The Hypothalamic–Pituitary Axis and Autoantibody Related Disorders
Abstract
:1. Introduction
1.1. The Hypothalamic–Pituitary Axis
1.2. Diseases of the Hypothalamic–Pituitary Axis
1.3. Autoimmune Diseases
1.4. Autoimmunity and Hypothalamic–Pituitary Axis
1.5. Aim of the Review
2. Pituitary and Autoimmunity
2.1. APAs to Gonadotropic Cells
2.2. APAs to PRL Secreting Cells
2.3. APAs to GH Secreting Cells
2.4. APAs to ACTH Cells
2.5. APAs: Other Studies
2.6. Pituitary Auto-Ags
3. Hypothalamus and Autoimmunity
4. Hypothalamus and Pituitary Autoimmunity
5. Conclusions
5.1. Technical Considerations
5.2. Can APAs and/or AHAs Be Used in the Routine Clinical Practice?
Conflicts of Interest
References
- Ribas, G.C. Neuroanatomical basis of behavior: History and recent contributions. Rev. Bras. Psiquiatr. 2007, 29, 63–71. [Google Scholar] [CrossRef]
- Human Brain the Limbic System and Its Connections with the Hypothalamus. Available online: https://www.barnardhealth.us/human-brain/a-the-limbic-system-and-its-connections-with-the-hypothalamus.html (accessed on 20 May 2017).
- Angioni, L.; Cocco, C.; Ferri, G.L.; Argiolas, A.; Melis, M.R.; Sanna, F. Involvement of nigral oxytocin in locomotor activity: A behavioral, immunohistochemical and lesion study in male rats. Horm. Behav. 2016, 83, 23–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salata, R.A.; Jarrett, D.B.; Verbalis, J.G.; Robinson, A.G. Vasopressin stimulation of adrenocorticotropin hormone (ACTH) in humans. In vivo bioassay of corticotropin-releasing factor (CRF) which provides evidence for CRF mediation of the diurnal rhythm of ACTH. J. Clin. Investig. 1988, 81, 766–774. [Google Scholar] [CrossRef] [PubMed]
- Zelena, D. Vasopressin in health and disease with a focus on affective disorders. Central Nerv. Syst. Agents Med. Chem. 2012, 12, 286–303. [Google Scholar] [CrossRef]
- Muller, E.E.; Locatelli, V.; Cocchi, D. Neuroendocrine control of growth hormone secretion. Physiol. Rev. 1999, 79, 511–607. [Google Scholar] [PubMed]
- Lake, M.G.; Krook, S.L.; Cruz, S.V. Pituitary adenomas: An overview. Am. Fam. Phys. 2013, 88, 319–327. [Google Scholar]
- Tanriverdi, F.; Kelestimur, F. Classical and non-classical causes of GH deficiency in adults. Best practice & research. Clin. Endocrinol. Metab. 2017, 31, 3–11. [Google Scholar]
- Acromegaly. Available online: https://www.niddk.nih.gov/health-information/endocrine-diseases/acromegaly (accessed on April 2012).
- Lanzino, G.; Maartens, N.F.; Laws, E.R. Cushing’s case XLV: Minnie G. J. Neurosurg. 2002, 97, 231–234. [Google Scholar] [CrossRef] [PubMed]
- Diabetes Insipidus. Available online: https://www.niddk.nih.gov/health-information/kidney-disease/diabetes-insipidus (accessed on October 2015).
