Next Article in Journal
Heat Shock Proteins in Vascular Diabetic Complications: Review and Future Perspective
Next Article in Special Issue
Anti-Inflammatory and Skin Barrier Repair Effects of Topical Application of Some Plant Oils
Previous Article in Journal
Phylodynamic and Genetic Diversity of Canine Parvovirus Type 2c in Taiwan
Previous Article in Special Issue
Tunisian Milk Thistle: An Investigation of the Chemical Composition and the Characterization of Its Cold-Pressed Seed Oils
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Essential Oils from Neotropical Piper Species and Their Biological Activities

by
Joyce Kelly Da Silva
1,*,
Rafaela Da Trindade
1,
Nayara Sabrina Alves
1,
Pablo Luís Figueiredo
2,
José Guilherme S. Maia
2 and
William N. Setzer
3,4
1
Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém 66075-900, Brazil
2
Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-900, Brazil
3
Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
4
Aromatic Plant Research Center, 615 St. George Square Court, Suite 300, Winston-Salem, NC 27103, USA
*
Author to whom correspondence should be addressed.
Int. J. Mol. Sci. 2017, 18(12), 2571; https://doi.org/10.3390/ijms18122571
Submission received: 31 October 2017 / Revised: 23 November 2017 / Accepted: 23 November 2017 / Published: 14 December 2017
(This article belongs to the Special Issue The Beneficial Effects of Plant Oil on Human Health)

Abstract

:
The Piper genus is the most representative of the Piperaceae reaching around 2000 species distributed in the pantropical region. In the Neotropics, its species are represented by herbs, shrubs, and lianas, which are used in traditional medicine to prepare teas and infusions. Its essential oils (EOs) present high yield and are chemically constituted by complex mixtures or the predominance of main volatile constituents. The chemical composition of Piper EOs displays interspecific or intraspecific variations, according to the site of collection or seasonality. The main volatile compounds identified in Piper EOs are monoterpenes hydrocarbons, oxygenated monoterpenoids, sesquiterpene hydrocarbons, oxygenated sesquiterpenoids and large amounts of phenylpropanoids. In this review, we are reporting the biological potential of Piper EOs from the Neotropical region. There are many reports of Piper EOs as antimicrobial agents (fungi and bacteria), antiprotozoal (Leishmania spp., Plasmodium spp., and Trypanosoma spp.), acetylcholinesterase inhibitor, antinociceptive, anti-inflammatory and cytotoxic activity against different tumor cells lines (breast, leukemia, melanoma, gastric, among others). These studies can contribute to the rational and economic exploration of Piper species, once they have been identified as potent natural and alternative sources to treat human diseases.

Graphical Abstract

1. Introduction

The genus Piper L. has approximately 2000 species distributed in the pantropical region, in the Neotropics occurring from northern Mexico to Chile and Argentina. The Andean slopes, Central American lowlands and Central Amazonia have been considered as centers of high species richness for the genus [1,2]. Piper belongs to Piperaceae, classified in the order Piperales, Magnoliids clade included in angiosperm basal group [3]. Phylogenetic studies have confirmed the monophyly of the group with eight subgenera recognized in the Neotropics: Enckea, Macrostachys, Ottonia, Peltobryon, Piper, Pothomorphe, Radula and Schilleria [4].
Plants of the genus Piper are easy recognized in the field by their nodose shoots, inflorescences spikes, and the typical “spicy” or aromatic smell [4]. They can be herbs, shrubs and less often lianas of annual or perennial habits; aromatics; glabrous or with varied indumentum, frequently gland-dotted, with nodose stems. Leaves are mostly alternate, sometimes opposite, simple, sessile or petiolate, with variable size, shape and venation. Inflorescences are terminal, leaf opposed or axillary, commonly spike solitary, umbellate or paniculate, erect, pendent or recurved, variable in size. Flowers are very small and numerous, generally monoic, perianthless, variable in shape; stamens usually 2–6, arising near the base of the ovary with filaments free and generally short, anthers with 1, 2, or 4 thecae, laterally or apically dehiscent, deciduous after pollination; gynoecium with superior ovary, with 1, 3, or 5 fused carpels, 1-locular. Fruit is a small berry or drupe, variously shaped, with a thin pericarp and sometimes hardened endocarp; seed small, solitary [5].
Since prehistoric times Piper spp. have been used by man, manly as spices, in mystical and cultural activities and in folk medicine to treat many diseases. For example, a decoction of the leaves of P. cavalcantei is considered by native Amazon people as excellent antipyretic and analgesic [6]; P. marginatum, which is used by indigenous communities in Central America, the Antilles, and South America for gastrointestinal problems [7]; and P. umbellatum that is traditionally used as an anti-inflammatory in Brazil, to treat wounds in Cuba, and to treat fever in Peru [8]. In the literature, there have been many studies about Asian Piper species, but a large proportion of the information has been generated from Latin American species, pointing to an enormous diversity of chemical compounds associated with its diversity of biological activities [9,10]. In tropical countries, many species of Piper are used by traditional societies by their anti-inflammatory and analgesic properties, and have large potential for the pharmaceutical industry [11].
Piper species produce a number of metabolic classes with diverse biological activities [10]. The essential oils extracted from different organs of many specimens is constituted mainly of monoterpene hydrocarbons (e.g., α-pinene, myrcene, limonene, α-terpinene, p-cymene), oxygenated monoterpenoids (e.g., 1,8-cineole, linalool, terpinen-4-ol, borneol, camphor), sesquiterpene hydrocarbons (e.g., β-caryophyllene, α-humulene, germacrene D, bicyclogermacrene, α-cubebene), oxygenated sesquiterpenoids (e.g., spathulenol, (E)-nerolidol, caryophyllene oxide, α-cadinol, epi-α-bisabolol) and phenylpropanoids (e.g., safrole, dillapiole, myristicin, elemicin, (Z)-asarone, eugenol) (see Appendix A and Appendix B) [12,13]. The literature reports that some tropical species of Piper have presented high yields of essential oils [14]. The yield of essential oil and its major volatile components in Piper spp. may vary according to geographical region and environmental factors, being conditioned mainly to its different chemotypes [14,15,16]. P. xylosteoides leaves presented a yield of 1.8% with the main compound being myrcene (31%), which is largely used in the food and cosmetic industry [17]. P. divaricatum had yielded around 46.0%, eugenol, a compound that has been used as an anesthetic for the sedation of fish, in addition to being widely used as a local anesthetic during endodontic and restorative treatments by dentists [18,19]. Essential oils of high yield, along with the presence of volatile compounds of economic value, are valued by the international market due to their wide importance to the pharmacological, cosmetics, and cleaning products industries, among other applications [14]. Piper has been a model genus for ecological and evolutionary studies, and Piper species are considered important due their association with frugivorous bats [4]. A suite of insect herbivores feeds on the leaves of Piper, the ripening fruits are attacked by a variety of seed predators, and ripe fruits provide food for frugivorous bats and birds, and other animals surely use Piper fruits as food at least occasionally [11].
Taxonomic difficulties in the genus Piper are related to the great variability and minute nature of their flowers [20]. Due to the pronounced pharmacological value and worldwide demand of Piper species, it is imperative to make efforts to the secure botanical identification, to conserve the germplasm, and to allow genetic improvement [21]. The use of biochemical and genetic markers as well as chemical studies of specimens have been shown to be effective methods [22,23,24]. In this review, we report the biological activities and the chemical compositions of Piper species native to the Neotropics.

2. Volatile Profiles

The essential oil compositions (major components) of Neotropical Piper species are summarized in Appendix A. For Piper species where several different essential oils were collected, there seems to be wide variation in the compositions. Thus, for example, P. aduncum leaf oils can be rich in monoterpenoids such as 1,8-cineole [25], sesquiterpenoids such as (E)-nerolidol [26], or dominated by phenylpropanoids like dillapiole [27,28,29,30] or asaricin [31]. At least nine different chemotypes of P. aduncum have been characterized [32]. Likewise, P. amalago has shown wide variation in essential oil composition with monoterpenoid-rich [31,33] and sesquiterpenoid-rich [34,35] chemotypes. Dihydroagarofurans have dominated several leaf oils of P. cernuum [31,36,37] while other samples have shown monoterpene and sesquiterpene hydrocarbons as major components [35,38,39]. Piper divaricatum has shown a eugenol/methyleugenol chemotype [40,41,42,43] as well as a safrole chemotype [44]. Phenylpropanoids have characterized the leaf essential oils of many samples of P. marginatum from Brazil [41,45], but even these show wide variation in the phenylpropanoid concentrations. Chemical structures for the major Piper essential oil components are shown in Appendix B.
Geographical location and habitat likely affects the chemical compositions. For example, the leaf essential oil compositions of P. hispidum from Cuba [46] was rich in eudesmols, while a sample from Panama was dominated by dillapiole [47], and a sample from Colombia had (E)-nerolidol as the major component [48]. Piper umbellatum essential oils from Monteverde, Costa Rica [49], and from São Paulo, Brazil [31], were rich in sesquiterpene hydrocarbons, while the essential oil from the Escambray Mountains of Cuba was rich in camphor and safrole [50]. The wide variations in essential oil compositions certainly impacts the biological activities of the Piper oils (see Appendix A) and likely affects the traditional medicinal uses of the plants in their native habitats.

