Polyphenol-Rich Lentils and Their Health Promoting Effects
Abstract
:1. Introduction
2. Materials and Methods
3. Nutritional Compositions of Edible Lentils
4. Bioactive Compounds in Lentils
5. Polyphenols in Lentils
6. Health Promoting Effects of Lentils
6.1. Anti-Diabetic Activity of Lentils
6.2. Antioxidant Potential of Lentils
6.3. Anti-Obesity Activity of Lentils
6.4. Cardioprotective Effect of Lentils
6.5. Antimicrobial Activity of Lentils
6.6. Anticancer Activity of Lentils
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
ABTS | 2,2′-azino-bis(3-ethyl-benzothiazoline-6-sulphonic acid) |
AFP | α-fetoprotein |
AIP | atherogenic index of plasma |
ALP | alkaline phosphatase |
ALT | alanine transaminase |
AST | aspartate transaminase |
bw | body weight |
BP | blood pressure |
BUN | blood urea nitrogen |
CAT | catalase |
cDNA | complementary deoxyribonucleic acid |
COX-1, 2 | cyclooxygenase 1, 2 |
CVD | cardiovascular diseases |
CRR | cardiac risk ratio |
DNA | deoxyribonucleic acid |
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
ELISA | enzyme-linked immunosorbent assay |
FBS | fasting blood sugar |
FRAP | ferric reducing antioxidant power assay |
GR | glutathione reductase |
GSH | reduced glutathione |
GST | glutathione-s-transferase |
HbA1C | glycated hemoglobin |
Hb | hemoglobin |
HDL | high density lipoprotein |
HPLC | high performance liquid chromatography |
i.p. | intraperitoneal |
i.v. | intravenous |
IL | interleukin |
kg | kilogram |
LDH | lactate dehydrogenase |
LDL | low density lipoprotein |
LOX | lysyl oxidase |
LPO | lipid peroxidation |
MCH | mean corpuscular hemoglobin |
MCHC | mean corpuscular hemoglobin concentration |
MCP-1 | monocyte chemotactic protein 1 |
MCV | mean corpuscular value |
MTT | 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide |
OGTT | oral glucose tolerance test |
ORAC | oxygen radical absorbance capacity |
p.o. | per oral |
PGE (2)-PRTC | peroxyl radical-trapping capacity |
RBC | erythrocyte |
ROS | reactive oxygen species |
RP | reducing power |
RT-PCR | reverse transcriptase polymerase chain reaction |
SOD | super oxide dismutase |
STZ | streptozotocin |
TC | total cholesterol |
TEAC | trolox equivalent antioxidant capacity |
TG | triglycerides |
TIBC | total iron binding capacity |
TNF-α | tumor necrosis factor alpha |
VLDL | very low density lipoprotein |
WBC | leucocyte |
References
- Faris, M.A.E.; Takruri, H.R.; Issa, A.Y. Role of lentils (Lens culinaris L.) in human health and nutrition: A review. Mediterr. J. Nutr. Metab. 2013, 6, 3–16. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO). Traditional Food Plants; FAO: Rome, Italy, 1988; Available online: http://www.fao.org/docrep/W0078E/w0078e12.htm (accessed on 16 July 2017).
- Xu, B.; Chang, S.K. Phenolic substance characterization and chemical and cell-based antioxidant activities of 11 lentils grown in the Northern United States. J. Agric. Food Chem. 2010, 58, 1509–1517. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT. Food and Agricultural Organization of United Nations: Economic and Social Department: The Statistical Division. Available online: http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor (accessed on 19 July 2017).
- Lombardi-Boccia, G.; Ruggeri, S.; Aguzzi, A.; Cappelloni, M. Globulins enhance in vitro iron but not zinc dialysability: A study on six legume species. J. Trace Elem. Med. Biol. 2013, 17, 1–5. [Google Scholar] [CrossRef]
- Hoover, R.; Hughes, T.; Chung, H.; Liu, Q. Composition, molecular structure, properties, and modification of pulse starches: A review. Food Res. Int. 2010, 43, 399–413. [Google Scholar] [CrossRef]
- United States Department of Agriculture (USDA). Agricultural Research Service, National Nutrient Database for Standard Reference Release 28. Nutrient Database Laboratory Home Page. Available online: https://ndb.nal.usda.gov/ndb/search/list (accessed on 14 August 2016).
- Bednar, G.E.; Patil, A.R.; Murray, S.M.; Grieshop, C.M.; Merchen, N.R.; Fahey, G.C. Starch and fiber fractions in selected food and feed ingredients affect their small intestinal digestibility and fermentability and their large bowel fermentability in vitro in a canine model. J. Nutr. 2001, 131, 276–286. [Google Scholar] [PubMed]
- Dwivedi, S.; Sahrawat, K.; Puppala, N.; Ortiz, R. Plant prebiotics, and human health: Biotechnology to breed prebiotic-rich nutritious food crops. Electr. J. Biotechnol. 2014, 17, 238–245. [Google Scholar] [CrossRef]
- Fooks, L.J.; Fuller, R.; Gibson, G.R. Prebiotics, probiotics and human gut microbiology. Int. Dairy J. 1999, 9, 53–61. [Google Scholar] [CrossRef]
- Johnson, C.R.; Combs, G.F.; Thavarajah, P. Lentil (Lens culinaris L.): A prebiotic-rich whole food legume. Food Res. Int. 2013, 51, 107–113. [Google Scholar] [CrossRef]
- Padovani, R.M.; Lima, D.M.; Colugnati, F.A.; Rodriguez-Amaya, D.B. Comparison of proximate, mineral and vitamin composition of common Brazilian and US foods. J. Food Compos. Anal. 2007, 20, 733–738. [Google Scholar] [CrossRef]
- Soltan, S.S.A. The protective effect of soybean, sesame, lentils, pumpkin seeds and molasses on iron deficiency anemia in rats. World Appl. Sci. J. 2013, 23, 795–807. [Google Scholar]
- Ryan, E.; Galvin, K.; O’Connor, T.P.; Maguire, A.R.; O’Brien, N.M. Phytosterol, squalene, tocopherol content and fatty acid profile of selected seeds, grains, and legumes. Plant Foods Hum. Nutr. 2007, 62, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, C.; Frias, J.; Vidal-Valverde, C.; Hernandez, A. Correlations between some nitrogen fractions, lysine, histidine, tyrosine, and ornithine contents during the germination of peas, beans, and lentils. Food Chem. 2008, 108, 245–252. [Google Scholar] [CrossRef]
- Kalogeropoulos, N.; Chiou, A.; Ioannou, M.; Karathanos, V.T.; Hassapidou, M.; Andrikopoulos, N.K. Nutritional evaluation and bioactive microconstituents (phytosterols, tocopherols, polyphenols, triterpenic acids) in cooked dry legumes usually consumed in the Mediterranean countries. Food Chem. 2010, 121, 682–690. [Google Scholar] [CrossRef]
