Specific Effects of Chronic Dietary Exposure to Chlorpyrifos on Brain Gene Expression—A Mouse Study
Abstract
:1. Introduction
2. Results
2.1. PCR Array and Data Validation by qRT-PCR
2.1.1. qRT-PCR Validation at Three Months
2.1.2. PCR Array and qRT-PCR Validation at Eight Months
3. Discussion
4. Materials and Methods
4.1. Animals and Treatments
4.2. Protein Extraction and AchE Assay
4.3. RNA Isolation and cDNA
4.4. Quantification Assay (PCR-Array)
4.5. Data Analysis
4.6. Validation by qRT-PCR
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
CPF | Chlorpyrifos |
DETs | Differently expressed transcripts |
PON1 | Paraoxonase |
References
- Marks, A.R.; Harley, K.; Bradman, A.; Kogut, K.; Barr, D.B.; Johnson, C.; Calderon, N.; Eskenazi, B. Organophosphate pesticide exposure and attention in young Mexican-American children: The CHAMACOS study. Environ. Health Perspect. 2010, 118, 1768–1774. [Google Scholar] [CrossRef] [PubMed]
- Engel, S.M.; Wetmur, J.; Chen, J.; Zhu, C.; Barr, D.B.; Canfield, R.L.; Wolff, M.S. Prenatal exposure to organophosphates, paraoxonase 1, and cognitive development in childhood. Environ. Health Perspect. 2011, 119, 1182–1188. [Google Scholar] [CrossRef] [PubMed]
- Bouchard, M.F.; Chevrier, J.; Harley, K.G.; Kogut, K.; Vedar, M.; Calderon, N. Prenatal exposure to organophosphate pesticides and IQ in 7-Year-Old children. Environ. Health Perspect. 2011, 119, 1189–1195. [Google Scholar] [CrossRef] [PubMed]
- Rauh, V.A.; Garfinkel, R.; Perera, F.P.; Andrews, H.F.; Hoepner, L.; Barr, D.B. Impact of prenatal chlorpyrifos exposure on neurodevelopment in the first 3 years of life among inner-city children. Pediatrics 2006, 118, e1845–e1859. [Google Scholar] [CrossRef] [PubMed]
- Rauh, V.; Arunajadai, S.; Horton, M.; Perera, F.; Hoepner, L.; Barr, D.B.; Whyatt, R. Seven-Year neurodevelopmental scores and prenatal exposure to chlorpyrifos, a common agricultural pesticide. Environ. Health Perspect. 2011, 119, 1196–1201. [Google Scholar] [CrossRef] [PubMed]
- Rauh, V.A.; Perera, F.P.; Horton, M.K.; Whyatt, R.M.; Bansal, R.; Hao, X. Brain anomalies in children exposed prenatally to a common organophosphate pesticide. Proc. Natl. Acad. Sci. USA 2012, 109, 7871–7876. [Google Scholar] [CrossRef] [PubMed]
- Magnér, J.; Wallberg, P.; Sandberg, J.; Cousins, A.P. Human Exposure to Pesticides. A Pilot Study; Report No. U5080; Swedish Environmental Stockholm Institute: Stockholm, Sweden, 2015; pp. 1–29. [Google Scholar]
- Ray, A.; Liu, J.; Ayoubi, P.; Pope, C. Dose-related gene expression changes in forebrain following acute, low-level chlorpyrifos exposure in neonatal rats. Toxicol. Appl. Pharmacol. 2010, 248, 144–155. [Google Scholar] [CrossRef] [PubMed]