3. Biological Activities

3.1. Antibacterial and Antifungal Activity

The need to combat microbial resistance to present day antibiotics has boosted efforts for bioprospecting to identify new antibacterial and antifungal agents [51]. The potential of Piper essential oils against pathogenic Gram-positive bacteria, such as Staphylococcus aureus, Bacillus cereus, Bacillus subtilis and Streptococcus pyogenes, as well as Gram-negative microorganisms, which include Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumanii, has been reported in several published investigations. Essential oils (EOs) from leaves of P. abutilodes, P. aduncum, P. marginatum, and P. molicomum were tested against Escherichia coli (EPEC 0031-2) and had minimal inhibitory concentrations (MICs) ranging from 500 µg/mL to 1000 µg/mL [52]. P. regnellii oils from leaves had MIC of 300 µg/mL against the serotype EPEC 0031-2. Antimicrobial assays were performed by microdilution method, but EO compositions were not reported [52]. EOs from leaves of P. aduncum var. ossanum (Bauta, Artemisa Province, Cuba) were mainly composed of piperitone (20.1%), viridiflorol (13.0) and camphor (13.9%) and had high activity against Staphylococcus aureus with an IC50 value of 39.5 µg/mL [53].
The antimicrobial activity was evaluated against Bacillus cereus and S. aureus using broth dilution assay for different Piper species collected in Monteverde (Costa Rica) [34]. The oils from leaves of Piper sp. aff. aereum, P. bredemeyeri, P. oblanceolatum displayed a MIC value of 78 μg/mL against Bacillus cereus, while P. fimbriulatum was more active (MIC, 39 μg/mL). In addition, Piper sp. aff. aereum showed activity against S. aureus (MIC, 78 μg/mL). The main compounds in these oils were mostly sesquiterpenoids and monoterpenoids: Piper sp. aff. aereum oil was composed of guaiol (41.2%), α-cadinol (9.2%) and δ-cadinene (7.3%). P. bredemeyeri showed β-elemene (34.0%), β-caryophyllene (24.2%) and germacrene D (21.7%) as major compounds. P. fimbriulatum showed germacrene D (32.9%), α-pinene (10.2%) and δ-elemene (9.4%), while P. oblanceolatum was rich in linalool (11.3%), δ-amorphene (9.0%) and germacrene D (8.9%) [34].
Piper caldense oils from different tissues displayed as major components α-cadinol (19.0%), α-muurolol (9.0%), and thujopsan-2β-ol (7.4%) (leaves); terpinen-4-ol (18.5%), α-terpineol (15.3%), and α-cadinol-2β-ol (9.8%) (stems); and pentadecane (35.7%), valencene (10.5%), and selina-3,7(11)-diene (5.4%) (roots). The samples were tested against E. coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, S. aureus and B. subtilis using agar diffusion assay and showed moderate to weak bacterial activity with MIC value of 325 or 750 μg/mL in comparison to gentamicin (5.0 μg/mL) [54]. P. cernuum and P. regnellii EOs from leaves inhibited growth of S. aureus and Candida albicans when evaluated by agar diffusion assay. The main compounds in P. cernuum oil were bicyclogermacrene (21.9%), β-caryophyllene (20.7%) and α-pinene, while P. regnelli essential oil was dominated by myrcene (52.6%), linalool (15.9%) and β-caryophyllene (8.5%) [38].
The chemical composition by CG-MS and antimicrobial activity using agar dilution technique of P. cernuum oils were evaluated seasonally [37]. The main compounds identified were trans-dihydroagarofuran (30 to 36.7%), 4-epi-cis-dihydroagarofuran (11.2 to 13.4%), and γ-eudesmol (7.64 to 11.6%). The EOs showed significant activity against S. aureus (MIC 780 μg/mL, and for spring MIC, 1560 μg/mL), B. subtilis (MIC 780 μg/mL) and Streptococcus pyogenes (MIC 48–390 μg/mL) [37]. P. diospyrifolium EO from leaves, composed of cis-eudesma-6,11-diene (21.1%), β-caryophyllene (16.8%), and γ-muurolene (10.6%), was tested using agar diffusion assay and it showed significant potential against clinical fungal strains of C. albicans, C. parapsilosis, C. tropicalis in comparison to nystatin [55]. P. malacophyllum oil, composed mainly of camphor (32.8%), camphene (20.8%), and (E)-nerolidol (9.1%), displayed a weak activity against S. aureus, P. aeruginosa, Acinetobacter baumanii (MIC 3700 µg/mL), B. cereus, and E. coli (MIC 1850 µg/mL) using the broth microdilution method [56]. Furthermore, P. ilheusense oil from leaves was made up of β-caryophyllene (11.8%), patchouli alcohol (11.1%), and gleenol (7.5%), and was active against the fungi C. albicans, C. parapsilosis and C. krusei, and it partially combated B. subtilis and S. aureus [57]. P. tuberculatum EO from seeds was mostly composed of β-elemene, β-caryophyllene and β-farnesene, among others; microdilution assays indicated that this oil inhibited growth of S. aureus and B. subtilis. However, neither the EO composition nor MIC values were reported [58].
Several Piper oils have been reported to be effective to combat fungal species of Cryptococcus. P. aduncum oil from leaves was composed of linalool (31.8%), bicyclogermacrene (11.3%), and (E)-nerolidol (10.3%), and showed activity against Cryptococcus neoformans (MIC 62.5 μg/mL) [35]. Similarity, P. gaudichaudianum oil, rich in α-humulene (23.4%), β-caryophyllene (15.6%), and viridiflorene (8.1%), showed significant antifungal activity against C. krusei (MIC 31.25 μg/mL). EO from leaves of P. solmsianum was mostly composed of (E)-isoelemecin (53.5%), spathulenol (5.2%), and epi-α-muurolol (4.6%), and had significant activity against C. neoformans (MIC 62.5 μg/mL). These analyses were performed by means of broth dilution assays [35].
The activity of Piper EOs has been evaluated by direct bioautography on TLC plates against Cladosporium cladosporioides and C. sphaerospermum [59,60,61,62]. Cladosporium spp. are strong airborne contaminants that cause allergies and other serious diseases of the respiratory tract [63,64]. The oils from fruits of P. aduncum and P. tuberculatum had a higher activity in comparison to miconazole and nystatin against Cladosporium cladosporioides and C. sphaerospermum, respectively. Both oils displayed a detection limit (DL) of 10 μg [59]. Oils of P. aleyreanum, P. anonifolium, P. hispidum and P. divaricatum, collected from the Brazilian Amazon, showed a higher activity with DL values between 0.1 and 5.0 μg [61]. These oils were mainly composed of terpenoids as β-elemene (16.3%), bicyclogermacrene (9.2%), and δ-elemene (8.2%) (P. aleyreanum); selin-11-en-4α-ol (20.0%), β-selinene (12.7%), and α-selinene (11.9%) (P. anonifolium); and δ-3-carene (9.1%), β-caryophyllene (10.5%), and α-humulene (9.5%) (P. hispidum). P. divaricatum oil, on the other hand, was dominated by phenylpropanoids methyleugenol (63.8%) and eugenol (23.6%) [40,61]. Essential oils of P. cernuum (fruits), P. solmsianum (leaves), and P. crassinervium (leaves) displayed moderated and weak activity against these pathogens. Germacrene D (14.0%) and spathulenol (9.8%) were the main components of P. cernuum and crassinervium oils, while P. solmsianum was dominated by (E)-isoelemicin (53.9%) [60].
Piper aduncum oil, chemotype dillapiole (85.9%), and isolated dillapiole exhibited antifungal activity against pathogenic skin microorganisms [30]. The samples were assayed by the microdilution method and displayed MIC values of 500 μg/mL for the strains of Trichophyton mentagrophytes (ATCC 9533 and clinical isolate), T. rubrum, and Epidermophyton floccosum. For clinical isolates of Microsporum canis, M. gypseum, and Aspergillus fumigatus (ATCC 40152 and clinical isolate), the MIC values were 250, 250 and 3.9 μg/mL, respectively. Minimum fungicidal concentration (MFC) values displayed a range of 15.6 to 1500 μg/mL for all samples. The EO and its dillapiole-rich fraction demonstrated significant antifungal activity against dermatophytes, filamentous fungi, and potent antifungal activity against non-dermatophyte filamentous fungi [30]. In addition, P. aduncum oils from the aerial parts of chemotype dillapiole (45.9%), (E)-β-ocimene (19.0%), and piperitone (8.4%), also inhibited Trichophyton species at 500 µg/mL [65]. P. cernuum oil, rich in trans-dihydroagarofuran (30.0–36.7%), 4-epi-cis-dihydroagarofuran (11.2–13.4%), and γ-eudesmol (8.3–13.3%), was active against Microsporum gypseum (MIC, 48–390 μg/mL), T. mentagrophytes (MIC, 48–195 μg/mL), T. rubrum (MIC, 48–195 μg/mL), E. flocosum (MIC 48–195 μg/mL) and opportunist yeast Cryptococcus neoformans (MIC 48 μg/mL) [37]. P. malacophyllum oil was composed of camphor (32.8%), camphene (20.8%), and (E)-nerolidol (9.1%), and it showed moderate activity compared to ketoconazole against T. mentagrophytes and C. neoformans, the causal agent of meningoencephalitis in immunocompromized patients [56].

