, Y.; Saint-Sauveur, D. Immunomodulatory peptides obtained by the enzymatic hydrolysis of whey proteins. Int. Dairy J. 2006, 16, 1315–1323. [Google Scholar] [CrossRef]
- Wang, J.; Niu, X.; Du, X.; Smith, D.; Meydani, S.N.; Wu, D. Dietary supplementation with white button mushrooms augments the protective immune response to Salmonella vaccine in mice. J. Nutr. 2013, 144, 98–105. [Google Scholar] [CrossRef] [PubMed]
- And, S.L.C.; Bottomly, K. Induction of TH1 and TH2 CD4+ T cell responses: The Alternative Approaches. Annu. Rev. Immunol. 2003, 15, 297–322. [Google Scholar]
- Xu, M.; Zhao, M.; Yang, R.; Zhang, Z.; Li, Y.; Wang, J. Effect of dietary nucleotides on immune function in Balb/C mice. Int. Immunopharmacol. 2013, 17, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Talker, S.C.; Käser, T.; Reutner, K.; Sedlak, C.; Mair, K.H.; Koinig, H.; Graage, R.; Viehmann, M.; Klingler, E.; Ladinig, A. Phenotypic maturation of porcine NK- and T-cell subsets. Dev. Comp. Immunol. 2013, 40, 51–68. [Google Scholar] [CrossRef] [PubMed]
- Medzhitov, R.; Janeway, C.A., Jr. Innate immunity: impact on the adaptive immune response. Curr. Opin. Immunol. 1997, 9, 4–9. [Google Scholar] [CrossRef]
- Culley, F.J. Natural killer cells in infection and inflammation of the lung. Immunology 2009, 128, 151–163. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Pae, M.; Ren, Z.; Guo, Z.; Smith, D.; Meydani, S.N. Dietary supplementation with white button mushroom enhances natural killer cell activity in C57BL/6 mice. J. Nutr. 2007, 137, 1472–1477. [Google Scholar] [PubMed]
- Moretta, L.; Bottino, C.; Cantoni, C.; Mingari, M.C.; Moretta, A. Human natural killer cell function and receptors. Curr. Opin. Pharmacol. 2001, 1, 387–391. [Google Scholar] [CrossRef]
- Quinlan, G.J.; Martin, G.S.; Evans, T.W. Albumin: Biochemical properties and therapeutic potential. Hepatology 2005, 41, 1211–1219. [Google Scholar] [CrossRef] [PubMed]
- Fuhrman, M.P. The albumin-nutrition connection: separating myth from fact. Nutrition 2002, 18, 199–200. [Google Scholar] [CrossRef]
- Wu, G.Y.; Field, C.J.; Marliss, E.B. Glutamine and glucose metabolism in rat splenocytes and mesenteric lymph node lymphocytes. Am. J. Physiol. 1991, 260, 141–147. [Google Scholar]
- Li, P.; Yin, Y.L.; Li, D.; Kim, S.W.; Wu, G. Amino acids and immune function. Brit. J. Nutr. 2007, 98, 237–252. [Google Scholar] [CrossRef] [PubMed]
- Seaborn, C.D.; Briske-Anderson, M.; Nielsen, F.H. An interaction between dietary silicon and arginine affects immune function indicated by con-A-induced DNA synthesis of rat splenic T-lymphocytes. Biol. Trace Elem. Res. 2002, 87, 133–142. [Google Scholar] [PubMed]
- Lombardi, G.; Miglio, G.; Dianzani, C.; Mesturini, R.; Varsaldi, F.; Chiocchetti, A.; Dianzani, U.; Fantozzi, R. Glutamate modulation of human lymphocyte growth: In vitro studies. Biochem. Bioph. Res. Commun. 2004, 318, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Yaqoob, P.; Calder, P.C. Cytokine production by human peripheral blood mononuclear cells: Differential senstivity to glutamine availability. Cytokine 1998, 10, 790–794. [Google Scholar] [CrossRef] [PubMed]