- Di Iorgi, N.; Napoli, F.; Allegri, A.E.M.; Olivieri, I.; Bertelli, E.; Gallizia, A.; Rossi, A.; Maghnie, M. Diabetes Insipidus—Diagnosis and Management. Horm. Res. Paediatr. 2012, 77, 69–84. [Google Scholar] [CrossRef] [PubMed]
- Falorni, A.; Minarelli, V.; Bartoloni, E.; Alunno, A.; Gerli, R. Diagnosis and classification of autoimmune hypophysitis. Autoimmun. Rev. 2014, 13, 412–416. [Google Scholar] [CrossRef] [PubMed]
- Cocco, C.; Brancia, C.; D’Amato, F.; Noli, B. Pituitary gonadotropins and autoimmunity. Mol. Cell. Endocrinol. 2014, 385, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Bottazzo, G.F.; Pouplard, A.; Florin-Christensen, A.; Doniach, D. Autoantibodies to prolactin-secreting cells of human pituitary. Lancet 1975, 306, 97–101. [Google Scholar] [CrossRef]
- De Bellis, A.; Bizzarro, A.; Perrino, S.; Coronella, C.; Solimeno, S.; Sinisi, A.A.; Stile, L.A.; Pisano, G.; Bellastella, A. Antipituitary Antibodies in Adults with Apparently Idiopathic Growth Hormone Deficiency and in Adults with Autoimmune Endocrine Diseases. J. Clin. Endocrinol. Metab. 2003, 88, 650–654. [Google Scholar] [CrossRef] [PubMed]
- De Bellis, A.; Bizzarrot, A.; Perrinot, S.; Coronella, C.; Conte, M.; Pasquali, D.; Sinisi, A.A.; Betterle, C.; Bellastella, A. Characterization of antipituitary antibodies targeting pituitary hormone-secreting cells in idiopathic growth hormone deficiency and autoimmune endocrine diseases. Clin. Endocrinol. 2005, 63, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Iwama, S.; Welt, C.K.; Romero, C.K.; Radovick, S.; Caturegli, P. Isolated prolactin deficiency associated with serum autoantibodies against prolactin-secreting cells. J. Clin. Endocrinol. Metab. 2013, 98, 3920–3925. [Google Scholar] [CrossRef] [PubMed]
- Hansen, B.L.; Hegedüs, L.; Hansen, G.N.; Hagen, C.; Hansen, J.M.; Hǿier-Madsen, M. Pituitary-cell antibody diversity in sera from patients with untreated Graves’ disease. Autoimmunity 1989, 5, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Pouplard, A.; Emile, J.; Vincent-Pineau, F. Circulating human pituitary prolactin cell autoantibodies and Alzheimer’s disease. Rev. Neurol. 1983, 139, 187–191. [Google Scholar] [PubMed]
- Philipot, M.; Colgan, J.; Levy, R.; Holland, A.; Mirakian, R.; Richardson, C.A.; Bottazzo, G.F. Prolactin cell autoantibodies and Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 1985, 48, 287–288. [Google Scholar] [CrossRef]
- Bottazzo, G.F.; McIntosh, C.; Stanford, W.; Preece, M. Growth hormone cell antibodies and partial growth hormone deficiency in a girl with Turner’s syndrome. Clin. Endocrinol. 1980, 12, 1–9. [Google Scholar] [CrossRef]
- Bensing, S.; Fetissov, S.O.; Mulder, J.; Perheentupa, J.; Gustafsson, J.; Husebye, E.S.; Oscarson, M.; Ekwall, O.; Crock, P.A.; Hökfelt, T.; et al. Pituitary antibodies in autoimmune polyendocrine Syndrome type 1. Proc. Natl. Acad. Sci. USA 2007, 104, 949–954. [Google Scholar] [CrossRef] [PubMed]
- Langvad, B.; Jans, H.; Heltberg, A.; Hansen, G.N. Autoantibodies against pituitary peptides in sera from patients with multiple sclerosis. Acta Neurol. Scand. 1986, 73, 79. [Google Scholar] [CrossRef] [PubMed]