3.2. Antiprotozoal Activity

Parasitic protozoal diseases are the major economic and public health problems in the world causing high rates of human morbidity and mortality in developing countries [32]. The prevalence of these diseases is higher in the tropics, where a significant number of deaths are attributed to leishmaniasis, malaria, and trypanosomiasis [66]. Piper species have been reported as good sources of antiparasitic compounds [67].
Studies carried out with the essential oils of Piper species showed that P. aduncum leaf EO, containing (E)-nerolidol (25.2%) and linalool (13.42%), had an inhibitory effect after 24 h on the growth of Leishmania braziliensis promastigotes (IC50, 77.9 μg/mL) and (E)-nerolidol presented a similar inhibitory effect (IC50, 74.3 μg/mL) [67,68]. P. aduncum leaf EO from two localities in Cuba (Bauta and Ceiba) were active against L. amazonensis (IC50, 19.3 and >64 μg/mL, respectively), in both EOs, the major components were piperitone, viridiflorol, and camphor [53]. P. angustifolium leaf EO, dominated by spathulenol (23.8%) and caryophyllene oxide (13.1%), was effective against intra-cellular amastigotes of L. infantum, the etiological agent of visceral leishmaniasis (IC50, 1.4 μg/mL) [69]. P. aduncum and P. diospyrifolium leaf EOs displayed high activity against of axenic amastigote forms of L. amazonensis (IC50, 76.1 μg/mL and 36.2 μg/mL, respectively) and were more selective for the parasite than for the mammalian macrophages [70]. The main constituents of P. aduncum EO were bicyclogermacrene (20.9%), (E)-β-ocimene (13.9%), and (Z)-β-ocimene (7.0%), while P. diospyrifolium oil was rich in selin-11-en-4α-ol (17.7%), β-caryophyllene (7.4%), and γ-gurjunene (6.9%).
The EO from fresh leaves and inflorescences of P. claussenianum showed high activity against a strain of L. amazonensis, the leaf EO, rich in (E)-nerolidol (81.4%), had greater inhibition on the growth of L. amazonensis than the inflorescences EO, which was rich in linalool (50.2%) (IC50 30.4 μg/mL and 1328 μg/mL, respectively) [71]. P. demeraranum and P. duckei oils inhibited the growth of promastigote forms of two species of Leishmania (IC50, 15.2 and 22.7 μg/mL, respectively) with greater activity against L. guyanensis than L. amazonenis [72]. The main constituents of P. demeraranum oil were β-elemene (33.1%), limonene (19.3%), and bicyclogermacrene (8.8%), and P. duckei β-caryophyllene (27.1%), γ-eudesmol (17.9%), and germacrene D (14.7%).
The P. aduncum EOs, chemotype piperitone (19.0–23.7%), camphor (9.4–17.1%) and viridiflorol (13.0–14.5%), obtained from the aerial parts, showed an inhibitory effect on the growth of Plasmodium falciparum with IC50 value ranging from 1.3 to 2.8 μg/mL [32,53]. The essential oils from P. claussenianum inflorescences and P. lucaeanum leaves, and the pure isolated (E)-nerolidol obtained from inflorescenses of P. claussenianum, showed a 70% decrease in the growth of chloroquine-resistent (W2) P. falciparum, when tested at a concentration of 25 mg/mL [73]. The P. claussenianum EO was dominated by linalool (56.5%) followed by (E)-nerolidol (23.7%) and α-humulene (2.4%), and P. lucaeanum was rich in α-pinene (30.0%), α-zingiberene (30.4%) and β-sesquiphellandrene (11.1%).
The anti-trypanosomal activities have been reported for different chemotypes of P. aduncum EOs. The effect of P. aduncum EO rich in (E)-nerolidol (25.2%), linalool (13.4%) and spathulenol (l5.3%), was analyzed against different developmental forms of Trypanosoma cruzi. The oil was active after 24 h against cell-derived (IC50, 2.8 μg/mL), metacyclic trypomastigotes (IC50 12.1 μg/mL), and intracellular amastigotes (IC50, 9.0 μg/mL) [68]. The chemotype piperitone (23.7%), camphor (17.1%), and viridiflorol (14.5%) also exhibited activity against T. cruzi (IC50 2.0 μg/mL) [32]. In addition, P. aduncum leaf EOs from two localities in Cuba were active against T. brucei and T. cruzi with IC50 value of approximately 8.0 μg/mL [53]. The major components were piperitone (20.1–19.0%), viridiflorol (13–18.8%) and camphor (13.9–9.4%) in the specimens.
In addition to inhibition of the parasites themselves, inhibition of key protozoal protein targets by essential oils has been investigated [74]. P. bredemeyeri leaf essential oil inhibited cruzain, the cysteine protease from Trypanosoma cruzi, with IC50 of 0.96 μg/mL [34]. P. bredemeyeri EO was composed largely of the sesquiterpene hydrocarbons β-elemene (34.0%), β-caryophyllene (24.2%), germacrene D (21.7%), and germacrene A (13.2%). β-Caryophyllene and germacrene D have both shown cruzain inhibitory activity with IC50 values of 32.5 and 22.1 μg/mL, respectively, and a 1:1 binary mixture of these two compounds showed synergistic inhibitory activity (IC50 = 9.91 μg/mL) [75].

3.3. Anticholinesterase Potential

Acetylcholinesterase (AChE) is an enzyme involved in the termination of impulse transmission by quick hydrolysis of the neurotransmitter acetylcholine (ACh). The AChE potential of drugs is inhibition of this enzyme from breaking down ACh, increasing the level and duration of the neurotransmitter activity [76]. For this reason, studies aiming to discover compounds with anticholinesterase potential are relevant. However, there have been few investigations with this focus in Neotropical regions. The EOs from aerial parts of Piper species from the Brazilian Amazon displayed a high activity when evaluated by bioautographic method. All samples had a detection limit (DL) value of 0.01 ng, about one hundred times more effective than the standard physostigmine (DL = 1.0 ng). P. hispidum and P. anonifolium oils were mainly composed of sesquiterpenoids, such as selin-11-en-4α-ol, β-selinene, α-selinene, β-caryophyllene, and α-humulene [61]. In contrast, EOs from the aerial parts of P. callosum and P. marginatum were mainly composed of phenylpropanoids, such as safrole and 3,4-methylenedioxypropiophenone (propiopiperone) [62]. Although there are limited data on AChE activity of Piper essential oils from the Neotropics, a significant amount of research has been performed on Old World Piper essential oils [77,78,79,80,81].

3.4. Anti-Inflammatory and Antinociceptive Effects

Although a considerable number of analgesic and anti-inflammatory drugs are available for the treatment of pain and inflammation, there is a continuous search for new compounds, due to the fact that some current drugs lead to adverse reactions and have low efficacy [82]. Plants used in folk medicine, including essential oils, have been shown to be promising new sources of anti-inflammatory and antinociceptive drugs [83,84,85,86,87].
Piper glabratum leaf EO indicated β-pinene (13.0%), longiborneol (12.0%), and α-pinene (9.7%) as the main compounds. Anti-inflammatory activity was detected by inhibition of leukocyte migration (100, 300, 700 mg/kg) and the protein extravasation into the pleural exudates (700 mg/kg) with no clinical signs of toxicity [88]. P. vicosanum EO minimized edema formation and inhibited leukocyte migration using the carrageenan-induced edema and pleurisy models at doses of 100 and 300 mg/kg [89]. The oil displayed a pronounced anti-inflammatory potential, with no acute toxicity or genotoxicity; its main compounds were γ-elemene (14.2%), α-alaskene (13.4%) and limonene (9.1%).
The P. aleyreanum EO was tested for antinociceptive activity on two phases of pain model, early neurogenic and the second inflammatory, by formalin-induced pain through the administration of 20 mL of 2.5% formalin solution by intraplanar injection in mice [90]. The effect was significantly more pronounced on the second phase. The ID50 values for each phase were 281.2 and 70.5 mg/kg and the inhibitions observed were 75% and 99% at a dose of 1000 mg/kg, for the first and second phases, respectively. The main compounds of P. aleyreanum oil were caryophyllene oxide (11.5%), β-pinene (9.0%), and spathulenol (6.7%) [90]. P. mollicomum and P. rivinoides EOs were evaluated for their antinociceptive activity using the acetic acid-induced writhing in mice [91]. At a dose of 1 mg/kg, the samples inhibited 50.2% and 20.9% of the writhing in mice, respectively. The main constituents of P. mollicomum were (E)-β-ocimene (14.0%), germacrene B (13.3%), and (Z)-β-ocimene (12.1%), and for P. rivinoides were α-pinene (32.9%), β-pinene (24.7%), and β-caryophyllene (7.6%). Oral administration of both oils did not induce any apparent acute toxicity [91].

3.5. Cytotoxic Activity

EOs with anticancer potential can act by two ways: chemoprevention and cancer suppression. Hence, EOs causing apoptosis in tumor cells are valuable resources in cancer suppression [92,93,94]. Essential oils from Piper species have been reported to possess antineoplastic properties against different cancer cells lines such as human colorectal carcinoma, breast tumor, melanoma, gastric tumor, leukemia, among others. The EO of P. aequale, rich in δ-elemene (19.0%), β-pinene (15.6%) and α-pinene (12.6%), showed significant cytotoxic activity against human colorectal carcinoma (HCT-116, IC50 8.69 µg/mL) and human gastric tumor (ACP 03, IC50 1.54 µg/mL) cell lines [95]. After 72 h of treatment, the oil has induced apoptosis in the gastric tumor cells in all tested concentrations (0.75–3.0 μg/mL). The EOs of P. biasperatum, P. glabrescens, P. imperiale, P. oblanceolatum and Piper sp. aff. aereum showed greater than 90% mortality against human breast adenocarcinoma cells (MCF-7) at a concentration of 100 µg/mL [34]. The main compounds identified in these samples were β-elemene (46.6%), limonene (56.6%), β-caryophyllene (25.5%) and linalool (11.3%), respectively.
Piper aleyreanum oil, rich in β-elemene (16.3%), bicyclogermacrene (9.2%) and δ-elemene (8.2%), showed strong cytotoxic activity (IC50 7.4 μg/mL) against human melanoma (SkMEL 19) [61]. The oil from leaves and branches of P. cernuum displayed a broad cytotoxicity spectrum (IC50 < 30 μg/mL) including murine melanoma (B16F10-Nex2), human melanoma (A2058), human glioblastoma (U87-MG), human cervical tumor (HeLa), and human myloid leukemia (HL-60) cells [39,96]. These oils showed large amounts of β-elemene (30.0%), bicyclogermacrene (19.9%) and β-caryophyllene (16.3%) in leaves and camphene (46.4%), α-terpineol (11.6%) and carvacrol (11.6%) in the branches.
Piper hispidum oil, rich in α-pinene (15.3%) and β-pinene (14.8%), induced the death of cancer cell lines such as human cervical (HeLa), human lung (A-549), human breast (MCF-7) with average IC50 values of 36 μg/mL [97]. The EO from P. regnellii leaves displayed an expressive cytotoxic activity against human cervical cells carcinoma (HeLa) with IC50 value of 13 μg/mL [98]. In addition, the activity was determined to be due to its main compounds germacrene D (51.4%), β-caryophyllene (9.5%) and α-chamigrene (11.3%), which demonstrated IC50 values of 11.0, 7.0 and 32.0 μg/mL, respectively.