- De Almeida Costa, G.E.; da Silva Queiroz-Monici, K.; Reis, S.M.P.M.; de Oliveira, A.C. Chemical composition, dietary fibre and resistant starch contents of raw and cooked pea, common bean, chickpea and lentil legumes. Food Chem. 2006, 94, 327–330. [Google Scholar] [CrossRef]
- Guillamon, E.; Pedrosa, M.M.; Burbano, C.; Cuadrado, C.; de Cortes Sanchez, M.; Muzquiz, M. The trypsin inhibitors present in seed of different grain legume species and cultivar. Food Chem. 2008, 107, 68–74. [Google Scholar] [CrossRef]
- Freier, T.C.; Rudiger, H.E. Lectin-binding proteins from lentil seeds as mitogens for murine B lymphocytes. Phytochemistry 1990, 29, 1459–1461. [Google Scholar] [CrossRef]
- De Mejia, E.G.; Prisecaru, V.I. Lectins as bioactive plant proteins: A potential in cancer treatment. Crit. Rev. Food Sci. Nutr. 2005, 45, 425–445. [Google Scholar] [CrossRef] [PubMed]
- Finkina, E.I.; Shramova, E.I.; Tagaev, A.A.; Ovchinnikova, T.V. A novel defensin from the lentil Lens culinaris seeds. Biochem. Biophys. Res. Commun. 2008, 371, 860–865. [Google Scholar] [CrossRef] [PubMed]
- Demirbas, A. β-Glucan and mineral nutrient contents of cereals grown in Turkey. Food Chem. 2005, 90, 773–777. [Google Scholar] [CrossRef]
- Perera, A.; Meda, V.; Tyler, R. Resistant starch: A review of analytical protocols for determining resistant starch and of factors affecting the resistant starch content of foods. Food Res. Int. 2010, 43, 1959–1974. [Google Scholar] [CrossRef]
- Xu, B.; Yuan, S.; Chang, S. Comparative analyses of phenolic composition, antioxidant capacity, and color of cool season legumes and other selected food legumes. J. Food Sci. 2007, 72, S167–S177. [Google Scholar] [CrossRef] [PubMed]
- Scalbert, A.; Manach, C.; Morand, C.; Remesy, C.; Jimenez, L. Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. Nutr. 2005, 45, 287–306. [Google Scholar] [CrossRef] [PubMed]
- Thompson, L.U.; Boucher, B.A.; Liu, Z.; Cotterchio, M.; Kreiger, N. Phytoestrogen content of foods consumed in Canada, including isoflavones, lignans, and coumestan. Nutr. Cancer 2006, 54, 184–201. [Google Scholar] [CrossRef] [PubMed]
- Barahuie, F.; Dorniani, D.; Saifullah, B.; Gothai, S.; Hussein, M.Z.; Pandurangan, A.K.; Arulselvan, P.; Norhaizan, M.E. Sustained release of anticancer agent phytic acid from its chitosan-coated magnetic nanoparticles for drug-delivery system. Int. J. Nanomed. 2017, 12, 2361–2372. [Google Scholar] [CrossRef] [PubMed]
- Rao, C.V.; Newmark, H.L.; Reddy, B.S. Chemopreventive effect of squalene on colon cancer. Carcinogenesis 1998, 19, 287–290. [Google Scholar] [CrossRef] [PubMed]
- Elekofehinti, O.O. Saponins: Anti-diabetic principles from medicinal plants—A review. Pathophysiology 2015, 22, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Dueñas, M.; Sun, B.; Hernández, T.; Estrella, I.; Spranger, M.I. Proanthocyanidin composition in the seed coat of lentils (Lens culinaris L.). J. Agric. Food Chem. 2003, 51, 7999–8004. [Google Scholar] [CrossRef] [PubMed]
- Taylor, W.G.; Fields, P.G.; Sutherland, D.H. Fractionation of lentil seeds (Lens culinaris Medik.) for insecticidal and flavonol tetraglycoside components. J. Agric. Food Chem. 2007, 55, 5491–5498. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, Y.; Dueñas, M.; Estrella, I.; Hernández, T.; Benitez, V.; Esteban, R.M.; Martín-Cabrejas, M.A. Evaluation of phenolic profile and antioxidant properties of Pardina lentil as affected by industrial dehydration. J. Agric. Food Chem. 2010, 58, 10101–10108. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Chang, S.K.; Gu, Y.; Qian, S.Y. Antioxidant activity and phenolic compositions of lentil (Lens culinaris var. Morton) extract and its fractions. J. Agric. Food Chem. 2011, 59, 2268–2276. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Deng, Z.; Tang, Y.; Chen, P.X.; Liu, R.; Ramdath, D.D.; Liu, Q.; Hernandez, M.; Tsao, R. Effect of domestic cooking on carotenoids, tocopherols, fatty acids, phenolics, and antioxidant activities of lentils (Lens culinaris). J. Agric. Food Chem. 2014, 62, 12585–12594. [Google Scholar] [CrossRef] [PubMed]
- Żuchowski, J.; Pecio, Ł.; Stochmal, A. Novel flavonol glycosides from the aerial parts of lentil (Lens culinaris). Molecules 2014, 19, 18152–18178. [Google Scholar] [CrossRef] [PubMed]
- Mirali, M.; Ambrose, S.J.; Wood, S.A.; Vandenberg, A.; Purves, R.W. Development of a fast extraction method and optimization of liquid chromatography-mass spectrometry for the analysis of phenolic compounds in lentil seed coats. J. Chromatogr. B 2014, 969, 149–161. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Deng, Z.; Ramdath, D.D.; Tang, Y.; Chen, P.X.; Liu, R.; Liu, Q.; Tsao, R. Phenolic profiles of 20 Canadian lentil cultivars and their contribution to antioxidant activity and inhibitory effects on a-glucosidase and pancreatic lipase. Food Chem. 2015, 172, 862–872. [Google Scholar] [CrossRef] [PubMed]
- Świeca, M.; Baraniak, B.; Gawlik-Dziki, U. In vitro digestibility and starch content, predicted glycemic index and potential In Vitro anti-diabetic effect of lentil sprouts obtained by different germination techniques. Food Chem. 2013, 138, 1414–1420. [Google Scholar] [CrossRef] [PubMed]
- Aslani, Z.; Mirmiran, P.; Alipur, B.; Bahadoran, Z.; Farhangi, M.A. Lentil sprouts effect on serum lipids of overweight and obese patients with type 2 diabetes. Health Promot. Perspect. 2015, 5, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Wolever, T.M.; Katzman-Relle, L.; Jenkins, A.L.; Vuksan, V.; Josse, R.G.; Jenkins, D.J. Glycaemic index of 102 complex carbohydrate foods in patients with diabetes. Nutr. Res. 1994, 14, 651–669. [Google Scholar] [CrossRef]
- Shams, H.; Tahbaz, F.; Entezari, M.; Abadi, A. Effects of cooked lentils on glycemic control and blood lipids of patients with type 2 diabetes. ARYA Atheroscler. 2008, 4, 1–5. [Google Scholar]
- Al-Tibi, A.T.B.; Takruri, H.R.; Ahmad, M.N. Effect of dehulling and cooking of lentils (Lens culinaris, L.) on serum glucose and lipoprotein levels in streptozotocin-induced diabetic rats. Malays. J. Nutr. 2010, 16, 409–418. [Google Scholar] [PubMed]