- Estevan, C.; Vilanova, E.; Sogorb, M.A. Chlorpyrifos and its metabolites alter gene expression at non-cytotoxic concentrations in D3 mouse embryonic stem cells under in vitro differentiation: Considerations for embryotoxic risk assessment. Toxicol. Lett. 2013, 217, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Sogorb, M.A.; Fuster, E.; Del Río, E.; Estévez, J.; Vilanova, E. Effects of mipafox, paraoxon, chlorpyrifos and its metabolite chlorpyrifos-oxon on the expression of biomarker genes of differentiation in D3 mouse embryonic stem cells. Chem. Biol. Interact. 2016, 259, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Campbell, C.G.; Seidler, F.J.; Slotkin, T.A. Chlorpyrifos interfere with cell development in rat brain regions. Brain Res. 1997, 43, 179–189. [Google Scholar] [CrossRef]
- Das, K.P.; Barone, S., Jr. Neuronal differentiation in PC12 cells is inhibited by chlorpyrifos and its metabolites: Is acetylcholinesterase inhibition the site of action? Toxicol. Appl. Pharmacol. 1999, 160, 217–230. [Google Scholar] [CrossRef] [PubMed]
- Slotkin, T.A.; Seidler, F.J. Developmental exposure to organophosphates triggers transcriptional changes in genes associated with Parkinson’s disease in vitro and in vivo. Brain Res. Bull. 2011, 86, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Slotkin, T.A.; Card, J.; Seidler, F.J. Chlorpyrifos developmental neurotoxicity: Interaction with glucocorticoids in PC12 cells. Neurotoxicol. Teratol. 2012, 34, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Timofeeva, O.A.; Sanders, D.; Seemann, K.; Yang, L.; Hermanson, D.; Regenbogen, S. Persistent behavioral alterations in rats neonatally exposed to low doses of the organophosphate pesticide, parathion. Brain Res. Bull. 2008, 77, 404–411. [Google Scholar] [CrossRef] [PubMed]
- Tussellino, M.; Ronca, R.; Carotenuto, R.; Pallotta, M.M.; Furia, M.; Capriglione, T. Chlorpyrifos exposure affects fgf8, sox9, and bmp4 expression required for cranial neural crest morphogenesis and chondrogenesis in Xenopus laevis embryos. Environ. Mol. Mutagen. 2016, 57, 630–640. [Google Scholar] [CrossRef] [PubMed]
- Viñuela, A.; Snoek, L.B.; Riksen, J.A.G.; Kammenga, J.E. Genome-Wide Gene Expression Analysis in Response to Organophosphorus Pesticide chlorpyrifos and Diazinon in C. elegans. PLoS ONE 2010, 5, e12145. [Google Scholar] [CrossRef] [PubMed]
- Betancourt, A.M.; Filipov, N.M.; Carr, R.L. Alteration of neurotrophins in the hippocampus and cerebral cortex of young rats exposed to chlorpyrifos and methyl parathion. Toxicol. Sci. 2007, 100, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.P.; Chen, W.F.; Wang, D.W. Prenatal organophosphates exposure alternates the cleavage plane orientation of apical neural progenitor in developing neocortex. PLoS ONE 2014, 9, e95343. [Google Scholar] [CrossRef] [PubMed]
- Freire, C.; Koifman, S. Pesticide exposure and Parkinson’s disease: Epidemiological evidence of association. Neurotoxicology 2012, 33, 947–971. [Google Scholar] [CrossRef] [PubMed]
- Wirdefeldt, K.; Adami, H.O.; Cole, P.; Trichopoulos, D.; Mandel, J. Epidemiology and etiology of Parkinson’s disease: A review of the evidence. Eur. J. Epidemiol. 2011, 26, S1–S58. [Google Scholar] [PubMed]