4. Composition-Bioactivity Correlation

A multivariate statistical analysis was carried out in order to discern any relationship between chemical profiles and biological activities for Piper essential oils (described in Appendix A). The total percentage of compound classes (monoterpene hydrocarbons (MH), oxygenated monoterpenoids (OM), sesquiterpene hydrocarbons (SH), oxygenated sesquiterpenoids (OS) and phenylpropanoids (PP) to each oil was extracted from original citation (Table A1). These data were used as variables (see Appendix C). The values were normalized and submitted to Principal Component Analysis (PCA) using the Minitab software (free 390 version, Minitab Inc., State College, PA, USA).
The antimicrobial activity (fungicidal and bactericidal) displayed a correlation to all compound classes identified in Piper species. However, the cytotoxic activity is related to higher amounts of sesquiterpene hydrocarbons (0–94.9%), monoterpene hydrocarbons (0–83.7%). The antiprotozoal activity is related to Piper oils with low concentrations of monoterpene hydrocarbons (<29.9%) and high concentrations of oxygenated monoterpenoids (0–50.3%), sesquiterpene hydrocarbons (3.3–76.0%) and oxygenated sesquiterpenoids (0–86.2%). For this activity, only the P. auritum oil, which was rich in phenylpropanoids (88.5%), showed activity against Leishmania spp. Piper oils described as rich in phenylpropanoids and sesquiterpenes hydrocarbons displayed high insecticidal and acaricidal activities. In addition, the amounts of phenylpropanoids and sesquiterpenoids (hydrocarbons and oxygenated) are related to acetylcholinesterase inhibition. The anti-inflammatory effects were mostly observed in Piper oils rich in sesquiterpene hydrocarbons (16.2–62.6%) while antinociceptive effects cover oils that showed monoterpene hydrocarbons (16.6–65.0%) as main compounds. The essential oil composition and biological activity correlations are summarized in Figure A5 and Table 1.

5. Conclusions

The Piper genus has shown great biodiversity in the Neotropics, and essential oils from Piper species have likewise demonstrated abundant chemical diversity. The chemical diversity of Piper essential oils has led to a myriad of traditional medicinal uses as well as numerous biological activities. The promise of Piper essential oils to treat human diseases, infections, and suffering has already been realized, and the future exploration of this genus shows much promise). The expectation that Piper's essential oils can be used to treat diseases, infections and human suffering is already a reality, and the future economical exploration of some species of this genus seems to us as very promising.

Author Contributions

All authors contributed to surveying the literature, preparation and editing of the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

Abbreviations

AChAcetylcholine
AChEAcetylcholine esterase
DLDetection limit
DPPH2,2-Diphenyl-1-picrylhydrazyl (radical)
EOEssential oil
FIOCRUZFundação Oswaldo Cruz (Oswaldo Cruz Foundation)
GC-MSGas chromatography-mass spectrometry
HDHydrodistillation
IC50Median inhibitory concentration
ID50Median inhibitory dose
LC50Median lethal concentration
MFCMinimum fungicidal concentration
MHMonoterpene hydrocarbons
MICMinimum inhibitory concentration
MWHDMicrowave-assisted hydrodistillation
OMOxygenated monoterpenoids
OSOxygenated sesquiterpenoids
PCAPrincipal component analysis
PPPhenylpropanoids
RIRetention index
SDSteam distillation
SHSesquiterpene hydrocarbons
spp.Species (plural)
TLCThin-layer chromatography