- Flight, I.; Clifton, P. Cereal grains and legumes in the prevention of coronary heart disease and stroke: A review of the literature. Eur. J. Clin. Nutr. 2006, 60, 1145–1159. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.H. Whole grain phytochemicals and health. J. Cereal Sci. 2007, 46, 207–219. [Google Scholar] [CrossRef]
- Hodge, A.M.; English, D.R.; O’Dea, K.; Giles, G.G. Glycemic index and dietary fiber and the risk of type 2 diabetes. Diabetes Care 2004, 27, 2701–2706. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.-J.; Liu, Q.; Pauls, K.P.; Fan, M.Z.; Yada, R. In vitro starch digestibility, expected glycemic index and some physicochemical properties of starch and flour from common bean (Phaseolus vulgaris L.) varieties grown in Canada. Food Res. Int. 2008, 41, 869–875. [Google Scholar] [CrossRef]
- Peñas, E.; Limón, R.I.; Martínez-Villaluenga, C.; Restani, P.; Pihlanto, A.; Frias, J. Impact of Elicitation on Antioxidant and Potential Antihypertensive Properties of Lentil Sprouts. Plant Foods Hum. Nutr. 2015, 70, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Tawfeuk, H.Z.; Hassan, N.M.; Khalil, H.I.; Kerolles, S.Y. Anti-diabetic effects of dietary formulas prepared from some grains and vegetables on type 2 diabetic rats. J. Agroaliment. Process. Technol. 2014, 20, 69–79. [Google Scholar]
- Bolsinger, J.; Landstrom, M.; Pronczuk, A.; Auerbach, A.; Hayes, K.C. Low glycemic load diets protect against metabolic syndrome and type 2 diabetes mellitus in the male Nile rat. J. Nutr. Biochem. 2017, 42, 134–148. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.; Wolever, T.; Taylor, R.H.; Barker, H.; Fielden, H.; Baldwin, J.M.; Goff, D.V. Glycemic index of foods: A physiological basis for carbohydrate exchange. Am. J. Clin. Nutr. 1981, 34, 362–366. [Google Scholar] [PubMed]
- Duenas, M.; Hernandez, T.; Estrella, I. Assessment of in vitro antioxidant capacity of the seed coat and the cotyledon of legumes in relation to their phenolic contents. Food Chem. 2006, 98, 95–103. [Google Scholar] [CrossRef]
- Pellegrini, N.; Serafini, M.; Salvatore, S.; Del Rio, D.; Bianchi, M.; Brighenti, F. Total antioxidant capacity of spices, dried fruits, nuts, pulses, cereals and sweets consumed in Italy assessed by three different in vitro assays. Mol. Nutr. Food Res. 2006, 50, 1030–1038. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Chang, S.K. Effect of soaking, boiling, and steaming on total phenolic content and antioxidant activities of cool season food legumes. Food Chem. 2008, 110, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Fratianni, F.; Cardinale, F.; Cozzolino, A.; Granese, T.; Albanese, D.; Di Matteo, M.; Nazzaro, F. Polyphenol composition and antioxidant activity of different grass pea (Lathyrussativus), lentils (Lens culinaris), and chickpea (Cicer arietinum) ecotypes of the Campania region (Southern Italy). J. Funct. Foods 2014, 7, 551–557. [Google Scholar] [CrossRef]
- Kris-Etherton, P.M.; Hecker, K.D.; Bonanome, A.; Coval, S.M.; Binkoski, A.E.; Hilpert, K.F.; Etherton, T.D. Bioactive compounds in foods: Their role in the prevention of cardiovascular disease and cancer. Am. J. Med. 2002, 113, 71–88. [Google Scholar] [CrossRef]
- Mollard, R.; Zykus, A.; Luhovyy, B.; Nunez, M.; Wong, C.; Anderson, G. The acute effects of a pulse-containing meal on glycaemic responses and measures of satiety and satiation within and at a later meal. Br. J. Nutr. 2012, 108, 509–517. [Google Scholar] [CrossRef] [PubMed]
- McCrory, M.A.; Hamaker, B.R.; Lovejoy, J.C.; Eichelsdoerfer, P.E. Pulse consumption, satiety, and weight management. Adv. Nutr. Int. Rev. J. 2010, 1, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.J.; Han, L.K.; Zheng, Y.N.; Lee, J.H.; Sung, C.K. In vitro inhibitory effect of triterpenoidal saponins from Platycodi Radix on pancreatic lipase. Arch. Pharmacol. Res. 2005, 28, 180–185. [Google Scholar] [CrossRef]
- Balasubramaniam, V.; Mustar, S.; Khalid, N.M.; Rashed, A.A.; Noh, M.F.M.; Wilcox, M.D.; Pearson, J. Inhibitory activities of three Malaysian edible seaweeds on lipase and α-amylase. J. Appl. Phycol. 2013, 25, 1405–1412. [Google Scholar] [CrossRef]
- Lopez, A.; El-Naggar, T.; Duenas, T.; Ortega, T.; Estrella, I.; Hernandez, T.; Gomez-Serranillos, M.P.; Palomino, O.M.; Carretero, M.E. Influence of processing in the phenolic composition and health-promoting properties of Lentils (Lens culinaris L.). J. Food Process. Preserv. 2016. [Google Scholar] [CrossRef]
- Zhang, B.; Deng, Z.; Tang, Y.; Chen, P.X.; Liu, R.; Ramdath, D.D.; Liu, Q.; Hernandez, M.; Tsao, R. Bioaccessibility, in vitro antioxidant and anti-inflammatory activities of phenolics in cooked green lentil (Lens culinaris). J. Funct. Foods 2017, 32, 248–255. [Google Scholar] [CrossRef]
- Świeca, M.; Gawlik-Dziki, U. Effects of sprouting and postharvest storage under cool temperature conditions on starch content and antioxidant capacity of green pea, lentil and young mung bean sprouts. Food Chem. 2015, 185, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Talukdar, D. In Vitro antioxidant potential and type II diabetes-related enzyme inhibition properties of traditionally processed legume-based food and medicinal recipes in Indian Himalayas. J. Appl. Pharm. Sci. 2013, 3, 26–32. [Google Scholar]
- Fouad, A.A.; Rehab, F.M. Effect of germination time on proximate analysis, bioactive compounds and antioxidant activity of lentil (Lens culinaris Medik.) sprouts. Acta Sci. Pol. Technol. Aliment. 2015, 14, 233–246. [Google Scholar] [CrossRef] [PubMed]
- Boudjou, S.; Oomah, B.D.; Zaidi, F.; Hosseinian, F. Phenolics content and antioxidant and anti-inflammatory activities of legume fractions. Food Chem. 2013, 138, 1543–1550. [Google Scholar] [CrossRef] [PubMed]
- Elaloui, M.; Ghazghazi, H.; Ennajah, A.; Manaa, S.; Guezmir, W.; Karray, N.B.; Laamouri, A. Phenolic profile, antioxidant capacity of five Ziziphus spina-christi (L.) Willd provenances and their allelopathic effects on Trigonella foenum-graecum L. and Lens culinaris L. seeds. Nat. Prod. Res. 2017, 31, 1209–1213. [Google Scholar] [CrossRef] [PubMed]