- Paßlack, N.; Doherr, M.G.; Zentek, J. Effects of free amino acids on cytokine secretion and proliferative activity of feline T cells in an in vitro study using the cell line MYA-1. Cytotechnology 2016, 68, 1949–1961. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, P.C.; Zea, A.H.; Culotta, K.S.; Zabaleta, J.; Ochoa, J.B.; Ochoa, A.C. Regulation of T Cell Receptor CD3ζ Chain Expression byl-Arginine. J. Biol. Chem. 2002, 277, 21123–21129. [Google Scholar] [CrossRef] [PubMed]
- Giraldo, N.A.; Bolaños, N.I.; Cuellar, A.; Roa, N.; Cucunubá, Z.; Rosas, F.; Velasco, V.; Puerta, C.J.; González, J.M. T lymphocytes from chagasic patients are activated but lack proliferative capacity and down-regulate CD28 and CD3ζ. PLoS Negl. Trop. Dis. 2013, 7, e2038–e2049. [Google Scholar] [CrossRef] [PubMed]
- Meinl, E.; Lengenfelder, D.; Blank, N.; Pirzer, R.; Barata, L.; Hivroz, C. Differential requirement of ZAP-70 for CD2-mediated activation pathways of mature human T cells. J. Immunol. 2000, 165, 3578–3583. [Google Scholar] [CrossRef] [PubMed]
- Popovic, P.J.; Ochoa, J.B. Arginine and immunity. J. Nutr. 2007, 137, 1681S–1686S. [Google Scholar] [PubMed]
- Rodriguez, P.C.; Zea, A.H.; Desalvo, J.; Culotta, K.S.; Zabaleta, J.; Quiceno, D.G.; Ochoa, J.B.; Ochoa, A.C. l-arginine consumption by macrophages modulates the expression of CD3 ζ chain in T lymphocytes. J. Immunol. 2003, 171, 1232–1239. [Google Scholar] [CrossRef] [PubMed]
- Zea, A.H.; Rodriguez, P.C.; Culotta, K.S.; Hernandez, C.P.; Desalvo, J.; Ochoa, J.B.; Park, H.J.; Zabaleta, J.; Ochoa, A.C. l-Arginine modulates CD3ζ expression and T cell function in activated human T lymphocytes. Cell. Immunol. 2004, 232, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Khan, J.K.; Kuo, Y.H.; Kebede, N.; Lambein, F. Determination of non-protein amino acids and toxins in Lathyrus by high-performance liquid chromatography with precolumn phenyl isothiocyanate derivatization. J. Chromatogr. A 1994, 687, 113–119. [Google Scholar] [CrossRef]
- Yao, Y.; Guiltinan, M.J.; Thompson, D.B. High-performance size-exclusion chromatography (HPSEC) and fluorophore-assisted carbohydrate electrophoresis (FACE) to describe the chain-length distribution of debranched starch. Carbohyd. Res. 2005, 340, 701–710. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Pae, M.; Dao, M.C.; Smith, D.; Meydanin, S.N.; Wu, D. Dietary supplementation with tocotrienols enhances immune function in C57BL/6 mice. J. Nutr. 2010, 140, 1335–1341. [Google Scholar] [CrossRef] [PubMed]
- Sawaengsri, H.; Wang, J.; Reginaldo, C.; Steluti, J.; Wu, D.; Meydani, S.N.; Selhub, J.; Paul, L. High folic acid intake reduces natural killer cell cytotoxicity in aged mice. J. Nutr. Biochem. 2016, 30, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Appleby, L.J.; Norman, N.; Francesca, H.; Louise, E.; Bourke, C.D.; Nicholas, M.; Takafira, M.; Allen, J.E.; Francisca, M. Down Regulation of the TCR Complex CD3ζ-Chain on CD3+ T Cells: A Potential Mechanism for Helminth-Mediated Immune Modulation. Front. Immunol. 2015, 6, 51–59. [Google Scholar] [CrossRef] [PubMed]
Molecular Weight Range | % |
---|---|
<100 | 1.50 |
100~300 | 28.50 |
300~600 | 30.00 |
600~1000 | 20.00 |
1000~2000 | 15.50 |
2000~3000 | 3.00 |
>3000 | 1.50 |
Amino Acid | g/100 g Protein |
---|---|
Gly | 18.54 |
Glu | 11.23 |
Ala | 9.75 |
Arg | 7.55 |
Asp | 6.92 |
Pro | 5.90 |
Thr | 4.68 |
Ser | 4.50 |
Leu | 4.39 |
Val | 3.83 |