Appendix A

Table A1. Neotropical Piper essential oil compositions and biological activities.
Table A1. Neotropical Piper essential oil compositions and biological activities.
Piper speciesCollection SiteEssential OilMajor Components (>5%)Bioactivity of EORef.
P. abutiloides Kunth Cultivated (State University of Campinas, São Paulo, Brazil)Leaf (HD)---Antibacterial (Escherichia coli, MIC 700 μg/mL)[52]
P. acutifolium Ruiz & Pav.La Florida, Cajamarca, PeruLeaf (HD)(E)-β-Ocimene (8.1%), α-copaene (6.1%), β-caryophyllene (7.9%), allo-aromadendrene (6.0%), α-cadinene (6.7%), δ-cadinene (6.8%), dillapiole (5.9%)---[99]
P. aduncum L.Serra do Navio, Amapá state, BrazilAerial parts (HD)Limonene (5.2%), γ-terpinene (7.1%), terpinen-4-ol (11.0%), piperitone (15.1%), dillapiole (31.5%)---[15]
P. aduncum L.Melgaço, Pará state, BrazilAerial parts (HD)γ-Terpinene (6.5%), terpinen-4-ol (7.3%), piperitone (13.9%), dillapiole (50.8%)---[15]
P. aduncum L.Benfica, Pará state, BrazilAerial parts (HD)Piperitone (7.0%), dillapiole (56.3%)---[15]
P. aduncum L.Belém, Pará state, BrazilAerial parts (HD)Dillapiole (82.2%)---[15]
P. aduncum L.Belém, Pará state, BrazilAerial parts (HD)Dillapiole (86.9%)---[15]
P. aduncum L.Manaus, Amazonas state, BrazilAerial parts (HD)Dillapiole (91.1%)---[15]
P. aduncum L.Manaus-Caracaraí, Amazonas, BrazilAerial parts (HD)Dillapiole (97.3%)---[15]
P. aduncum L.Cruzero do Sul, Acre state, BrazilAerial parts (HD)Dillapiole (88.1%)---[15]
P. aduncum L.Pinar del Río, CubaLeaf (HD)Dillapiole (82.2%)---[27]
P. aduncum L.Valle del Sajta, Cochabamba, BoliviaLeaf (HD)α-Pinene (9.0%), β-pinene (7.1%), limonene (5.0%), 1,8-cineole (40.5%), asaricin (12.9%)---[100]
P. aduncum L.Altos de Campana National Park, PanamaLeaf (HD)α-Pinene (8.8%), linalool (8.6%), β-caryophyllene (17.4%), aromadendrene (13.4%)---[100]
P. aduncum L.Reserva da Ripasa, Ibaté, São Paulo state, BrazilLeaf (HD)(E)-β-Ocimene (5.0%), linalool (31.7%), β-caryophyllene (9.1%), α-humulene (5.5%), bicyclogermacrene (11.2%), (E)-nerolidol (10.4%)Antifungal, TLC bioautography (Cladosporium sphareospermum)[59]
P. aduncum L.Reserva da Ripasa, Ibaté, São Paulo state, BrazilFloral (HD) aα-Terpinene (6.8%), (Z)-β-ocimene (5.6%), (E)-β-ocimene (11.1%), γ-terpinene (12.0%), linalool (41.2%), (E)-nerolidol (6.1%)---[59]
P. aduncum L.Reserva da Ripasa, Ibaté, São Paulo state, BrazilStem (HD)α-Pinene (7.2%), β-pinene (14.2%), limonene (8.7%), (Z)-β-ocimene (5.5%), (E)-β-Ocimene (13.3%), linalool (11.8%), β-caryophyllene (7.6%), α-humulene (6.3%), (E)-nerolidol (10.6%)Antifungal, TLC bioautography (Cladosporium cladosporioides, Cladosporium sphareospermum)[59]
P. aduncum L.Brejo da Madre de Deus, Matas Serranas, Pernambuco state, BrazilLeaf (HD)(E)-Nerolidol (80.6–82.5%), longipinanol (2.4–5.6%)---[26]
P. aduncum L.Serra Negra, Matas Serranas, Pernambuco state, BrazilLeaf (HD)(E)-Nerolidol (79.2–81.2%), longipinanol (11.1–13.6%)---[26]
P. aduncum L.Cultivated (State University of Campinas, São Paulo, Brazil)Leaf (HD)---Antibacterial (Escherichia coli, MIC 500 μg/mL)[52]
P. aduncum L.Bulo Bulo, BoliviaLeaf (SD)α-Pinene (8.0–8.9%), β-pinene (6.6–7.0%), 1,8-cineole (42.0–42.5%), (E)-β-ocimene (6.4%), bicyclogermacrene (3.8–6.0%), asaricin (9.2–10.5%)---[101]
P. aduncum L.Wasak'entsa reserve, EcuadorAerial parts (HD)(E)-β-Ocimene (10.4%), piperitone (8.5%), dillapiole (45.9%)Antifungal activity against dermatophytes (Trichophyton mentagrophytes, MIC 500 μg/mL, IC50 92.7 μg/mL; Trichophyton tonsurans, MIC 500 μg/mL, IC50 108.7 μg/mL; Nantzzia cajetani, IC50 195 μg/mL)[65]
P. aduncum L.Ducke Reserve, Manaus, Amazonas state, BrazilLeaf (HD)Dillapiole (94.8%)Acaricidal (Rhipicephalus (Boophilus) microplus, LC50 9.3 mg/mL)[28]
P. aduncum L.Santo Antonio do Tauá, Pará state, BrazilAerial parts (HD)Dillapiole (86.9%)Larvicidal and insecticidal activity against mosquitoes (Anopheles marajoara, LC50 50.9 μg/mL, 417 μg/mL, respectively; Aedes aegypti, LC50 54.5 μg/mL, 401 μg/mL, respectively)[16]
P. aduncum L.Araraquara, São Paulo state, BrazilLeaf (HD)(E)-β-Ocimene (5.0%), linalool (31.8%), β-caryophyllene (9.3%), α-humulene (5.5%), bicyclogermacrene (11.3%), (E)-nerolidol (10.3%)Antifungal, broth dilution assay (Cryptococcus neoformans, MIC 62.5 μg/mL)[35]
P. aduncum L.Brazlândia, Distrito Federal, BrazilLeaf (HD)β-Phellandrene (6.8%), γ-terpinene (8.3%), terpinen-4-ol (15.0%), piperitone (22.7%), asaricin (5.6%)---[16]
P. aduncum L.Parque do Guará, Distrito Federal, BrazilLeaf (HD)β-Phellandrene (6.6%), γ-terpinene(8.2%), terpinen-4-ol (16.8%), piperitone (24.9%)---[16]
P. aduncum L.Córrego Bananal, Distrito Federal, BrazilLeaf (HD)(E)-β-Ocimene (11.6%), terpinen-4-ol (6.7%), piperitone (11.0%), asaricin (15.8%)---[16]
P. aduncum L.Fazenda Água Limpa, Distrito Federal, BrazilLeaf (HD)Piperitone (16.3%), dillapiole (49.5%)---[16]
P. aduncum L.Mata de Dois Irmãos, Recife, Pernambuco, BrazilLeaf (HD)Dillapiole (79.0%)---[29]
P. aduncum L.Belém, Pará state, BrazilAerial parts (HD)Dillapiole (64.4%)Insecticidal (Solenopsis saevissima, IC50 135 μg/mL)[41]
P. aduncum L.Bocaiuva, Minas Gerais state, BrazilLeaf (HD)α-Pinene (14.2%), β-pinene (9.0%), 1,8-cineole (57.2%)---[25]
P. aduncum L.Montes Claros, Minas Gerais state, BrazilLeaf (HD)(E)-β-Ocimene (13.4%), valencene (6.9%), (E)-nerolidol (5.9%)---[25]
P. aduncum L.Topes de Collantes Nature Reserve, Escambray Mountains, CubaLeaf (HD)Camphene (10.9%), 1,8-cineole (8.7%), camphor (17.1%), piperitone (34.0%), viridiflorol (7.4%)Antioxidant (DPPH radical scavenging assay, IC50 30.1 μg/mL)[50]
P. aduncum L.Gallery Forest, Angico River, Minas Gerais state, BrazilLeaf (HD)1,8-Cineole (55.8%), α-terpineol (5.9%)Egg hatch inhibition (Haemonchus contortus, IC50 2.6 mg/mL)[102]
P. aduncum L.Santo Antonio do Tauá, Pará state, BrazilAerial parts (HD)Dillapiole (85.9%)Antifungal activity against dermatophytes (Trichophyton mentagrophytes, MIC 500 μg/mL; Epidermophyton floccosum, MIC 500 μg/mL; Microsporum canis, MIC 250 μg/mL; Microsporum gypseum, MIC 250 μg/mL; Aspergillus fumigatus, MIC 3.9 μg/mL)[30]
P. aduncum L.Cultivated, Federal University of Lavras, BrazilLeaf (HD)Linalool (9.3–13.4%), β-caryophyllene (5.1–6.7%), α-humulene (8.5–10.6%), (E)-nerolidol (14.3–16.7%), spathulenol (0–5.6%), cis-cadin-4-en-7-ol (7.5–12.2%)---[103]
P. aduncum L.Cultivated, Federal University of Lavras, BrazilRoot (HD)α-Selinene (14.1–16.5%), geranyl 2-methylbutyrate (8.9–13.6%), bulnesol (4.6–6.1%), elemicin (4.6–5.9%), dillapiole (13.0–18.4%), apiole (16.3–29.5%)---[103]
P. aduncum L.Monte Alegre do Sul, São Paulo state, BrazilLeaf (HD)α-Pinene (6.4%), safrole (13.3%), valencene (9.7%), spathulenol (10.6%), asaricin (14.9%)---[31]
P. aduncum L.Votuporanga, São Paulo state, BrazilLeaf (HD)Safrole (10.8%), asaricin (80.1%)---[31]
P. aduncum L.Votuporanga, São Paulo state, BrazilLeaf (HD)Safrole (10.5%), asaricin (73.4%)---[31]
P. aduncum L.Belém, Pará state, BrazilAerial parts (HD)Dillapiole (73.0%)---[62]
P. aduncum L.Cerro Azul, Paraná state, BrazilLeaf (HD)(Z)-β-Ocimene (7.0%), (E)-β-ocimene (13.9%), safrole (6.2%), bicyclogermacrene (20.9%), γ-cadinene (5.5%), spathulenol (5.3%)Antileishmanial (L. amazonensis promastigotes, IC50 25.9 μg/mL; L. amazonensis axenic amastigotes, IC50 36.2 μg/mL)[70]
P. aduncum L.Universidade Federal de Lavras, Matto Grosso state, BrazilLeaf (HD)Linalool (13.4%), (E)-nerolidol (25.2%), spathulenol (6.3%)Antitrypanosomal (T. cruzi trypomastigotes, IC50 2.8 μg/mL; linalool is the active agent, IC50 0.31 μg/mL) Antileishmanial (L. braziliensis promatigotes, IC50 77.9 μg/mL; (E)-nerolidol is the active agent, IC50 74.3 μg/mL)[67,68]
P. aduncum L.Institute of Pharmacy and Food, Havana, CubaAerial parts (HD)Camphene (5.9%), camphor (17.1%) piperitone (23.7%), viridiflorol (14.5%)Antiprotozoal (Plasmodium falciparum, IC50 1.3 μg/mL; Trypanosoma brucei, IC50 2.0 μg/mL; Trypanosoma cruzi, IC50 2.1 μg/mL; Leishmania amazonensis, IC50 23.8 μg/mL; Leishmania donovani, IC50 7.7 μg/mL; Leishmania infantum, IC50 8.1 μg/mL)[32]
P. aduncum subsp. ossanum (C. DC.) Saralegui [syn. P. ossanum (C. DC.) Trel.]Pinar del Río, CubaLeaf (HD)Camphene (6.1%), camphor (8.3%), piperitone (12.9%), β-caryophyllene (6.7%), germacrene D (8.2%), 1-epi-cubenol (6.2%)---[104]