- Scherbaum, W.A.; Schrell, U.; Glück, M.; Fahlbusch, R.; Pfeiffer, E.F. Autoantibodies to pituitary corticotrophin-producing cells: Possible marker for unfavorable outcome after pituitary microsurgery for Cushing’s disease. Lancet 1987, 1, 1394–1398. [Google Scholar] [CrossRef]
- Pollock, A.J.; Seibert, T.S.; Savatori, C.; Caturegli, P.; Allen, D.B. Pituitary antibodies in an adolescent with secondary adrenal insufficiency and Turner’s syndrome. Horm. Res. Pediatr. 2017, 87, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Mirakian, R.; Bottazzo, G.F.; Cudworth, A.G.; Richardson, C.A.; Doniach, D. Autoimmunity to anterior pituitary cells and the pathogenesis of insulin-dependent diabetes mellitus. Lancet 1982, 319, 755–759. [Google Scholar] [CrossRef]
- Sogiura, M.; Hashimoto, A.; Shizawa, M.; Tsukada, M.; Maruyama, S.; Ishido, T.; Kasahara, T.; Hirata, Y. Heterogeneity of anterior pituitary cell antibodies detected in insulin-dependent diabetes mellitus and adrenocorticotropic hormone deficiency. Diabetes Res. 1986, 3, 111–114. [Google Scholar]
- Lupi, I.; Raffaelli, V.; di Cianni, G.; Caturegli, P.; Manetti, L.; Ciccarone, A.M.; Bogazzi, F.; Mariotti, S.; del Prato, S.; Martino, E. Pituitary autoimmunity in patients with diabetes mellitus and other endocrine disorders. J. Endocrinol. Investig. 2013, 36, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Pisanu, C.; Cocco, C.; Cossu, E.; Baroni, M.G.; Pigliaru, F.; Manetti, L.; Lupi, I.; Martino, E.; Mariotti, S. Anterior pituitary antibodies in patients with type 1 diabetes mellitus: Methodological problems and clinical correlations. J. Endocrinol. Investig. 2014, 37, 973–978. [Google Scholar] [CrossRef] [PubMed]
- Manetti, L.; Lupi, I.; Morselli, L.L.; Albertini, S.; Cosottini, M.; Grasso, L.; Genovesi, M.; Pinna, G.; Mariotti, S.; Bogazzi, F.; et al. Prevalence and functional significante of antipituitary antibodies in patients with autoimmune and non-autoimmune thyroid diseases. J. Clin. Endocrinol. Methab. 2007, 92, 2176–2181. [Google Scholar] [CrossRef] [PubMed]
- Tanriverdi, F.; de Bellis, A.; Ulutabanca, H.; Bizzarro, A.; Sinisi, A.A.; Bellastella, G.; Amoresano Paglionico, V.; Dalla Mora, L.; Selcuklu, A.; Unluhizarci, K.; et al. A five year prospective investigation of anterior pituitary function after traumatic brain injury: Is hypopituitarism long-term after head trauma associated with autoimmunity? J. Neurotrauma 2013, 30, 1426–1433. [Google Scholar]
- Gut, P.; Kosowicz, J.; Ziemnicka, K.; Baczyk, M.; Sawicka, J.; Czarnywojtek, A.; Sowinski, J. The incidence of the pituitary autoantibodies in Graves’ disease. Endokrynol. Polska 2007, 58, 195–200. [Google Scholar]
- Crock, P.A. Cytosolic autoantigens in lymphocytic hypophysitis. J. Clin. Endocrinol. Metab. 1998, 83, 609–618. [Google Scholar] [CrossRef] [PubMed]
- O’Dwyer, D.T.; Smith, A.I.; Matthew, M.L.; Andronicos, N.M.; Ranson, M.; Robinson, P.J.; Crock, P.A. Identification of the 49-kDa autoantigen associated with lyphocytic hypophysitis as α-enolase. J. Clin. Endocrinol. Metab. 2002, 87, 752–757. [Google Scholar] [CrossRef] [PubMed]