- Chorfa, A.; Bétemps, D.; Morignat, E.; Lazizzera, C.; Hogeveen, K.; Andrieu, T.; Baron, T. Specific pesticide-dependent increases in α-synuclein levels in human neuroblastoma (SH-SY5Y) and melanoma (SK-MEL-2) cell lines. Toxicol. Sci. 2013, 133, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Dai, H.; Deng, Y.; Tian, J.; Zhang, C.; Hu, Z.; Bing, G.; Zhao, L. Neonatal chlorpyrifos exposure induces loss of dopaminergic neurons in young adult rats. Toxicology 2015, 336, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Porreca, I.; D’Angelo, F.; De Franceschi, L.; Mattè, A.; Ceccarelli, M.; Iolascon, A. Pesticide toxicogenomics across scales: In vitro transcriptome predicts mechanisms and outcomes of exposure in vivo. Sci. Rep. 2016, 6, 38131. [Google Scholar] [CrossRef] [PubMed]
- Asrican, B.; Paez-Gonzalez, P.; Erb, J.; Kuo, C.T. Cholinergic circuit control of postnatal neurogenesis. Neurogenes Austin 2016, 3, e1127310. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Sung, Y.B.; Jang, S.H. Nerve growth factor expression in stroke induced rats after shock wave. J. Phys. Ther. Sci. 2016, 28, 3451–3453. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.S.; Lewis, J.A.; Ippolito, D.L.; Hussainzada, N.; Lein, P.J.; Jackson, D.A.; Stallings, J.D. Repeated exposure to neurotoxic levels of chlorpyrifos alters hippocampal expression of neurotrophins and neuropeptides. Toxicology 2016, 340, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Lu, L.; Liu, S.; Ye, W.; Wu, J.; Zhang, X. Acetylcholinesterase deficiency decreases apoptosis in dopaminergic neurons in the neurotoxin model of Parkinson’s disease. Int. J. Biochem. Cell Biol. 2013, 45, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Petroff, O.A. GABA and glutamate in the human brain. Neuroscientist 2002, 8, 562–573. [Google Scholar] [CrossRef] [PubMed]
- Surmeier, D.J.; Schumacker, P.T. Calcium, bioenergetics, and neuronal vulnerability in Parkinson’s disease. J. Biol. Chem. 2013, 288, 10736–10741. [Google Scholar] [CrossRef] [PubMed]
- Błaszczy, J.W. Parkinson’s disease and neurodegeneration: GABA-Collapse hypothesis. Front. Neurosci. 2016, 10, 269. [Google Scholar]
- Oblak, A.L.; Gibbs, T.T.; Blatt, G.J. Decreased GABA (B) receptors in the cingulate cortex and fusiform gyrus in autism. J. Neurochem. 2010, 114, 1414–1423. [Google Scholar] [PubMed]
- Miller, R.M.; Kiser, G.L.; Kaysser-Kranich, T.M.; Lockner, R.J.; Palaniappan, C.; Federoff, H.J. Robust dysregulation of gene expression in substantia nigra and striatum in Parkinson’s disease. Neurobiol. Dis. 2006, 21, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Oorschot, D.E. Total number of neurons in the neostriatal, pallidal, subthalamic, and substantia nigral nuclei of the rat basal ganglia: A stereological study using the cavalieri and optical disector methods. J. Comp. Neurol. 1996, 366, 580–599. [Google Scholar] [CrossRef]
- Fahn, S. Description of Parkinson’s disease as a clinical syndrome. Ann. N. Y. Acad. Sci. 2003, 991, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Bonifati, V. Genetics of Parkinson’s disease—State of the art, 2013. Parkinsonism Relat. Disord. 2014, 20 (Suppl. 1), S23–S28. [Google Scholar] [CrossRef]