P. aduncum subsp. ossanum (C. DC.) Saralegui [syn. P. ossanum (C. DC.) Trel.]Artemisa Province, CubaLeaf (HD)Camphene (5.4–7.4%), camphor (9.4–13.9%), piperitone (19.0–20.1%), viridiflorol (13.0–18.8%)Antiprotozoal (Plasmodium falciparum, IC50 1.5 μg/mL; Trypanosoma brucei, IC50 8.1 μg/mL; Trypanosoma cruzi, IC50 8.0 μg/mL; Leishmania amazonensis, IC50 19.3 μg/mL; Leishmania infantum, IC50 32.5 μg/mL), antibacterial (Staphylococcus aureus, IC50 39.5 μg/mL)[53]
P. aequale VahlMonteverde, Costa RicaLeaf (HD)α-Pinene (39.3%), sabinene (18.4%), limonene (6.7%)Antibacterial (Bacillus cereus, MIC 156 μg/mL)[34]
P. aequale VahlCarajás National Forest, Parauapebas, Pará state, BrazilAerial parts (HD)α-Pinene (12.6%), β-pinene (15.6%), δ-elemene (19.0%), bicyclogermacrene (5.5%), cubebol (7.2%), β-atlantol (5.9%)Cytotoxic (HCT-116 human colorectal carcinoma, IC50 8.69 μg/mL; ACP03 human gastric adenocarcinoma, IC50 1.54 μg/mL; essential oil induced apoptosis in ACP03 cells)[95]
P. sp. aff. aereum Monteverde, Costa RicaLeaf (HD)β-Caryophyllene (6.6%), δ-cadinene (7.3%), guaiol (41.2%), α-muurolol (5.8%), α-cadinol (9.2%)Antibacterial (Bacillus cereus, MIC 78 μg/mL; Staphylococcus aureus, MIC 78 μg/mL), cytotoxic (MCF-7 human breast adenocarcinoma)[34]
P. aleyreanum C. DC.Porto Velho, Rondônia state, BrazilLeaf (HD)α-Pinene (7.0%), β-pinene (14.4%), α-phellandrene (8.6%), (Z)-caryophyllene (17.5%), β-caryophyllene (18.6%), δ-cadinene (6.2%)---[105]
P. aleyreanum C. DC.Porto Velho, Rondônia state, BrazilAerial parts (HD)Camphene (5.2%), β-pinene (9.0%), spathulenol (6.7%), caryophyllene oxide (11.5%)Antinociceptive, anti-inflammatory (mouse model)[90]
P. aleyreanum C. DC.Carajás National Forest, Parauapebas, Pará state, BrazilAerial parts (HD)δ-Elemene (8.2%), β-elemene (16.3%), β-caryophyllene (6.2%), germacrene D (6.9%), bicyclogermacrene (9.2%), spathulenol (5.2%)Antifungal, TLC bioautography (Cladosporium cladosporioides, Cladosporium sphaerospermum), cytotoxic (SKMel19 human melanoma, IC50 7.4 μg/mL)[61]
P. amalago L.Fazenda Sucupira, Embrapa, Brasília, BrazilLeaf (HD)α-Pinene (30.5%), camphene (8.9%), limonene (6.8%), borneol (5.7%)---[33]
P. amalago L.Monteverde, Costa RicaLeaf (HD)α-Phellandrene (1.7–8.1%), β-elemene (11.5–24.6%), β-caryophyllene (15.9–23.3%), germacrene D (28.9–29.4%), germacrene A (6.5–9.7%)---[34]
P. amalago L.Morro Reuter, Rio Grande do Sul state, BrazilAerial parts (HD)α-Pinene (5.2%), limonene (20.5%), δ-elemene (6.8%), zingiberene (11.2%)---[106]
P. amalago L.Universidade de São Paulo, BrazilLeaf (HD)γ-Muurolene (7.3%), germacrene D (9.9%), bicyclogermacrene (27.9%), spathulenol (19.2%), α-cadinol (7.6%)---[35]
P. amalago L.Dourados, Mato Grosso do Sul, BrazilLeaf (HD)p-Cymene (9.4%), methyl geranate (7.8%), α-amorphene (25.7%), cubenol (6.2%)---[107]
P. amalago L.Dourados, Mato Grosso do Sul, BrazilStem (HD)Longifolene (6.6%), α-amorphene (23.3%), α-muurolol (9.3%)---[107]
P. amalago L.Dourados, Mato Grosso do Sul, BrazilRoot (HD)α-Amorphene (14.4%)---[107]
P. amalago L.Dourados, Mato Grosso do Sul, BrazilFloral (HD) ap-Cymene (9.3%), limonene (10.5%), silphiperfol-6-ene (13.5%), allo-aromadendrene (18.5%), α-muurolol (5.0%)---[107]
P. amalago L.Campinas, São Paulo state, BrazilLeaf (HD)α-Pinene (14.8%), β-phellandrene (39.3%), germacrene D (11.7%)---[31]
P. amalago L.Campinas, São Paulo state, BrazilLeaf (HD)α-Pinene (6.7%), sabinene (6.7%), β-phellandrene (15.9%), bicyclogermacrene (20.8%), spathulenol (9.1%)---[31]
P. amalago L.Campinas, São Paulo state, BrazilLeaf (HD)α-Pinene (11.7%), β-phellandrene (33.1%), bicyclogermacrene (15.0%)---[31]
P. amalago L.Adamantina, São Paulo state, BrazilLeaf (HD)Sabinene (8.2%), myrcene (6.8%), β-phellandrene (12.3%), bicyclogermacrene (19.4%), γ-muurolene (5.9%), spathulenol (5.6%)---[31]
P. amalago var. medium (Jacq.) Yunck.Fênix, Paraná state, BrazilFloral (HD) aβ-Phellandrene (7.3–8.2%), bicyclogermacrene (3.0–9.1%), δ-cadinene (2.3–6.6%), (E)-nerolidol (14.2–19.9%), germacrene D-4-ol (10.3–12.7%), τ-cadinol (4.9–6.1%), α-cadinol (8.2–11.1%)---[108]
P. amplum KunthPariquera-Açu, São Paulo state, BrazilLeaf (HD)α-Pinene (18.1%), (Z)-β-ocimene (10.5%), limonene (8.6%), β-caryophyllene (8.8%), germacrene D (5.5%)---[31]
P. angustifolium Lam.Cuzco, PeruAerial parts (HD)Camphene (22.4%), camphor (25.3%), isoborneol (12.8%)Antibacterial, broth dilution assay (Pseudomonas aeruginosa, MIC 30 μg/mL; Escherichia coli, MIC 100 μg/mL); antifungal, broth dilution assay (Trichophyton mentagrophytes, MIC 10 μg/mL; Candida albicans, MIC 50 μg/mL; Cryptococcus neoformans, MIC 50 μg/mL; Aspergillus flavus, MIC 100 μg/mL)[109]
P. angustifolium Lam.Abobral Subregion of the Pantanal of Mato Grosso do Sul, BrazilLeaf (HD)α-Pinene (5.9%), (E)-nerolidol (5.8%), spathulenol (23.8%), caryophyllene oxide (13.1%)Antileishmanial (L. infantum amastigotes, IC50 1.43 μg/mL)[69]
P. anonifolium KunthBujaru, Pará state, BrazilAerial parts (HD)α-Pinene (41.1–45.7%), β-pinene (17.2–18.6%), limonene (6.1–8.5%), β-caryophyllene (2.5–6.3%)---[110]
P. anonifolium KunthSanta Isabel, Pará state, BrazilAerial parts (HD)α-Pinene (53.1%), β-pinene (22.9%)---[110]
P. anonifolium KunthAnanindeua, Pará state, BrazilAerial parts (HD)α-Pinene (7.3%), limonene (5.9%), ishwarane (19.1%), germacrene D (9.6%), α-eudesmol (33.5%)---[110]
P. anonifolium KunthCarajás National Forest, Parauapebas, Pará state, BrazilAerial parts (HD)α-Pinene (8.8%), β-selinene (12.7%), α-selinene (11.9%), selin-11-en-4α-ol (20.0%)Antifungal, TLC bioautography (Cladosporium cladosporioides, Cladosporium sphaerospermum); enzyme inhibitory, TLC bioautography (acetylcholinesterase)[61]
P. arboreum Aubl.Chepo, PanamaLeaf (HD)β-Pinene (6.6%), α-copaene (7.4%), germacrene D (5.3%), δ-cadinene (25.8%), (E)-nerolidol (5.2%)---[111]
P. arboreum Aubl.Fazenda Sucupira, Embrapa, Brasília, BrazilLeaf (HD)Bicyclogermacrene (12.1%), spathulenol (8.4%), caryophyllene oxide (10.2%) b---[33]
P. arboreum Aubl.Universidade Estadual Paulista, Araraquara, São Paulo state, BrazilLeaf (HD)β-Caryophyllene (25.1%), germacrene D (9.6%), bicyclogermacrene (49.5%)---[59]
P. arboreum Aubl.Universidade Estadual Paulista, Araraquara, São Paulo state, BrazilFloral (HD) aLimonene (6.3%), linalool (10.4%), β-elemene (5.3%), β-caryophyllene (6.6%), germacrene D (49.3%), germacrene A (8.5%)---[59]
P. arboreum Aubl.Universidade Estadual Paulista, Araraquara, São Paulo state, BrazilStem (HD)δ-3-Carene (18.7%), α-copaene (9.0%), β-caryophyllene (26.5%), bicyclogermacrene (21.1%)---[59]
P. arboreum Aubl.Antonina, Paraná state, BrazilLeaf (HD)α-Copaene (5.6%), β-caryophyllene (12.6%), trans-cadina-1(6),4-diene (9.6%), spathulenol (7.9%), caryophyllene oxide (5.9%), 1-epi-cubenol (10.4%), α-cadinol (5.4%)Antileishmanial (L. amazonensis promastigotes, IC50 15.2 μg/mL; L. amazonensis axenic amastigotes, IC50 > 200 μg/mL)[70]
P. arboreum var. latifolium (C. DC.) Yunck.Rondônia state, BrazilLeaf (SD)Octanal (5.5%), germacrene D (72.9%), γ-elemene (6.8%) c---[112]
P. artanthe C. DC.San Migues, Santander, ColombiaAerial parts (HD)δ-Elemene (11.7%), β-caryophyllene (10.2%), epi-cubebol (8.9%), cubebol (6.3%), myristicin (6.4%), apiole (14.5%)---[113]
P. augustum RudgeReserva Biológica Alberto Manuel Brenes, Costa RicaLeaf (HD)α-Pinene (10.5%), α-phellandrene (14.7%), limonene (13.0%), β-phellandrene (5.6%), linalool (10.3%), β-caryophyllene (13.5%)---[114]
P. augustum RudgeValle de Anton, Cerro Caracoral, Cocle, PanamaLeaf (HD)α-Pinene (6.0%), β-elemene (12.3%), cembrene (11.7%), cembratrienol 1 (25.4%), cembratrienol 2 (8.6%)---[47]
P. auritum KunthBoca de Uracillo, Colon Province, PanamaLeaf (HD)Safrole (70%)---[115]
P. auritum KunthGüira de Melena, CubaLeaf (HD)Safrole (64.5%)---[116]
P. auritum KunthMonteverde, Costa RicaFloral (HD) aSafrole (93.2%)---[49]
P. auritum KunthUniversidad de La Habana, CubaAerial parts (HD)Safrole (86.9%)Antileishmanial (promastigotes of L. major, IC50 29.1 μg/mL; L. mexicana, IC50 63.3 μg/mL; L. braziliensis, IC50 52.1 μg/mL; L. donovani, IC50 12.8 μg/mL; amastigotes of L. donovani, IC50 22.3 μg/mL)[117]
P. auritum KunthCali, Valle del Cauca, ColombiaAerial parts (MWHD)Safrole (91.3%)---[118]
P. auritum KunthTopes de Collantes Nature Reserve, Escambray Mountains, CubaLeaf (HD)Camphene (5.5%), safrole (71.8%)Antioxidant (DPPH radical scavenging assay, IC50 14.8 μg/mL)[50]
P. barbatum KunthAmazonas region, PeruAerial parts (HD)Crocatone (10.9%), (E)-asarone (14.1%), apiole (8.0%), 2′-methoxy-4′,5′-methylenedioxy-propiophenone (29.5%)---[119]