- Lupi, I.; Broman, K.W.; Tzou, S.C.; Gutenberg, A.; Martino, E.; Caterugli, P. Novel autoantigens in autoimmune hypophysitis. Clin. Endocrinol. 2008, 69, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.J.; Bensing, S.; Burns, C.; Robinson, P.J.; Kasperlik-Zaluska, A.A.; Scott, R.J.; Kämpe, O.; Crock, P.A. Identification of TPIT and other novel autoantigens in lymphocytic hyphophysitis: Immunoscreening of a pituitary cDNA library and development of immunoprecipitation assays. Eur. J. Endocrinol. 2012, 166, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Scherbaum, W.A.; Bottazzo, G.F. Autoantibodies to vasopressin cells in idiopathic diabetes insipidus: Evidence for autoimmune variant. Lancet 1983, 1, 897–901. [Google Scholar] [CrossRef]
- Maghnie, M.; Ghirardello, S.; de Bellis, A.; di Iorgi, N.; Ambrosini, L.; Secco, A.; de Amici, M.; Tinellì, C.; Bellastella, A.; Lorini, R. Idiopathic central diabetes insipidus in children and young adults is commonly associated with vasopressin—Cell antibodies and markers of autoimmunity. Clin. Endocrinol. 2006, 65, 470–478. [Google Scholar] [CrossRef] [PubMed]
- De Bellis, A.; Bizzarro, A.; Amoresano Paglionico, V.; di Martino, S.; Criscuolo, T.; Sinisi, A.A.; Lombardi, G.; Bellastella, A. Detection of vasopressin cell antibodies in some patients with autoimmune endocrine diseases without overt dibetes insipidus. Clin. Endocrinol. 1994, 40, 173–177. [Google Scholar] [CrossRef]
- Watkins, W.B. Use of a cross-species immunohistochemical procedure to demonstrate the presence of neurophysin antibodies in the serum of a patient treated with pitressin. Neurosci. Lett. 1986, 66, 91–95. [Google Scholar] [CrossRef]
- Margari, F.; Petruzzelli, M.G.; Mianulli, R.; Campa, M.G.; Pastore, A.; Tampoia, M. Circulating anti-brain autoantibodies in schizophrenia and mood disorders. Psychiatry Res. 2015, 230, 704–708. [Google Scholar] [CrossRef] [PubMed]
- De Bellis, A.; Pane, E.; Bellastella, G.; Sinisi, A.A.; Colella, C.; Giordano, R.; Giavoli, C.; Lania, A.; Ambrosio, M.R.; di Somma, C.; et al. Detection of antipituitary and antihypothalamus antibodies to investigate the role of pituitary and hypothalamic autoimmunity in patients with selective idiopathic hypopituitarism. Clin. Endocrinol. 2011, 159, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Tanriverdi, F.; de Bellis, A.; Battaglia, M.; Bellastella, G.; Bizzarro, A.; Sinisi, A.A.; Unluhizarci, K.; Selcuklu, A.; Casanueva, F.F.; Kelestimur, F. Investigation of antihypothalamus and antipituitary antibodies in amateur boxers: Is chronic repetitive head trauma-induced pituitary dysfunction associated with autoimmunity? Eur. J. Endocrinol. 2010, 162, 861–867. [Google Scholar] [CrossRef] [PubMed]
- Iughetti, L.; de Bellis, A.; Predieri, B.; Bizzarro, A.; de Simone, M.; Bellastella, A.; Bernasconi, S. Growth hormone impaired secretion and antipituitary antibodies in patients with coeliac disease and poor catch-up growth after a long gluten-free diet period: A casual association? Eur. J. Pediatr. 2006, 165, 897–903. [Google Scholar] [CrossRef] [PubMed]