- Bianchi, M.; Giacomini, E.; Crinelli, R.; Radici, L.; Carloni, E.; Magnani, M. Dynamic transcription of ubiquitin genes under basal and stressful conditions and new insights into the multiple UBC transcript variants. Gene 2015, 573, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Hossein-Nezhad, A.; Fatemi, R.P.; Ahmad, R.; Peskind, E.R.; Zabetian, C.P.H.; Shi, M.; Wahlestedt, C.; Zhang, J.; Faghihi, M.A. Transcriptomic Profiling of Extracellular RNAs Present in Cerebrospinal Fluid Identifies Differentially Expressed Transcripts in Parkinson’s Disease. J. Parkinsons Dis. 2016, 6, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Furlong, C.E.; Cole, T.B.; Jarvik, G.P.; Pettan-Brewer, C.; Geiss, G.K.; Richter, R.J.; Shih, D.M.; Tward, A.D.; Lusis, A.J.; Costa, L.G. Role of paraoxonase (PON1) status in pesticide sensitivity: Genetic and temporal determinants. Neurotoxicology 2005, 26, 651–659. [Google Scholar] [CrossRef] [PubMed]
- Moser, V.C.; Padilla, S. Age- and gender-related differences in the time course of behavioral and biochemical effects produced by oral chlorpyrifos in rats. Toxicol. Appl. Pharmacol. 1998, 149, 107–119. [Google Scholar] [CrossRef] [PubMed]
- Gold, S.J.; Ni, Y.G.; Dohlman, H.G.; Nestler, E.J. Regulators of G-protein signaling (RGS) proteins: Region-specific expression of nine subtypes in rat brain. J. Neurosci. 1997, 17, 8024–8037. [Google Scholar] [PubMed]
- Grillet, N.; Pattyn, A.; Contet, C.; Kieffer, B.L.; Goridis, C.; Brunet, J.F. Generation and characterization of Rgs4 mutant mice. Mol. Cell. Biol. 2005, 25, 4221–4228. [Google Scholar] [CrossRef] [PubMed]
- Lerner, T.N.; Kreitzer, A.C. RGS4 is required for dopaminergic control of striatal LTD and susceptibility to parkinsonian motor deficits. Neuron 2012, 73, 347–359. [Google Scholar] [CrossRef] [PubMed]
- Jaramillo-Gómez, J.; Niño, A.; Arboleda, H.; Arboleda, G. Overexpression of DJ-1 protects against C2-ceramide-induced neuronal death through activation of the PI3K/AKT pathway and inhibition of autophagy. Neurosci. Lett. 2015, 603, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Hauser, D.N.; Primiani, C.T.; Cookson, M.R. The effects of variants in the PARK2 (parkin), PINK1, and PARK7 (DJ-1) genes along with evidence for their pathogenicity. Curr. Protein Pept. Sci. 2017, 18, 702–714. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.L.; De Sesso, J.M. Gestational/perinatal chlorpyrifos exposure is not associated with autistic-like behaviors in rodents. Crit. Rev. Toxicol. 2014, 44, 523–534. [Google Scholar] [CrossRef] [PubMed]
- Mamczarz, J.; Pescrille, J.D.; Gavrushenko, L.; Burke, R.D.; Fawcett, W.P.; DeTolla, L.J., Jr.; Chen, H.; Pereira, E.F.R.; Albuquerque, E.X. Spatial learning impairment in prepubertal guinea pigs prenatally exposed to the organophosphorus pesticide chlorpyrifos: Toxicological implications. Neurotoxicology 2016, 56, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.; Eriksson, P.; Fredriksson, A.; Buratovic, S.; Viberg, H. Developmental neurotoxic effects of two pesticides: Behavior and biomolecular studies on chlorpyrifos and carbaryl. Toxicol. Appl. Pharmacol. 2015, 288, 429–438. [Google Scholar] [CrossRef] [PubMed]