Lys | 3.33 |
Ile | 2.29 |
Tyr | 2.10 |
Phe | 1.80 |
Met | 1.77 |
His | 1.57 |
Group (mg/kg BW) | CD4+ T Cells (%) | CD8+ T Cells (%) | B Cells (%) | NK (%) | Treg (%) |
---|---|---|---|---|---|
0 | 29.24 ± 3.32 b | 15.61 ± 2.91 b | 55.12 ± 3.71 a | 2.23 ± 0.46 a | 3.34 ± 0.68 a |
25 | 28.11 ± 3.12 a | 14.96 ± 2.37 a | 55.52 ± 4.34 a | 2.41 ± 0.62 a | 3.21 ± 0.53 a |
50 | 29.55 ± 3.73 b | 15.37 ± 2.14 ab | 56.78 ± 5.16 b | 2.96 ± 0.77 b | 3.28 ± 0.76 a |
75 | 30.47 ± 4.21 c | 16.16 ± 2.74 c | 56.43 ± 4.83 b | 3.37 ± 0.85 c | 3.14 ± 0.52 a |
Group (mg/kg BW) | IL-2 pg/mL | IL-4 pg/mL | IL-6 pg/mL | IL-10 pg/mL | TNFα pg/mL | IFNγ pg/mL |
---|---|---|---|---|---|---|
0 | 310.4 ± 28.1 a | 62.3 ± 6.1 a | 44.5 ± 3.8 a | 425.3 ± 51.2 c | 215.7 ± 16.5 b | 204.2 ± 17.1 c |
25 | 412.8 ± 32.7 b | 110.5 ± 8.2 b | 61.5 ± 5.5 c | 386.4 ± 32.5 a | 228.1 ± 18.2 c | 140.6 ± 10.7 a |
50 | 488.1 ± 25.7 c | 130.1 ± 7.9 c | 65.4 ± 4.7 d | 414.9 ± 49.1 b | 240.1 ± 27.3 d | 157.4 ± 16.3 b |
75 | 400.2 ± 34.1 b | 100.9 ± 5.6 b | 50.3 ± 4.1 b | 429.5 ± 46.4 c | 203.6 ± 13.2 a | 228.3 ± 25.2 d |
Group (mg/kg BW) | IL-2 pg/mL | IL-4 pg/mL | IL-6 pg/mL | IL-10 pg/mL | TNFα pg/mL | IFNγ pg/mL |
---|---|---|---|---|---|---|
0 | 182.2 ± 25.3 b | 12.1 ± 0.9 a | 26.3 ± 2.1 b | 70.9 ± 5.6 a | 551.5 ± 22.4 a | 58.3 ± 4.3 a |
25 | 157.6 ± 19.1 a | 16.3 ± 1.8 c | 22.1 ± 1.3 a | 72.4 ± 3.2 a | 575.1 ± 31.6 b | 72.2 ± 5.1 b |
50 | 207.3 ± 32.4 c | 16.6 ± 1.6 c | 30.2 ± 3.1 c | 125.5 ± 10.8 c | 641.4 ± 56.3 d | 100.2 ± 15.2 d |
75 | 189.5 ± 23.6 b | 13.3 ± 1.4 b | 31.1 ± 2.5 c | 80.2 ± 7.5 b | 592.3 ± 41.1 c | 84.4 ± 8.6 c |
Group (mg/kg BW) | IL-1β pg/mL | IL-6 pg/mL | TNFα pg/mL |
---|---|---|---|
0 | 129.2 ± 10.1 a | 53.2 ± 3.8 a | 140.6 ± 34.3 a |
25 | 134.5 ± 17.3 a | 61.7 ± 5.8 c | 159.9 ± 51.2 c |
50 | 157.8 ± 26.2 b | 67.7 ± 8.1 d | 202.3 ± 62.5 d |
75 | 131.1 ± 12.7 a | 56.2 ± 4.9 b | 149.4 ± 44.3 b |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, X.; Lian, F.; Li, Y.; Li, D.; Wu, D.; Feng, Q.; Feng, Z.; Li, Y.; Bu, G.; Meng, F.; et al. Peptides from Colochirus robustus Enhance Immune Function via Activating CD3ζ- and ZAP-70-Mediated Signaling in C57BL/6 Mice. Int. J. Mol. Sci. 2017, 18, 2110. https://doi.org/10.3390/ijms18102110
Du X, Lian F, Li Y, Li D, Wu D, Feng Q, Feng Z, Li Y, Bu G, Meng F, et al. Peptides from Colochirus robustus Enhance Immune Function via Activating CD3ζ- and ZAP-70-Mediated Signaling in C57BL/6 Mice. International Journal of Molecular Sciences. 2017; 18(10):2110. https://doi.org/10.3390/ijms18102110
Chicago/Turabian StyleDu, Xiaogang, Fangliang Lian, Yunkun Li, Dong Li, Dayong Wu, Qunli Feng, Zhijiang Feng, Yun Li, Guixian Bu, Fengyan Meng, and et al. 2017. "Peptides from Colochirus robustus Enhance Immune Function via Activating CD3ζ- and ZAP-70-Mediated Signaling in C57BL/6 Mice" International Journal of Molecular Sciences 18, no. 10: 2110. https://doi.org/10.3390/ijms18102110
APA StyleDu, X., Lian, F., Li, Y., Li, D., Wu, D., Feng, Q., Feng, Z., Li, Y., Bu, G., Meng, F., Cao, X., Chen, Z., & Zeng, X. (2017). Peptides from Colochirus robustus Enhance Immune Function via Activating CD3ζ- and ZAP-70-Mediated Signaling in C57BL/6 Mice. International Journal of Molecular Sciences, 18(10), 2110. https://doi.org/10.3390/ijms18102110