- De Bellis, A.; Kelestimur, F.; Sinisi, A.A.; Ruocco, G.; Ruocco, G.; Tirelli, G.; Battaglia, M.; Bellastella, G.; Conzo, G.; Tanriverdi, F.; et al. Anti-hypothalamus and anti-pituitary antibodies may contribute to perpetuate the hypopituitarism in patients with Sheehan’s syndrome. Eur. J. Endocrinol. 2008, 158, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Cocco, C.; Meloni, A.; Mariotti, S.; Cossu, E.; D’Amato, F.; Zulian, S.; Tongiorgi, E.; Ferri, G.L. Novel neuronal and endocrine autoantibody targets in Autoimmune Polyendocrine Syndrome type 1. Autoimmunity 2012, 45, 485–494. [Google Scholar] [CrossRef] [PubMed]
- Fetissov, S.O.; Hallman, J.; Oreland, L.; Klinterberg, B.; Grenbäck, E.; Hulting, A.L.; Hökfelt, T. Autoantibodies against α-MSH, ACTH, and LHRH in anorexia and bulimia nervosa patients. Proc. Natl. Acad. Sci. USA 2002, 99, 17155–17160. [Google Scholar] [CrossRef] [PubMed]
- Wheatland, R. Chronic ACTH autoantibodies are significant pathological factor in the disruption of the hypothalamic-pituitary-adrenal axis in chronic fatigue syndrome, anorexia nervosa and major depression. Med. Hypotheses 2005, 65, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Hansen, B.A.; Hansen, G.N.; Hagen, C.; Brodersen, P. Autoantibodies against pituitary peptides in sera from patients with multiple sclerosis. J. Neuroimmunol. 1983, 5, 171–183. [Google Scholar] [CrossRef]
- Møller, A.; Hansen, B.L.; Hansen, G.N.; Hagen, C. Autoantibodies in sera from patients with multiple sclerosis directed against antigenic determinants in pituitary growth hormone-producing cells and in structures containing vasopressin/oxytocin. J. Neuroimmunol. 1985, 8, 177–184. [Google Scholar] [CrossRef]
- Boscolo, S.; Passoni, M.; Baldas, V.; Cancelli, I.; Hadjivassiliou, M.; Ventura, A.; Tongiorgi, E. Detection of anti-brain serum antibodies using a semi-quantitative immunohistological method. J. Immunol. Methods 2006, 309, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Cocco, C.; Meloni, A.; Boi, F.; Pinna, G.; Possenti, R.; Mariotti, S.; Ferri, G.-L. Median Eminence Dopaminergic Nerve Terminals: A Novel Target in Autoimmune Polyendocrine Syndrome? J. Clin. Endocrinol. Metab. 2005, 90, 4108–4111. [Google Scholar] [CrossRef] [PubMed]
- Betterle, C.; Zanchetta, R. The immunofluorescence techniques in the diagnosis of endocrine autoimmune diseases. Autoimmun. Highlights 2012, 3, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Masala, C.; Smurra, G.; di Prima, M.A.; Amendolea, M.A.; Celestino, D.; Salsano, F. Gastric parietal cell antibodies: Demonstration by immunofluorescence of their reactivity with the surface of the gastric parietal cells. Clin. Exp. Immunol. 1980, 41, 271–280. [Google Scholar] [PubMed]
- Betterle, C.; Zanette, F.; Zanchetta, R.; Pedini, B.; Trevisan, A.; Mantero, F.; Rigon, F. Complement-fixing adrenal autoantibodies as a marker for predicting onset of idiopathic Addison’s disease. Lancet 1983, 1, 1238–1241. [Google Scholar] [CrossRef]