- De Felice, A.; Greco, A.; Calamandrei, G.; Minghetti, L. Prenatal exposure to the organophosphate insecticide chlorpyrifos enhances brain oxidative stress and prostaglandin E2 synthesis in a mouse model of idiopathic autism. J. Neuroinflamm. 2016, 13, 149. [Google Scholar] [CrossRef] [PubMed]
Gene Name | Functions | Fold Change |
---|---|---|
CASP9 | Apoptosis | −0.35 |
MAPK9 | Apoptosis | −0.39 |
NR4A2 | Apoptosis, Dopaminergic Signaling | −0.34 |
CASP3 | Apoptosis, Mitochondrial | −0.44 |
OPA1 | Apoptosis, Mitochondrial | −0.29 |
CDH8 | Cell Adhesion Molecules | −0.35 |
FN1 | Cell Adhesion Molecules | −0.38 |
NFASC | Cell Adhesion Molecules | −0.33 |
NRXN3 | Cell Adhesion Molecules | −0.35 |
TPBG | Cell Adhesion Molecules | −0.16 |
PTEN | Cell Adhesion Molecules, Apoptosis, Mitochondrial | −1.44 |
DRD2 | Dopaminergic Signaling | −0.35 |
SLC6A3 | Dopaminergic Signaling | −0.34 |
GABBR2 | GABAergic Signaling | −0.13 |
ATP2B2 | Ion Transport | −0.39 |
CXXC1 | Ion Transport | −0.41 |
EGLN1 | Ion Transport | −0.40 |
GRIA3 | Ion Transport | −0.40 |
HTR2A | Ion Transport | −0.36 |
KCNJ6 | Ion Transport | −0.26 |
NSF | Ion Transport | −0.29 |
SLIT1 | Ion Transport | −0.34 |
SRSF7 | Ion Transport | −0.41 |
ALDH1A1 | Other Parkinson’s Disease Genes | −0.37 |
BASP1 | Other Parkinson’s Disease Genes | −0.21 |
CHGB | Other Parkinson’s Disease Genes | −0.40 |
NCOA1 | Other Parkinson’s Disease Genes | −0.40 |
RTN1 | Other Parkinson’s Disease Genes | −0.34 |
STUB1 | Parkin Complex, Ubiquitination | −0.32 |
ATXN2 | Parkin Substrate | −0.32 |
ATXN3 | Parkin Substrate | −0.33 |
GPR37 | Parkin Substrate | −0.30 |
SYT11 | Parkin Substrate, Synaptic Vesicles | −0.35 |
SV2B | Synaptic Vesicles | −0.22 |
SYNGR3 | Synaptic Vesicles | −0.22 |
SYT1 | Synaptic Vesicles | −0.32 |
SEPT5 | Synaptic Vesicles, Dopaminergic Signaling | −0.23 |
UBC | Ubiquitination | +0.49 |
USP34 | Ubiquitination | −0.36 |
LRRK2 | Ubiquitination, Mitochondrial, Synaptic Vesicles | −0.39 |
PARK2 | Ubiquitination, Mitochondrial, Dopaminergic Signaling | −0.18 |
PINK1 | Ubiquitination, Mitochondrial, Dopaminergic Signaling | −0.23 |
Chlorpyrifos Concentrations | DETs (Differently Expressed Transcripts) | Altered Genes |
---|---|---|
0.1 mg/kg/day | 0 | 0 |
0.1–1 mg/kg/day | 0 | 0 |
0.1–10 mg/kg/day | 0 | 0 |
1–10 mg/kg/day | 43 | Ubc, Aldh1a1, Apc, Atp2b2, Atxn2, Atxn3, Basp1, Bdnf, Casp3, Casp9, Cdc27, Cdh8, Chgb, Cxxc1, Drd2, Egln1, Fbxo9, Fn1, Gabbr2, Gpr37, Htr2a, Kcnj6, Lrrk2, Ncoa1, Nefl, Nfasc, Nrxn3, Nsf, Nsg1, Ntrk2, Opa1, Pan2, Park2, Pink1, Pten, Rgs4, Sept5, Srsf7, Sv2b, Syngr3, Syt1, Ube2k, Usp34 |
1 mg/kg/day | 1 | Gbe1 |
10 mg/kg/day | 19 | App, Cadps, Casp7, Ddc, Dlk1, Gria3, Hspa4, Park7, Psen2, Rtn1, Skp1a, Slc6a3, Slit1, Stub1, Syt11, Tpbg, Uch11, Ywhaz |