- Talukdar, D.; Talukdar, T. Coordinated response of sulfate transport, cysteine biosynthesis, and glutathione-mediated antioxidant defense in lentil (Lens culinaris Medik.) genotypes exposed to arsenic. Protoplasma 2014, 251, 839–855. [Google Scholar] [CrossRef] [PubMed]
- Gharachorloo, M.; Tarzi, B.G.; Baharinia, M.; Hemaci, A.H. Antioxidant activity and phenolic content of germinated lentil (Lens culinaris). J. Med. Plants Res. 2012, 6, 4562–4566. [Google Scholar]
- Świeca, M.; Baraniak, B. Influence of elicitation with H2O2 on phenolics content, antioxidant potential and nutritional quality of Lens culinaris sprouts. J. Sci. Food Agric. 2014, 94, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Jameel, M.; Ali, A.; Ali, M. Isolation of antioxidant phytoconstituents from the seeds of Lens culinaris Medik. Food Chem. 2015, 175, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Bubelov, Z.; Sumczynski, D.; Salek, R.N. Effect of cooking and germination on antioxidant activity, total polyphenols and flavonoids, fiber content, and digestibility of lentils (Lens culinaris L.). J. Food Process. Preserv. 2017, e13388. [Google Scholar] [CrossRef]
- Fernandez-Orozco, R.; Zieliński, H.; Piskuła, M.K. Contribution of low-molecular-weight antioxidants to the antioxidant capacity of raw and processed lentil seeds. Nahrung 2003, 47, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Landi, N.; Pacifico, S.; Piccolella, S.; Di Giuseppe, A.M.; Mezzacapo, M.C.; Ragucci, S.; Iannuzzi, F.; Zarrelli, A.; Di Maro, A. Valle Agricola lentil, an unknown lentil (Lens culinaris Medik.) seed from Southern Italy as a novel antioxidant and prebiotic source. Food Funct. 2015, 6, 3155–3164. [Google Scholar] [CrossRef] [PubMed]
- Zia-Ul-Haq, M.; Landa, P.; Kutil, Z.; Qayum, M.; Ahmad, S. Evaluation of anti-inflammatory activity of selected legumes from Pakistan: In vitro inhibition of cyclooxygenase-2. Pak. J. Pharm. Sci. 2013, 26, 185–187. [Google Scholar] [PubMed]
- Busambwa, K.; Sunkara, R.; Diby, N.; Offei-Okyne, R.; Boateng, R.; Verghese, M. Cytotoxic and apoptotic effects of sprouted and non-sprouted lentil, green and yellow split-peas. Int. J. Cancer Res. 2016, 12, 51–60. [Google Scholar]
- Pinto, X.; Vilaseca, M.A.; Balcells, S.; Artuch, R.; Corbella, E.; Meco, J.F.; Grinberg, D. A folate-rich diet is as effective as folic acid from supplements in decreasing plasma homocysteine concentrations. Int. J. Med. Sci. 2005, 2, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Adikay, S.; Saisruthi, K. Phytoremedial effect of Lens culinaris against doxorubicin-induced nephrotoxicity in male Wistar rats. Int. J. Green Pharm. 2016, 10, 172–177. [Google Scholar]
- Mahmoud, N.E. The Semi-Modified Diets as Antioxidants, Hypolipidemic and Hypocholesterolemic Agents; Food and Agriculture Organization of the United Nations: Rome, Italy, 2011; Available online: http://agris.fao.org/aos/records/EG2012000695 (accessed on 14 July 2017).
- Ahmad, M.N. The effect of lentil on cholesterol-induced changes of serum lipid cardiovascular indexes in rats. Prog. Nutr. 2017, 19, 48–56. [Google Scholar]
- Boualga, A.; Prost, J.; Taleb-Senouci, D.; Krouf, D.; Kharoubi, O.; Lamri-Senhadji, M.; Belleville, J.; Bouchenak, M. Purified chickpea or lentil proteins impair VLDL metabolism and lipoprotein lipase activity in epididymal fat, but not in muscle, compared to casein, in growing rats. Eur. J. Nutr. 2009, 48, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Vohra, K.; Gupta, V.K.; Dureja, H.; Garg, V. Antihyperlipidemic activity of Lens culinaris Medikus seeds in Triton WR-1339 induced hyperlipidemic rats. J. Pharmacogn. Nat. Prod. 2016, 2, 117. [Google Scholar] [CrossRef]
- Lukito, W. Candidate foods in the Asia-Pacific region for cardiovascular protection: Nuts, soy, lentils, and tempe. Asia Pac. J. Clin. Nutr. 2001, 10, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Duane, W. Effects of legume consumption on serum cholesterol, biliary lipids, and sterol metabolism in humans. J. Lipid Res. 1997, 38, 1120–1128. [Google Scholar] [PubMed]
- Bazzano, L.A.; Thompson, A.M.; Tees, M.T.; Nguyen, C.H.; Winham, D.M. Non-soy legume consumption lowers cholesterol levels: A meta-analysis of randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.; Wong, G.S.; Patten, R.; Bird, J.; Hall, M.; Buckley, G.C.; Little, J.A. Leguminous seeds in the dietary management of hyperlipidemia. Am. J. Clin. Nutr. 1983, 38, 567–573. [Google Scholar] [PubMed]
- Boye, J.I.; Roufik, S.; Pesta, N.; Barbana, C. Angiotensin I-converting enzyme inhibitory properties and SDS-PAGE of red lentil protein hydrolysates. LWT-Food Sci. Technol. 2010, 43, 987–991. [Google Scholar] [CrossRef]
- Hanson, M.G.; Zahradka, P.; Taylor, C.G. Lentil-based diets attenuate hypertension and large-artery remodelling in spontaneously hypertensive rats. Br. J. Nutr. 2014, 111, 690–698. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Mora, P.; Penas, E.; Frias, J.; Martinez-Villaluenga, C. Savinase, the most suitable enzyme for releasing peptides from lentil (Lens culinaris var. Castellana) protein concentrates with multifunctional properties. J. Agric. Food Chem. 2014, 62, 4166–4174. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, B.S.; Brooks, S.A.; Leathem, A.J.; Schumacher, U. Do HPA and PHA-L have the same binding pattern in metastasizing human breast and colon cancers? Cancer Lett. 1998, 123, 113–119. [Google Scholar] [CrossRef]
- Kulshrestha, S.; Chaturvedi, S.; Jangir, R.; Agrawal, K. In vitro Evaluation of antibacterial activity of some plant leaf extracts against Xanthomonas axonopodis pv. phaseoli isolated from seeds of lentil (Lens culinaris Medik.). Int. Res. J. Biol. Sci. 2015, 4, 59–64. [Google Scholar]
- Finkina, E.I.; Balandin, S.V.; Serebryakova, M.V.; Potapenko, N.A.; Tagaev, A.A.; Ovchinnikova, T.V. Purification and primary structure of novel lipid transfer proteins from germinated lentil (Lens culinaris) seeds. Biochemistry 2007, 72, 430–438. [Google Scholar] [CrossRef] [PubMed]
- Nair, S.S.; Madembil, N.C.; Nair, P.; Raman, S.; Veerabadrappa, S.B. Comparative analysis of the antibacterial activity of some phytolectins. Int. Curr. Pharm. J. 2013, 2, 18–22. [Google Scholar] [CrossRef]