P. biasperatum Trel.Monteverde, Costa RicaLeaf (HD)β-Elemene (46.4%), germacrene D (9.5%), bicyclogermacrene (14.1%), germacrene A (13.2%)Cytotoxic (MCF-7 human breast adenocarcinoma)[34]
P. bogotense C. DC.Ipiales, Nariño, ColombiaAerial parts (MWHD)α-Pinene (8.7%), α-phellandrene (13.7%), limonene (5.3%), trans-sabinene hydrate (14.2%)Antitrypanosomal (T. cruzi epimastigotes, IC50 10.1 μg/mL); cytotoxic (Vero cells, IC50 90.1 μg/mL), Antifungal, broth dilution assay (Trichophyton rubrum, MIC 79 μg/mL; Trichophyton mentagrophytes, MIC 500 μg/mL); cytotoxic (Vero cells, IC50 25.8 μg/mL)[118,120,121]
P. brachypodon (Benth.) C. DC.Quibdó, Chocó, ColombiaAerial parts (MWHD)β-Caryophyllene (20.2%), 9-epi-β-caryophyllene (5.8%), germacrene D (5.9%), bicyclogermacrene (8.1%), spathulenol (5.7%), caryophyllene oxide (10.8%)---[120]
P. brachypodon (Benth.) C. DC.Tutunendo, Chocó, ColombiaAerial parts (MWHD)β-Caryophyllene (20.2%), 9-epi-(E)-caryophyllene (5.8%), germacrene D (5.9%), bicyclogermacrene (8.1%), spathulenol (5.7%), caryophyllene oxide (10.8%)Antiprotozoal (Trypanosoma cruzi epimastigotes, IC50 0.34 μg/mL; Leishmania infantum promastigotes, IC50 23.4 μg/mL); cytotoxic (Vero cells, IC50 30.5 μg/mL; THP-1 human monocytic leukemia, IC50 66.3 μg/mL)[118]
P. brachypodon var. hirsuticaule Yunck.Samurindó, Chocó, ColombiaAerial parts (MWHD)β-Elemene (6.4%), β-caryophyllene (9.8%), α-guaiene (5.9%), germacrene D (16.7%), bicyclogermacrene (6.2%) Antiprotozoal (Trypanosoma cruzi epimastigotes, IC50 32.5 μg/mL; Leishmania infantum promastigotes, IC50 93.6 μg/mL); cytotoxic (Vero cells, IC50 86.4 μg/mL)[118]
P. bredemeyeri Jacq.Monteverde, Costa RicaLeaf (HD)β-Elemene (34.0%), β-caryophyllene (24.2%), germacrene D (21.7%), bicyclogermacrene (14.1%), germacrene A (11.4%)Antibacterial, broth dilution assay (Bacillus cereus, MIC 78 μg/mL), enzyme inhibitory (cruzain, IC50 0.96 μg/mL)[34]
P. bredemeyeri Jacq.Pueblo Bello, Cesar, ColombiaAerial parts (MWHD)α-Pinene (20.3%), β-pinene (32.3%), β-caryophyllene (6.3%)Antifungal, broth dilution assay (Trichophyton rubrum, MIC 157 μg/mL; Trichophyton mentagrophytes, MIC 125 μg/mL); cytotoxic (Vero cells, IC50 15.2 μg/mL)[121]
P. caldense C. DC.Recife, Pernambuco state, BrazilLeaf (HD)δ-Cadinene (5.6%), thujopsan-2β-ol (7.4%), α-muurolol (9.0%), α-cadinol (19.0%)Antibacterial, agar diffusion assay (Bacillus subtilis, Staphylococcus aureus, Klebsiella pneumoniae)[54]
P. caldense C. DC.Recife, Pernambuco state, BrazilRoot (HD)Valencene (10.5%), pentadecane (35.7%), selina-3,7(11)-diene (5.4%)Antibacterial, agar diffusion assay (Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa)[54]
P. caldense C. DC.Recife, Pernambuco state, BrazilStem (HD)Terpinen-4-ol (18.5%), α-terpineol (15.3%), caryophyllene oxide (6.2%), α-cadinol (9.8%)Antibacterial, agar diffusion assay (Bacillus subtilis, Pseudomonas aeruginosa)[54]
P. callosum Ruiz & Pav.Marituba, Pará state, BrazilAerial parts (HD)Safrole (69.2%), methyleugenol (8.6%)Insecticidal (Solenopsis saevissima, IC50 > 500 μg/mL)[41]
P. callosum Ruiz & Pav.Barcarena, Pará state, BrazilAerial parts (HD)Safrole (66.0%), methyl eugenol (10.2%)Enzyme inhibitory (acetylcholinesterase)[62]
P. carniconnectivum C. DC.Porto Velho, Rondônia state, BrazilLeaf (HD)β-Pinene (6.3%), caryophyllene oxide (21.3%)---[122]
P. carniconnectivum C. DC.Porto Velho, Rondônia state, BrazilStem (HD)α-Pinene (8.0%), β-pinene (19.0%), spathulenol (23.7%), caryophyllene oxide (7.8%)---[122]
P. carpunya Ruiz & Pav.Cajamarca region, PeruLeaf (HD)α-Terpinene (12.1%), p-cymene (10.9%), 1,8-cineole (13.0%), safrole (14.9%), bicyclogermacrene (6.7%), spathulenol (9.8%)---[123]
P. carpunya Ruiz & Pav.Cajamarca region, PeruFloral (HD) aα-Pinene (6.2%), α-terpinene (9.8%), p-cymene (7.7%), 1,8-cineole (30.2%), safrole (32.0%)---[123]
P. cernuum Vell.Universidade de São Paulo, BrazilLeaf (HD)α-Pinene (7.2%), β-pinene (6.2%), β-caryophyllene (20.7%), germacrene D (6.7%), bicyclogermacrene (21.9%)Antimicrobial, agar diffusion assay (Staphylococcus aureus, Candida albicans)[38]
P. cernuum Vell.São Francisco de Assis Natural Reserve, Blumenau, Santa Catarina state, BrazilAerial parts (HD)trans-Dihydroagarofuran (31.0%), elemol (12.0%), 10-epi-γ-eudesmol (13.0%)---[124]
P. cernuum Vell.Universidade de São Paulo, BrazilLeaf (HD)β-Elemene (7.2%), β-caryophyllene (22.2%), germacrene D (9.3%), bicyclogermacrene (25.1%), (Z)-α-bisabolene (5.7%), spathulenol (7.2%)---[35,60]
P. cernuum Vell.Universidade de São Paulo, BrazilFloral (HD) aα-Copaene (6.5%), β-caryophyllene (9.8%), germacrene D (14.3%), bicyclogermacrene (6.5%), spathulenol (9.7%)Antifungal, TLC bioautography (Cladosporium cladosporioides, C. sphaerospermum)[60]
P. cernuum Vell.Reserva da Matinha, Ilhéus, Bahia state, BrazilLeaf (HD)β-Elemene (11.6%), β-caryophyllene (8.3%), cis-β-guaiene (8.2%), γ-muurolene (7.6%), epi-cubebol (13.1%), spathulenol (9.6%), caryophyllene oxide (7.7%), valeranone (9.1%)---[125]
P. cernuum Vell.Parque Ecológico do Pereque, Cubatão, São Paulo state, BrazilLeaf (HD)β-Elemene (30.0%), β-caryophyllene (16.3%), germacrene D (12.7%), bicyclogermacrene (19.9%)Cytotoxic (B16F10-Nex2 murine melanoma, IC50 30 μg/mL; A2058 human melanoma, IC50 24 μg/mL; U87-MG human glioblastoma, IC50 19.1 μg/mL; HeLa human cervical tumor, IC50 23 μg/mL; HL-60 humal myloid leukemia, IC50 16 μg/mL)[39]
P. cernuum Vell.Parque Ecológico do Pereque, Cubatão, São Paulo state, BrazilBranches (HD)Camphene (46.4%), p-cymene (5.8%), linalool (8.7%), α-terpineol (11.6%), carvacrol (11.6%) dCytotoxic (B16F10-Nex2 murine melanoma, IC50 39.0 μg/mL; A2058 human melanoma, IC50 24.6 μg/mL; U87-MG human glioblastoma, IC50 19.0 μg/mL; HeLa human cervical tumor, IC50 23.6 μg/mL; HL-60 humal myloid leukemia, IC50 15.5 μg/mL)[96]
P. cernuum Vell.Ubatuba, São Paulo state, BrazilLeaf (HD)α-Pinene (10.0%), camphene (6.3%), trans-dihydroagarofuran (28.7%), 10-epi-γ-eudesmol (13.5%), 4-epi-cis-dihydroagarofuran (10.8%)---[31]
P. cernuum Vell.Pariquera-Açu, São Paulo state, BrazilLeaf (HD)α-Pinene (11.8%), camphene (8.7%), trans-dihydroagarofuran (33.8%), 10-epi-γ-eudesmol (12.2%)---[31]
P. cernuum Vell.Antonina, Paraná state, BrazilLeaf (HD)α-Pinene (11.4%), β-pinene (7.9%), β-elemene (10.1%), β-caryophyllene (6.9%), spathulenol (11.5%), caryophyllene oxide (5.1%), τ-muurolol (6.2%), α-muurolol (5.8%)Antileishmanial (L. amazonensis promastigotes, IC50 27.1 μg/mL; L. amazonensis axenic amastigotes, IC50 > 200 μg/mL), anti-Mycobacterium tuberculosis (MIC 125 μg/mL)[70]
P. cernuum Vell.Blumenau, Santa Catarina state, BrazilLeaf (HD)α-Pinene (2.6–5.4%), β-caryophyllene (5.9–8.7%), 4-epi-cis-dihydroagarofuran (11.2–13.4%), trans-dihydroagarofuran (30.0–36.7%), elemol (5.9–9.2%), γ-eudesmol (8.3–13.3%)Antibacterial, agar dilution assay (Bacillus subtilis, MIC 48 μg/mL; Staphylococcus aureus, MIC 780 μg/mL; Streptococcus pyogenes, MIC 780 μg/mL); antifungal, agar dilution assay (Microsporum canis, Microsporum gypseum, Trichophyton mentagrophytes, Trichophyton rubrum, Epidermophyton flocosum, Cryptococcus neoformans, MIC 48 μg/mL)[37]
P. cernuum Vell. var. cernuum Tijuca Forest, Rio de Janeiro state, BrazilLeaf (HD)α-Pinene (10.2%), camphene (5.3%), β-pinene (7.4%), cis-dihydroagarofuran (32.3%), elemol (6.7%)---[36]
P. claussenianum (Miq.) C. DC.São Manoel, Castelo, Espírito Santo, BrazilLeaf (HD)Linalool (2.1–5.2%), (E)-nerolidol (81.4–83.3%)Antileishmanial (promastigotes of L. amazonensis, IC50 30.24 μg/mL) Anticandidal (C. albicans, MIC 0.2–1.26%)[71,126]
P. claussenianum (Miq.) C. DC.São Manoel, Castelo, Espírito Santo, BrazilFloral (HD) aLinalool (50.2–54.5%), (E)-nerolidol (22.7–24.3%)Antileishmanial (promastigotes of L. amazonensis, IC50 1328 μg/mL) Anticandidal (C. albicans, MIC 0.04–0.1%) Antiparasitic (Plasmodium falciparum W2, IC50 7.9 μg/mL)[71,73,126]
P. corcovadense (Miq.) C. DC.Jardim Botânico de Recife, Pernambuco, BrazilLeaf (HD)α-Pinene (5.9%), terpinolene (17.4%), 4-butyl-1,2-methylenedioxybenzene (30.6%), β-caryophyllene (6.3%)Mosquito larvicidal activity (Aedes aegypti, LC50 30.5 μg/mL)[127]
P. corrugatum KuntzeValle de Anton, Cerro Caracoral, Cocle, PanamaLeaf (HD)α-Pinene (12.2%), β-pinene (26.6%), limonene (8.2%), p-cymene (8.6%), 1,8-cineole (5.9%), (E)-nerolidol (12.8%), caryophyllene oxide (8.5%)---[47]