0.1-1-10 mg/kg/day | 4 | Park2, Nr4a2, Gabbr2, Sv2b |
Gene Name | Functions | Fold Change |
---|---|---|
CASP1 | Apoptosis | +1.13 |
CASP9 | Apoptosis | +0.55 |
PSEN2 | Apoptosis | +0.59 |
DRD2 | Dopaminergic Signaling | −0.38 |
CHGB | MAP Kinase Signaling | +0.67 |
RGS4 | MAP Kinase Signaling | +0.95 |
HSPA4 | Parkin Complex, Mitochondrial | +0.45 |
PARK7 | Parkin Complex, Mitochondrial, Dopaminergic Signaling | +0.44 |
ATXN2 | Parkin Substrate | −0.29 |
CDC27 | Ubiquitination | +0.57 |
FBXO9 | Ubiquitination | +0.45 |
UBC | Ubiquitination | +0.89 |
UBE2K | Ubiquitination | +0.63 |
PARK2 | Ubiquitination, Mitochondrial, Dopaminergic Signaling | −0.28 |
Chlorpyrifos Concentrations | DETs | Altered Genes |
---|---|---|
0.1 mg/kg/day | 0 | |
0.1–1 mg/kg/day | 0 | |
0.1–10 mg/kg/day | 0 | |
1–10 mg/kg/day | 2 | Ube2k, Park2 |
1 mg/kg/day | 10 | Bdnf, Cul2, Gabbr2, Gbe1, Pan2, Ppid, Snca, Dlk1, Kcnj6, Uchl1 |
10 mg/kg/day | 12 | Cdc27, Chgb, Fbxo9, Hspa4, Park7, Psen2, Rgs4, Ube2l3, Atxn2, Ddc, Drd2, Fn1 |
0.1-1-10 mg/kg/day | 2 | Ubc, Casp9 |
Oligo Name | Sequence 5′–3′ |
---|---|
Gabbr FOR | TCCGGAACGGGGAAAGAATG |
Gabbr REV | TCCGACCCCTGGAACCTTAT |
Park2 FOR | ACCCACCTACAACAGCTTTTTC |
Park2 REV | CAGCAAGATGGGCCCTGG |
Sept5 FOR | GACCCCAGAGGACAAACAGG |
Sept5 REV | ACCATGAGCGTGAAGTCGAA |
Sv2b FOR | TGCTGGAGATGGGCAAACAT |
Sv2b REV | TGAACACCTTTTCCGGGGTC |
Atxn FOR | CCCGGGCGTACAACCTTTAT |
Atxn REV | TGTCGCTGTTGGGGCATATT |
Ubc FOR | GCCCAGTGTTACCACCAAGA |
Ubc REV | CCCCATCACACCCAAGAACA |
Chgb FOR | CTCACCAGGAGGCAAACGAT |
Chgb REV | AGTTCCAGATCCATCGCAGC |
Rgs4 FOR | GCCAGAGGGTAAGCCAAGAA |
Rgs4 REV | TCCTCGCTGTATTCCGACTTC |
Pink1 FOR | CTGCCTGAGATGCCTGAGTC |
Pink1 REV | GTGCAGACGGTCTCTTGCT |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pallotta, M.M.; Ronca, R.; Carotenuto, R.; Porreca, I.; Turano, M.; Ambrosino, C.; Capriglione, T. Specific Effects of Chronic Dietary Exposure to Chlorpyrifos on Brain Gene Expression—A Mouse Study. Int. J. Mol. Sci. 2017, 18, 2467. https://doi.org/10.3390/ijms18112467
Pallotta MM, Ronca R, Carotenuto R, Porreca I, Turano M, Ambrosino C, Capriglione T. Specific Effects of Chronic Dietary Exposure to Chlorpyrifos on Brain Gene Expression—A Mouse Study. International Journal of Molecular Sciences. 2017; 18(11):2467. https://doi.org/10.3390/ijms18112467
Chicago/Turabian StylePallotta, Maria Michela, Raffaele Ronca, Rosa Carotenuto, Immacolata Porreca, Mimmo Turano, Concetta Ambrosino, and Teresa Capriglione. 2017. "Specific Effects of Chronic Dietary Exposure to Chlorpyrifos on Brain Gene Expression—A Mouse Study" International Journal of Molecular Sciences 18, no. 11: 2467. https://doi.org/10.3390/ijms18112467
APA StylePallotta, M. M., Ronca, R., Carotenuto, R., Porreca, I., Turano, M., Ambrosino, C., & Capriglione, T. (2017). Specific Effects of Chronic Dietary Exposure to Chlorpyrifos on Brain Gene Expression—A Mouse Study. International Journal of Molecular Sciences, 18(11), 2467. https://doi.org/10.3390/ijms18112467