- Khan, D.A.; Hassan, F.; Ullah, H.; Karim, S.; Baseer, A.; Abid, M.A.; Ubaidi, M.; Khan, S.A.; Murtaza, G. Antibacterial activity of Phyllanthusemblica, Coriandrum sativum, Culinaris medic, Lawsonia alba and Cucumis sativus. Acta Pol. Pharm. 2013, 70, 855–859. [Google Scholar] [PubMed]
- Wang, H.X.; Ng, T.B. An antifungal peptide from red lentil seeds. Peptides 2007, 28, 547–552. [Google Scholar] [CrossRef] [PubMed]
- Rönnblom, L.; Funa, K.; Ersson, B.; Alm, G.V. Lectins as inducers of interferon-γ production in human lymphocytes: Lentil lectin is highly efficient. Scand. J. Immunol. 1982, 16, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.L.; Sedmak, J.J.; Jameson, P.; Lin, Y.G.; Grossberg, S.E. Markedly enhanced production of γ interferon in murine T lymphocytes treated with lentil lectin and the diterpene ester, mezerein. J. Interferon Res. 1984, 4, 315–327. [Google Scholar] [CrossRef] [PubMed]
- Caccialupi, P.; Ceci, L.R.; Siciliano, R.A.; Pignone, D.; Clemente, A.; Sonnante, G. Bowman-Birk inhibitors in lentil: Heterologous expression, functional characterization and antiproliferative properties in human colon cancer cells. Food Chem. 2010, 120, 1058–1066. [Google Scholar] [CrossRef]
- Adebamowo, C.A.; Cho, E.; Sampson, L.; Katan, M.B.; Spiegelman, D.; Willett, W.C.; Holmes, M.D. Dietary flavonols and flavonol-rich foods intake and the risk of breast cancer. Int. J. Cancer 2005, 114, 628–633. [Google Scholar] [CrossRef] [PubMed]
- Perabo, F.G.; Von Löw, E.C.; Ellinger, J.; von Rücker, A.; Müller, S.C. Soy isoflavone genistein in prevention and treatment of prostate cancer. Prostate Cancer Prostatic Dis. 2008, 11, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Spanou, C.; Stagos, D.; Tousias, L.; Angelis, A.; Aligiannis, N.; Skaltsounis, A.L.; Kouretas, D. Assessment of antioxidant activity of extracts from unique greek varieties of Leguminosae plants using In Vitro assays. Anticancer Res. 2007, 27, 3403–3410. [Google Scholar] [PubMed]
- Faris, M.A.; Takruri, H.R.; Shomaf, M.S.; Bustanji, Y.K. Chemopreventive effect of raw and cooked lentils (Lens culinaris L) and soybeans (Glycine max) against azoxymethane-induced aberrant crypt foci. Nutr. Res. 2009, 29, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Scarafoni, A.; Magni, C.; Duranti, M. Molecular nutraceutics as a mean to investigate the positive effects of legume seed proteins on human health. Trends Food Sci. Technol. 2007, 18, 454–463. [Google Scholar] [CrossRef]
- Shomaf, M.; Takruri, H.; Faris, M.A.I.E. Lentils (Lens culinaris, L.) attenuatecolonic lesions and neoplasms in Fischer 344 rats. Jordan Med. J. 2011, 45, 231–239. [Google Scholar]
- Busambwa, K.; Miller-Cebert, R.; Aboagye, L.; Dalrymple, L.; Boateng, J.; Shackelford, L.; Verghese, M. Inhibitory effect of lentils, green split and yellow peas (sprouted and non-sprouted) on azoxymethane-induced aberrant crypt foci in Fisher 344 male rats. Int. J. Cancer Res. 2014, 10, 27–36. [Google Scholar] [CrossRef]
- Rodríguez-Juan, C.; Pérez-Blas, M.; Suárez-García, E.; López-Suárez, J.C.; Múzquiz, M.; Cuadrado, C.; Martín-Villa, J.M. Lens culinaris, Phaseolus vulgaris and Vicia faba lectins specifically trigger IL-8 production by the human colon carcinoma cell line Caco-2. Cytokine 2000, 12, 1284–1287. [Google Scholar] [CrossRef] [PubMed]
- Chan, Y.S.; Yu, H.; Xia, L.; Ng, T.B. Lectin from green speckled lentil seeds (Lens culinaris) triggered apoptosis in nasopharyngeal carcinoma cell lines. Chin. Med. 2015, 10, 25. [Google Scholar] [CrossRef] [PubMed]
- Bruce, W.R.; Giacca, A.; Medline, A. Possible mechanisms relating diet and risk of colon cancer. Cancer Epidemiol. Biomark. Prev. 2000, 9, 1271–1279. [Google Scholar]
- Mills, P.K.; Beeson, W.L.; Phillips, R.L.; Fraser, G.E. Cohort study of diet, lifestyle, and prostate cancer in Adventist men. Cancer 1989, 64, 598–604. [Google Scholar] [CrossRef]
- Jain, M.G.; Hislop, G.T.; Howe, G.R.; Ghadirian, P. Plant foods, antioxidants, and prostate cancer risk: Findings from case-control studies in Canada. Nutr. Cancer. 1999, 34, 173–184. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Lee, I.M.; Zhang, S.M.; Blumberg, J.B.; Buring, J.E.; Sesso, H.D. Dietary intake of selected flavonols, flavones, and flavonoid-rich foods and risk of cancer in middle-aged and older women. Am. J. Clin. Nutr. 2009, 89, 905–912. [Google Scholar] [CrossRef] [PubMed]
- Desilets, D.J.; Davis, K.E.; Nair, P.P.; Salata, K.F.; Maydonovitch, C.L.; Howard, R.S.; Kikendall, J.W.; Wong, R.K. Lectin binding to human colonocytes is predictive of colonic neoplasia. Am. J. Gastroenterol. 1999, 94, 744–750. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, K.; Nakamura, K.; Kobatake, S.; Satomura, S.; Maruyama, M.; Kameko, F.; Tajiri, J.; Kato, R. The clinical utility of Lens culinaris agglutinin-reactive thyroglobulin ratio in serum for distinguishing benign from malignant conditions of the thyroid. Clin. Chim. Acta 2007, 379, 101–104. [Google Scholar] [CrossRef] [PubMed]
- Kanai, T.; Amakawa, M.; Kato, R.; Shimizu, K.; Nakamura, K.; Ito, K.; Hama, Y.; Fujimori, M.; Amano, J. Evaluation of a new method for the diagnosis of alterations of Lens culinaris agglutinin binding of thyroglobulin molecules in thyroid carcinoma. Clin. Chem. Lab. Med. 2009, 47, 1285–1290. [Google Scholar] [CrossRef] [PubMed]
Nutrients | Unit | Raw | Sprouted | Cooked |
---|---|---|---|---|
Water | g | 8.26–9.65 | 51.85–67.34 | 69.64–137.89 |
Energy | kcal | 343–356 | 82–106 | 116–226 |
Protein | g | 24.44–25.71 | 6.9–8.96 | 9.02–17.86 |
Total lipid (fat) | g | 0.92–1.06 | 0.42–0.55 | 0.38–0.75 |
Carbohydrate | g | 60–64.44 | 17.05–22.14 | 20.13–38.69 |
Total dietary fiber | g | 10.7–31.4 | - | 7.9–15.6 |
Total sugars | g | 2.03–2.86 | - | 1.80–3.56 |
Minerals | ||||
Calcium | mg | 35–57 | 19–25 | 19–38 |
Iron | mg | 6.51–7.71 | 2.47–3.21 | 3.33–6.59 |
Magnesium | mg | 47–69 | 28–37 | 36–71 |
Phosphorus | mg | 281–335 | 133–173 | 180–356 |
Potassium | mg | 677–943 | 248–322 | 369–731 |
Sodium | mg | 3–6 | 8–11 | 123–471 |
Zinc | mg | 3.27–5.89 | 1.16–1.51 | 1.27–2.51 |