Cell Types | Disease | No. | Incidence (%) | Dil. | Ref. |
---|---|---|---|---|---|
LH/FSH | Cryptorchidism | 46 | 56.5 | ud–1:2 | [14] |
Idiopathic hypopituitarism 1 | 44 | 96.4 | 1:8–128 | [14] | |
PRL | Autoimmune diseases 2 | 287 | 6.6 | ud–80 | [15] |
Puerperal alactogenesis | 1 | - | 1:10 | [18] | |
Graves’ disease | 22 | 36.36 * | 1:100 | [19] | |
Alzheimer’s | 27 | 96.30 | ud | [20] | |
Down’s syndrome 3 | 11 | 90.90 | ud | [20] | |
Down’s syndrome 3 and Alzheimer’s | 23 ** | 8.6 | ud | [21] | |
GH | Turner’s syndrome | 1 | - | 1:8 | [22] |
Idiopathic GHD (adults) | 12 | 33.3 | 1:2–64 | [17] | |
Graves’ disease | 22 | 36.3 * | 1:100 | [19] | |
APECED with GHD | 6 | 50 | 1:2 k–10 k | [23] | |
Multiple sclerosis | 22 | 50 | 1:400–3200 | [24] | |
ACTH | Cushing’s 4 | 51 | 25.5 | 1:2–8 | [25] |
Turner’s syndrome 4 | 1 | - | 1:10 | [26] | |
Multiple | Diabetes mellitus type 1 | 226 | 18.6 | ud-1:4 | [27] |
N.P | Diabetes mellitus type 1 | 81 | 29.6 | ud | [28] |
Diabetes mellitus type 1 | 111 | 3.6 | 1:10–90 | [29] | |
Diabetes mellitus type 1 | 100 | 7 | 1:200 | [30] | |
ACTH deficiency | 21 | 47.6 | ud | [28] | |
AITD | 961 | 11.4 | 1:10–90 | [31] | |
Non-AITD | 329 | 0.9 | 1:10–90 | [31] | |
Traumatic brain injury | 29 | 44.8 | 1:8–256 | [32] |
Disease | No. | Incidence (%) | Dilution | Ref. |
---|---|---|---|---|
Diabetes Insipidus (adult) | 62 | 43 | 1:1–32 | [38] |
Diabetes Insipidus (children) | 12 | 75 | 1:40 | [39] |
Langerhans cell histiocytosis | 6 | 66.6 | 1:40 | [39] |
Germinoma | 2 | 100 | 1:40 | [39] |
Autoimmune diseases * | 41 | 1.2 | ud/1:40 | [40] |
Pitressin treatment | 1 | - | 1:100 | [41] |
Schizophrenia | 30 | 13.3 | 1:10 | [42] |
Mood disorders | 20 | 52 | 1:10 | [42] |
Disease | No. | APAs (%) | AHAs (%) | Dilution | Ref. |
---|---|---|---|---|---|
Idiopathic hypopituitarism | 66 | 19.6 | 10 | 1:32–128 | [43] |
Traumatic brain injury | 61 | 22.9 | 21.3 | 1:8–256 | [44] |
Celiac children | 31 | 12.9 | 6.45 | 1:2–64 | [45] |
Sheehan’s syndrome | 20 | 35 | 40 | 1:32–128 | [46] |
APECED | 14 | 50 | 50 | 1:50–4 k | [47] |
(with GHD) | 5 | 40 | 60 | 1:50–4 k | [47] |
Eating disorders | 57 | 74 | 20 | 1:200–5 k | [48] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cocco, C.; Brancia, C.; Corda, G.; Ferri, G.-L. The Hypothalamic–Pituitary Axis and Autoantibody Related Disorders. Int. J. Mol. Sci. 2017, 18, 2322. https://doi.org/10.3390/ijms18112322
Cocco C, Brancia C, Corda G, Ferri G-L. The Hypothalamic–Pituitary Axis and Autoantibody Related Disorders. International Journal of Molecular Sciences. 2017; 18(11):2322. https://doi.org/10.3390/ijms18112322
Chicago/Turabian StyleCocco, Cristina, Carla Brancia, Giulia Corda, and Gian-Luca Ferri. 2017. "The Hypothalamic–Pituitary Axis and Autoantibody Related Disorders" International Journal of Molecular Sciences 18, no. 11: 2322. https://doi.org/10.3390/ijms18112322
APA StyleCocco, C., Brancia, C., Corda, G., & Ferri, G.-L. (2017). The Hypothalamic–Pituitary Axis and Autoantibody Related Disorders. International Journal of Molecular Sciences, 18(11), 2322. https://doi.org/10.3390/ijms18112322