Vitamins | ||||
Vitamin C | mg | 3.4–4.5 | 12.7–16.5 | 1.5–3.0 |
Thiamin | mg | 0.756–0.873 | 0.176–0.228 | 0.169–0.335 |
Riboflavin | mg | 0.189–0.211 | 0.099–0.128 | 0.073–0.0145 |
Niacin | mg | 2.605–3.459 | 0.869–1.128 | 1.060–2.099 |
Vitamin B6 | mg | 0.540–0.698 | 0.146–0.190 | 0.178–0.352 |
Folate | µg | 479–555 | 77–100 | 181–358 |
Vitamin B12 | µg | 0.00 | 0.00 | 0.00 |
Vitamin A, RAE | µg | 2.0–2.5 | 1.8–2.0 | 0 |
Vitamin A, IU | IU | 32–39 | 35–45 | 8–16 |
Vitamin E | mg | 0.49–0.55 | 0 | 0.11–0.22 |
Vitamin K | µg | 4.2–5.0 | 0 | 1.7–3.4 |
Lipids | ||||
Total saturated fatty acids | g | 0.154–0.198 | 0.044–0.057 | 0.053–0.105 |
Total monounsaturated fatty acids | g | 0.0179–0.193 | 0.08–0.104 | 0.064–0.127 |
Total polyunsaturated fatty acids | g | 0.469–0.526 | 0.169–0.219 | 0.175–0.346 |
Bioactive Functional Groups | Individual Components | Quantity in 100 g of Lentils | Biological Functions | Reference |
---|---|---|---|---|
Phytosterols | β-sitosterol | 15.0–24.0 mg | Regulate the membrane fluid | [14,16] |
campesterol | 15.0 mg | |||
stigmasterol | 20.0 mg | |||
Active Proteins | ||||
Trypsin/protease inhibitors | Bowman–Birk trypsin inhibitors | 3–8 trypsin inhibitor unit (TIU)/mg | Anti-nutritional components; decrease the digestibility of dietary proteins; inhibit the cell proliferation in cancer | [17,18] |
Lectins | Lectins or hemagglutinins | 12.0 mg | Ability to agglutinate red blood cells RBC and strong stimulators of murine B lymphocyte proliferation | [19,20] |
Defensins | Defensins | 8.0 mg | Participate in the development of innate immunity | [21] |
Dietary Fibers | Fibers | Insoluble fibers (93–99.7 mg/g) and soluble fibers (<7 mg/g) | Potential effect of hypocholesterolemic, anti-cancer, anti-tumor, antibacterial and hypoglycemic effects | [7,22] |
Resistant starches | 25.4 g | Significant contributor to gastrointestinal health and gut microbiota | [23] | |
Polyphenols Flavonoids | Flavonols (e.g., quercetin and kaempferol) | 0.03 to 10.85 and 0.24 to 13.20 mg | Antioxidant potential | [3,24] |
Flavones, flavanones | Total phenolic content: 26 mg gallic acid equivalents (GAE/100 g fresh wt; total flavonoid content: 21 mg catechin equivalents/100 g, and the condensed tannin content of 870 mg catechin equivalents/100 g | Antioxidant activity and potential effect on cardiovascular disease (CVD), diabetes, osteoporosis and neurodegenerative diseases | [24,25] | |
Proanthocyanidins or condensed tannins (e.g., prodelphinidins and procyanidins) | ||||
Flavan-3-ols or flavanols (e.g., catechin and gallocatechin) | 759 mg (GAE)/100 g; glycosides of flavanones: 33.1–186.0 µg; glycosides of flavonols: 9.6–241 µg; dimers procyanidins: 619–1122 µg; trimer procyanidins: 441–498 µg; tetramer procyanidins: 18.5–59.5 µg; galloylated procyanidins 69.3–123 µg | Antioxidant activity | [3,24] | |
Anthocyanidins (e.g., delphinidin and cyanidin) | ||||
Polyphenols Non-flavonoids | Hydroxybenzoic acids | Hydroxybenzoic acids: 4.5–28.4 µg | Antioxidant activity and potential effect on diabetes, osteoporosis CVD and neurodegenerative diseases | [24,25] |
Hydroxycinnamic acids (e.g., p-coumaric acid, ferulic acid and sinapic acid) | Prodelphinidins 369–725 µg; condensed tannins: 870 mg catechins equivalent | Antioxidant activity | [3,24] | |
Stilbenoids, trans-resveratrol-3-O-glucoside | Glycosides of trans-resveratrol: 5.5–9.3 µg; | Antioxidant activity and potential effect on diabetes and CVD | [24,25] | |
Phytoestrogens: isoflavones | Formononetin, daidzein, genistein, glycitein, matairesinol, biochanin A, coumestrol, lariciresinol, pinoresinol, secoisolariciresinol, coumestrol | Total isoflavones (9.5 μg), total lignans (26.6 μg) and total phytoestrogens (36.5 μg) | Antioxidant potential | [26] |
Phytate | Phytic acid | 620 mg | Inhibit the proliferation of colorectal cancer | [27] |
Triterpenoids | Squalene | 0.7 mg | Chemopreventive potential against colorectal cancer | [28] |
Saponins | Saponins | 25 mg | Hypoglycemic and antidiabetic potential | [29] |
Polyphenol | Classes | Sub-Classes | Compound Name | Structure |
---|---|---|---|---|
Flavonoids | Flavonoids | Flavanols | (−)-Epigallocatechin | |
(+)-Catechin-3-O-glucose | ||||
Catechin | ||||
Catechin-7-O-glucoside | ||||
Catechin gallate | ||||
Epicatechin | ||||
Epicatechin gallate | ||||
Flavonols | Quercetin-3-O-glucoside | |||
Quercetin-3-O-galactoside | ||||
Quercetin-3-O-xyloside | ||||
Kaempferol-3-O-rutinoside 7-O-rhamnoside | ||||
Kaempferol-4′-O-glucoside | ||||
Kaempferol-5-O-glucoside | ||||
Kaempferol-3-O-glucoside | ||||
Kaempferol-3-O-rutinoside | ||||
Myricetin-3-O-rhamnoside | ||||
4″″-Acetylsagittatin A | ||||
Proanthocyanidins | Procyanidin | |||
Prodelphinidin | ||||
Flavanones | Eriodictyol | |||
Eriodictyol-7-O-rutinoside | ||||
Naringenin | ||||
Flavone | Luteolin | |||
Luteolin-4′-O-glucoside | ||||
Luteolin-3′,7-diglucoside | ||||
Luteolin-7-O-glucoside | ||||
5,7-dimethoxyflavone | ||||
Anthocyanins | Malvidin-3-O-galactoside | |||
Non-flavonoids | Phenolic acids | Hydroxybenzoic acids | Syringic acid | |
Vanillic acid 4-|A-D-glucoside | ||||
2,3-Dihydroxy benzoic acid | ||||
p-hydroxy benzoic acid | ||||
Gallic acid | ||||
Hydroxycinnamic acid | 3-hydroxy cinnamic acid | |||
p-Coumaroyl malic acid | ||||
Sinapic acid | ||||
Other polyphenols | Hydroxycoumarin | 4-Hydroxy-6-methyl coumarin |
Polyphenol-Rich Lentils | Model | Dose and Route of Administration | Negative Control | Investigation | Results | Reference |
---|---|---|---|---|---|---|
Total phenolics and flavonoids | In vitro | 50–500 μg/mL | - | Assay of antioxidant activities DPPH, FRAP, ORAC and inhibitory properties against α-glucosidase and pancreatic lipase | Antidiabetic, hypotensive and antioxidant activity | [47] |
Total phenolics | In vitro | 100.9 mg/g f.m. | 300 mM NaCl | Assay of α-amylase inhibitor activity and expected glycemic index values | Antidiabetic potential | [38] |
Flavonoids | Male albino rats | 15 g/kg/p.o. of lentil food formulation | Alloxan (150 mg/kg bw | Assay of glucose, urea, serum total protein, total TG and TC | Antidiabetic and hypolipidemic potential | [48] |
Total phenolics and flavonoids | Male Nile rats | 720 g/kg/p.o. of lentil food formulation | STZ (35 mg/kg i.p.) | Assay of glycemic index, glycemic load and cumulative load, blood glucose (fasting, random and OGTT) and plasma lipid parameters (plasma TC and TG) plus necropsy findings (liver and kidney pathology plus adipose reserves) | Antidiabetic and hypolipidemic potential | [49] |
Flavonol glycosides and free flavanols | Male Sprague-Dawley rats | 57% raw whole lentil; 52% cooked whole lentil; 51% raw dehulled lentil; 47% cooked dehulled lentil/p.o. | STZ (35 mg/kg i.p.) | Assay of serum glucose and serum lipid levels | Antidiabetic and hypolipidemic potential | [41,42] |
Total phenols | Human with diabetes | 50 g cooked lentil/p.o. | - | Assay of FBS, TC and glycemic control | Antidiabetic and cardioprotective activity | [41] |
Total phenols | Human with diabetes | 1 cup cooked lentil/day/p.o. | - | Assay of body weight, HbA1C, TC, BP, heart rate, glycemic control | Antidiabetic and cardioprotective activity | [50] |
Total phenolics and flavonoids | Obese patients with type 2 diabetes | 60 g lentil sprouts/p.o. daily during 8 weeks | - | Assay of weight, height and waist circumference, lipid profile, | Antidiabetic and hypolipidemic potential | [39] |
Polyphenol-Rich Lentils | Model | Dose and Route of Administration | Negative Control | Investigation | Results | Reference |
---|---|---|---|---|---|---|
Procyanidin and prodelphinidin dimers and trimers; gallate procyanidins; kaempferol derivatives, quercetin glucoside acetate; luteolin derivatives and p-coumaric acid | Human astrocytoma cell line (U-373), renal adenocarcinoma (TK-10), breast adenocarcinoma (MCF-7), melanoma (UACC-62), colon carcinoma (HT29) and hepatocellular carcinoma (HepG2) | 0.06–0.12 µg/µL | H2O2, FeSO4 and FeSO4 + H2O2 | Assay of antioxidant activity by ORAC, DPPH, MTT and intracellular ROS | Antioxidant neuroprotective and anticancer activities | [60] |
Flavanols and phenolic acids | Human colonic carcinoma cell line (Caco-2) | 20–100 μg/mL | - | Assay of proinflammatory cytokines COX-2, IL-1β and IL-6 in TNF-α | Anti-inflammatory activity | [61] |
Total phenolics and flavonoids | In vitro | 200 mg sprout extracts | - | Assay of radical activity and expected glycemic index values | Antioxidant and antidiabetic activity | [62] |
Flavonoids | In vitro | 100 μL, 1 mg/mL | - | Assay of TEAC, DPPH, superoxide radical, hydrogen peroxide, FRAP and inhibition of β-carotene degradation activity; diabetes was assayed on α-amylase and α-glucosidase activity | Antioxidant and antidiabetic potential | [63,64] |
Total phenolics and flavonoids | In vitro | 55–119 μg/mL | - | Assay of DPPH or ORAC, anti-inflammatory activities on LOX, COX-1, COX-2 pathways | Antioxidant and anti-inflammatory activities | [65] |
Total phenols, flavonoids and tannins | In vitro | - | - | Assay of DPPH | Antioxidant potential | [66] |
Total phenolics and flavonoids | In vitro | 25 and 40 μM | Arsenic (10, 25, and 40 μM | Assay of transcriptional upregulation of serine acetyltransferase, O-acetyl serine (thiol)-lyase, γ-glutamylcysteine synthetase and phytochelatin synthase genes; assay of SOD, ascorbate peroxidase, dehydroascorbate reductase, GR and GST | Antioxidant potential | [67] |
Hydroxybenzoic compounds, protocatechuic, vanillic acid, aldehyde p-hydroxybenzoic, trans-ferulic acid and trans-p-coumaric acid | In vitro | 0.02 and 0.1% of lentil seed extracts | - | Assay of hydroxyl radical scavenging activity | Antioxidant potential | [68] |
Kaempferol glucoside | In vitro | 0.00625–5 mg/mL | - | Assay of DPPH, TEAC, FRAP and ORAC | Antioxidant potential | [33,69] |
Total phenolics and flavonoids | In vitro | 0.00625–5 mg/mL | - | Assay of DPPH | Antioxidant potential | [70,71] |
Flavonol glycosides and free flavanols | In vitro | 100 mg | - | Assay of PRTC, TEAC, ABTS, total phenolics, tocopherols (α-T, β-T, γ-T, δ-T), GSH and L-ascorbic acid | Antioxidant potential | [72,73] |
Total phenolics and flavonoids | In vitro | 20–100 μg/mL | - | Assay of COX-2 producing PGE (2) inhibitory assay | Anti-inflammatory activity | [74] |
Polyphenol-Rich Lentils | Model | Dose and Route of Administration | Negative Control | Investigation | Results | Reference |
---|---|---|---|---|---|---|
Flavonoids | Human colonic carcinoma cell line (Caco-2) | 1.5, 3, 4.5, 6, 7.5 and 10 mg/mL | - | Assay of LDH, caspase-3, total DNA fragmentation, morphological changes related to apoptosis | Chemo-preventive agents | [75] |
Free flavanols | Human with hyperhomocysteinemia and coronary artery disease | 500 μg folate and 10 g lentils and other pulses and foods/p.o. | - | Assay of plasma total homocysteine | Cardioprotective activity | [76] |
Phenolic acids | In vitro | 20–100 μg/mL | - | Assay of platelet aggregation activity | Cardioprotective activity | [74] |
Total phenolics | Male Wistar rats | 200 and 400 mg/kg/p.o. | Doxorubicin (15 mg/kg bw/i.p. | Assay of BUN, serum creatinine, serum total protein, urinary total protein, and urinary creatinine, SOD, CAT, LPO and GSH in kidney | Nephroprotective potential | [77] |
Phenolic compounds | Male albino rats | 100, 200, 400 mg/kg/p.o. | - | Assay of blood picture (RBC, WBC and Hb), lipid fraction (total lipid, TC, TG, HDL, LDL and VLDL), liver function (AST, ALT and ALP, bilirubin) and kidney function (uric acid, urea and creatinine), total protein and its fractions (albumin and globulin), lipid peroxidation and antioxidative enzyme activity (SOD, CAT) | Hypolipidemic and antihypercholesterolemic activity | [78] |
Total phenolics and flavonoids | Male Sprague-Dawley rats | Ten isocaloric and isonitrogenous diets were prepared; 5 of them were cholesterol-free and differed in the content of lentil powder (%): lentil-free (0), raw dehulled (60.5), raw whole (66.6), cooked dehulled (62.5) and cooked whole (65.6); while in the other 5, cholesterol (1%) | High cholesterol feed | Assay of TC, LDL-C, HDL-C, TG, AIP, CRR and atherogenic coefficient | Cardioprotective activity | [79] |
Total phenolics | Male Wistar rats | 200 g/kg/p.o. for 28 days | - | Assay of hepatic lipase and lipoprotein lipase in epididymal fat, gastrocnemius and heart | Cardioprotective and hypolipoproteinemia activity | [80] |
Flavonoids | Sprague-Dawley female rats | 100, 200, 400 mg/kg/p.o. | Triton WR-1339 (250 mg/kg/i.v.) | Assay of TC, TG, HDL, LDL and VLDL | Antihyperlipidemic activity | [81] |
Total phenolics | Human | - | - | Cross-cultural and intervention studies | Cardioprotective activity | [82] |
Phenolic acids | Human | 13% p.o. | - | Assay of LDL | Hypolipidemic activity | [83] |
Total phenolics | Human | 120–130 g cooked lentil/day for 30–56 days/p.o. | - | Assay of TC, LDL, TG | Hypolipidemic activity | [84] |
Phenolic acids | Human with hyperlipidemic patients | 140 g/oral for 4 months’ time | - | Assay of serum TC and TG | Hypolipidemic activity | [85] |
Polyphenol-Rich Lentils | Model | Dose and Route of Administration | Negative Control | Investigation | Results | Reference |
---|---|---|---|---|---|---|
Flavonoids and lectins | Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Pseudomonas aeruginosa | 0.1–1 mL | - | Assay of agar well diffusion method | Antibacterial activity | [92] |
Flavonoids | Xanthomonas axonopodis pv. phaseoli | 250 mg/mL | - | Assay of disc diffusion method | Antibacterial activity | [90] |
Ellagic acid, lupeol and leucodelphinidin | Bacillus cereus, S. aureus, P. aeruginosa and E. coli | 250 mg/mL | - | Assay of disc diffusion method | Antibacterial activity | [93] |
Flavonoids and proteins | Aspergillus niger | - | - | 47-residue, plant defensin was purified by ammonium sulfate precipitation, gel filtration, chromatography and RP-HPLC; complete amino acid sequence, RT-PCR, cloning and cDNA sequence were performed | Antifungal activity | [21,91] |
Flavonoids and proteins | Fusarium oxysporum | 36 µM | - | Mycelial growth in Mycosphaerella arachidicola | Antifungal activity | [94] |
Flavonoids, lentil lectin and the diterpene ester | Human peripheral blood mononuclear leucocytes. murine splenocytes and white Swiss inbred C67B1/6 mice | 600 µg/mL | Concanavalin A | Assay of interferon-γ production | Antiviral activity | [95,96] |
Polyphenol-Rich Lentils | Model | Dose and Route of Administration | Negative Control | Investigation | Results | Reference |
---|---|---|---|---|---|---|
Flavonoids, lentil lectins | Human colon adenocarcinoma HT29 and colonic fibroblast CCD-18Co cells | 19 µM | - | cDNA, encoding a Bowman–Birk protease inhibitor, assessed with an array of molecular masses | Antiproliferative properties in colon cancer | [97] |
Flavonoids, lentil lectins | Human colon carcinoma cell line CACO-2 | 1.5, 3, 4.5, 6, 7.5 and 10 mg/mL | - | Production of IL-1, IL-6, IL-8 and MCP-1 were measured by ELISA and RT-PCR | Anticancer activity | [105] |
Flavonoids, lentil lectins | Nasopharyngeal carcinoma CNE1 and CNE2 cell lines | 1–5 mg/mL | - | Assay of MTT, flow cytometry and Western blotting | Anticancer activity | [106] |
Total phenolics and flavonoids | In vitro | 100 µL | 2,2′-Azobis (2-amidino propane hydrochloride | Assay of DPPH, radical scavenging assay, the hydroxyl radical- and the peroxyl radical-induced DNA strand scission assays | Potent chemopreventive agents | [100] |
Cooked Lentil seeds with iron | Sprague-Dawley rats | 35 mg/kg/p.o. | Iron-free diet (anemic group) | Assay of body weight, feed intake, Hb, hematocrit, MCV, MCH, MCHC, RBC, WBC and serum iron, platelet count and TIBC | Protective effect on iron deficiency anemia | [13] |
Kaempferol, quercetin and myricetin | Human | 1 cup cooked lentil/day/p.o. | - | Validated food frequency questionnaires in 1991 and 1995 from 90,630 women in the Nurses’ Health Study II | Protective against breast cancer | [98] |
Flavonols | Human | 1 cup cooked lentil/day/p.o. | - | Validated food frequency questionnaires | Protective against breast cancer | [107] |
Total phenolics and flavonoids | Human | 1 cup cooked lentil/day/p.o. | - | Validated food frequency questionnaires in 1976 and 1982 from 78,000 men | Protective against prostate cancer | [108] |
Total phenolics and flavonoids | Human | 1 cup cooked lentil/day/p.o. | - | Validated food frequency questionnaires in 617 incident cases of prostate cancer | Protects against prostate cancer | [109] |
Isoflavones-genistein | Human | 1 cup cooked lentil/day/p.o. | - | A validated food frequency questionnaires incident cases of prostate cancer | Protects against prostate cancer | [99] |
Flavonols, flavones and flavonoid | Human | 1 cup cooked lentil/day/p.o. | - | A validated food frequency questionnaires | Protects against prostate cancer | [110] |
Flavonoids, lentil seed lectins | Human | - | - | Assay by using a flow cytometer | Screening for colorectal cancer | [111] |
Flavonoids, lentil seed lectins | Patients with benign thyroid disease and thyroid carcinomas | - | - | Assay of Lens culinaris agglutinin reactive thyroglobulin ratios in sera and wash fluids | Useful for distinguishing between thyroid carcinoma and benign thyroid tumor | [112] |
Flavonoids, lentil seed lectins | Patients with benign thyroid disease and thyroid carcinomas | - | - | Assay of Lens culinaris agglutinin reactive thyroglobulin ratios in sera and wash fluids | Useful prognostic marker for thyroid cancer | [113] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ganesan, K.; Xu, B. Polyphenol-Rich Lentils and Their Health Promoting Effects. Int. J. Mol. Sci. 2017, 18, 2390. https://doi.org/10.3390/ijms18112390
Ganesan K, Xu B. Polyphenol-Rich Lentils and Their Health Promoting Effects. International Journal of Molecular Sciences. 2017; 18(11):2390. https://doi.org/10.3390/ijms18112390
Chicago/Turabian StyleGanesan, Kumar, and Baojun Xu. 2017. "Polyphenol-Rich Lentils and Their Health Promoting Effects" International Journal of Molecular Sciences 18, no. 11: 2390. https://doi.org/10.3390/ijms18112390
APA StyleGanesan, K., & Xu, B. (2017). Polyphenol-Rich Lentils and Their Health Promoting Effects. International Journal of Molecular Sciences, 18(11), 2390. https://doi.org/10.3390/ijms18112390