P. crassinervium KunthUniversidade de São Paulo, BrazilLeaf (HD)β-Caryophyllene (8.1%), germacrene D (14.0%), bicyclogermacrene (9.2%), epi-α-selinene (5.0%), (E)-nerolidol (8.2%), spathulenol (9.8%), guiaol (5.8%), β-eudesmol (10.1%)Antifungal, TLC bioautography (Cladosporium cladosporioides, Cladosporium sphaerospermum)[35,60]
P. crassinervium KunthMococa, São Paulo state, BrazilLeaf (HD)α-Pinene (11.5%), β-pinene (11.6%), β-caryophyllene (7.8%), germacrene D (9.2%), bicyclogermacrene (5.1%), guaiol (5.5%)---[31]
P. curtispicum C. DC.Altos de Campana, PanamaLeaf (HD)α-Pinene (19.4%), limonene (8.1%), β-caryophyllene (13.9%)---[47]
P. cyrtopodon C. DC.Marituba, Pará state, BrazilAerial parts (HD)α-Cubebene (5.1%), β-caryophyllene (19.2%), germacrene D (10.0%), bicyclogermacrene (13.0%), spathulenol (8.4%)---[128]
P. cyrtopodon C. DC.Santarém, Pará state, BrazilAerial parts (HD)p-Cymene (6.3%), germacrene D (17.9%), bicyclogermacrene (23.3%), (E)-nerolidol (6.6%), spathulenol (6.9%)---[128]
P. cyrtopodon C. DC.Ananindeua, Pará state, BrazilAerial parts (HD)α-Pinene (7.5%), β-pinene (6.0%), β-caryophyllene (34.6%), germacrene D (13.6%), bicyclogermacrene (21.4%), spathulenol (8.4%)---[128]
P. cyrtopodon C. DC.Ananindeua, Pará state, BrazilAerial parts (HD)β-Caryophyllene (18.8%), germacrene D (14.8%), bicyclogermacrene (14.0%), germacrene B (26.8%)---[128]
P. cyrtopodon C. DC.Bujaru, Pará state, BrazilAerial parts (HD)α-Cubebene (6.7%), β-caryophyllene (18.1%), germacrene D (13.6%), bicyclogermacrene (14.9%), germacrene B (10.1%)---[128]
P. cyrtopodon C. DC.Manaus, Amazonas state, BrazilAerial parts (HD)Germacrene D (7.5%), bicyclogermacrene (8.3%), α-cadinol (9.5%), epi-α-bisabolol (26.3%)---[128]
P. dactylostigmum Yunck.Itacoatiara, Amazonas State, BrazilAerial parts (HD)β-Caryophyllene (8.9%), γ-muurolene (5.9%), β-selinene (9.0%), α-selinene (8.0%), caryophyllene oxide (6.0%), τ-muurolol (7.5%), α-cadinol (21.7%)---[129]
P. darienense C. DC.Parque Nacional Chagres, PanamaLeaf (HD)Limonene (6.3%), (E)-β-farnesene (63.7%)---[47]
P. demeraranum (Miq.) C. DC.Belém, Pará state, BrazilAerial parts (HD)α-Pinene (7.3%), sabinene (12.9%), β-pinene (7.7%), limonene (20.2%)---[130]
P. demeraranum (Miq.) C. DC.Ananindeua, Pará state, BrazilAerial parts (HD)α-Pinene (6.1–12.3%), sabinene (17.0–22.7%), β-pinene (8.2–14.4%), limonene (30.6–40.3%)---[130]
P. demeraranum (Miq.) C. DC.Adolpho Ducke Reserve, Manaus, Amazonas state, BrazilLeaf (HD)β-Pinene (6.7%), limonene (19.3%), β-elemene (33.1%), β-caryophyllene (6.0%), germacrene D (5.2%), β-selinene (5.0%), bicyclogermacrene (8.8%)Antileishmanial (L. amazonensis promastigotes, IC50 86.0 μg/mL; L. amazonensis amastigotes, IC50 78.0 μg/mL; L. guyanensis promastigotes, IC50 22.7 μg/mL)[72]
P. dilatatum Rich.Fazenda Sucupira, Embrapa, Brasília, BrazilLeaf (HD)(E)-β-Ocimene (19.7%), β-caryophyllene (11.4%), germacrene D (8.9%), bicyclogermacrene (8.8%), spathulenol (6.5%), caryophyllene oxide (5.3%)---[33]
P. dilatatum Rich.Alto Alegre, Roraima state, BrazilAerial parts (HD)β-Caryophyllene (11.7%), germacrene D (6.7%), α-selinene (6.1%), δ-cadinene (5.4%), caryophyllene oxide (6.1%), α-cadinol (12.2%)---[131]
P. dilatatum Rich.Alto Alegre, Roraima state, BrazilAerial parts (HD)β-Caryophyllene (15.5%), germacrene D (10.2%), α-selinene (6.9%), δ-cadinene (8.5%), hinesol (6.4%), α-cadinol (7.0%)---[131]
P. dilatatum Rich.Benfica, Pará state, BrazilAerial parts (HD)Germacrene D (12.6%), bicyclogermacrene (7.4%), (E)-nerolidol (10.2%), spathulenol (11.8%), hinesol (6.4%), α-cadinol (5.8%)---[131]
P. dilatatum Rich.Belterra, Pará state, BrazilAerial parts (HD)α-Pinene (9.7%), β-pinene (14.8%), (Z)-β-ocimene (10.0%), β-caryophyllene (7.4%), bicyclogermacrene (27.6%), spathulenol (15.0%)---[131]
P. dilatatum Rich.Marituba, Pará state, BrazilAerial parts (HD)p-Cymene (11.7%), β-selinene (6.4%), curzerene (13.8%), (E)-nerolidol (5.7%), α-eudesmol (8.0%), atractylone (5.1%)---[131]
P. dilatatum Rich.Marituba, Pará state, BrazilAerial parts (HD)Germacrene D (30.2%), bicyclogermacrene (9.4%), spathulenol (40.6%), hinesol (6.4%), α-cadinol (5.8%)---[131]
P. dilatatum Rich.Serra dos Carajás, Pará state, BrazilAerial parts (HD)p-Cymene (5.1%), β-elemene (21.8%), β-caryophyllene (5.1%), germacrene D (18.5%)---[131]
P. dilatatum Rich.Serra dos Carajás, Pará state, BrazilAerial parts (HD)β-Pinene (10.5%), limonene (6.4%), δ-elemene (7.6%), β-elemene (13.8%), bicyclogermacrene (7.9%), spathulenol (9.3%)---[131]
P. dilatatum Rich.Angico, Tocantins state, BrazilAerial parts (HD)(Z)-β-Farnesene (7.0%), germacrene D (24.5%), bicyclogermacrene (6.7%), β-bisabolene (8.1%), (Z)-α-bisabolene (39.3%)---[131]
P. dilatatum Rich.Xambioá, Tocantins state, BrazilAerial parts (HD)Germacrene D (8.5%), bicyclogermacrene (34.7%), spathulenol (35.2%)---[131]
P. dilatatum Rich.Xambioá, Tocantins state, BrazilAerial parts (HD)Germacrene D (15.2%), curzerene (28.7%), β-bisabolene (5.5%), (Z)-α-bisabolene (23.2%)---[131]
P. dilatatum Rich.Carolina, Maranhão state, BrazilAerial parts (HD)Limonene (19.4%), germacrene D (43.0%), bicyclogermacrene (13.2%)---[131]
P. diospyrifolium KunthUniversidade de São Paulo, BrazilLeaf (HD)(E)-Nerolidol (18.2%), spathulenol (25.4%), caryophyllene oxide (7.7%), globulol (6.6%), humulene epoxide II (6.9%)---[35,60]
P. diospyrifolium KunthUniversidade de São Paulo, BrazilFloral (HD) aα-Copaene (47.7%), β-caryophyllene (12.3%), α-humulene (5.7%)---[60]
P. diospyrifolium KunthMaringá, Parana state, BrazilLeaf (HD)Limonene (8.5%), (E)-β-ocimene (5.8%), β-caryophyllene (16.8%), γ-muurolene (10.6%), cis-eudesma-6,11-diene (21.1%), germacrene B (6.2%)Antifungal, agar diffusion assay (Candida albicans, Candida parapsilosis, Candida tropicalis)[55]
P. diospyrifolium KunthAntonina, Paraná state, BrazilLeaf (HD)α-Pinene (6.7%), limonene (6.7%), α-copaene (5.4%), β-caryophyllene (7.4%), γ-gurjunene (6.9%), germacrene B (6.7%), selin-11-en-4α-ol (17.7%)Antileishmanial (L. amazonensis promastigotes, IC50 13.5 μg/mL; L. amazonensis axenic amastigotes, IC50 76.1 μg/mL; anti-Mycobacterium tuberculosis, MIC 125 μg/mL)[70]
P. divaricatum G. Mey.Guaramiranga Mountain, Ceará state, BrazilLeaf (HD)α-Pinene (9.0–18.8%), β-pinene (19.9–25.3%), 1,8-cineole (8.9–9.6%), linalool (23.4–29.7%), germacrene D (6.3–6.5%)---[132]
P. divaricatum G. Mey.Guaramiranga Mountain, Ceará state, BrazilFloral (HD) aα-Pinene (6.3–17.6%), β-pinene (12.0–18.0%), α-phellandrene (4.6–10.0%), 1,8-cineole (0.7–12.0%), linalool (3.3–8.3%), β-caryophyllene (9.0–11.4%), germacrene D (0.9–6.1%), bicyclogermacrene (5.3–6.9%)---[132]
P. divaricatum G. Mey.Marajó Island, Breves, Pará state, BrazilAerial parts (HD)Eugenol (23.6%), methyleugenol (63.8%)Antifungal (Cladosporium cladosporioides, MIC 0.5 μg/mL; Cladosporium sphaerospermum, 5.0 μg/mL); antioxidant (DPPH radical scavenging assay, IC50 16.2 μg/mL)[40]
P. divaricatum G. Mey.Breves, Pará state, BrazilAerial parts (HD)Eugenol (16.2%), methyleugenol (69.2%)Insecticidal (Solenopsis saevissima, IC50 453 μg/mL)[41]
P. divaricatum G. Mey.Itabuna, Bahia state, BrazilLeaf (HD)Safrole (98.0%)Antibacterial (Listeria monocytogenes, MIC 156 μg/mL)[44]
P. divaricatum G. Mey.Rovira, Tolima, ColombiaAerial parts (MWHD)α-Pinene (11.4%), β-pinene (5.1%), α-phellandrene (6.1%), 1,8-cineole (18.3%), linalool (15.0%), β-caryophyllene (8.2%)Antiprotozoal (Trypanosoma cruzi epimastigotes, IC50 13.1 μg/mL; Leishmania infantum promastigotes, IC50 73.3 μg/mL); cytotoxic (Vero cells, IC50 89.8 μg/mL) Antifungal, broth dilution assay (Trichophyton rubrum, MIC 397 μg/mL; Trichophyton mentagrophytes, MIC 500 μg/mL); cytotoxic (Vero cells, IC50 200 μg/mL)[118,121]
P. divaricatum G. Mey.Marajó Island, Breves, Pará state, BrazilAerial parts (HD)Eugenol (7.9%), methyleugenol (77.1%)Antifungal (Fusarium solani f. sp. piperis, IC50 698 μg/mL)[42]
P. divaricatum G. Mey.Breves, Pará state, BrazilLeaf (HD)Methyleugenol (80.6–93.3%)---[43]
P. dolichotrichum Yunck.Quibdó, Chocó, ColombiaAerial parts (MWHD)β-Elemene (6.4%), β-caryophyllene (9.8%), germacrene D (16.7%), bicyclogermacrene (6.2%), α-guaiene (5.9%)---[120]
P. dotanum Trel.Monteverde, Costa RicaLeaf (HD)α-Thujene (5.2%), sabinene (50.4%), germacrene D (15.3%), bicyclogermacrene (7.4%)---[34]
P. duckei C. DC.Adolpho Ducke Reserve, Manaus, Amazonas state, BrazilLeaf (HD)1,8-Cineole (5.8%), β-caryophyllene (27.1%), germacrene D (14.7%), bicyclogermacrene (5.2%), γ-eudesmol (17.9%)Antileishmanial (L. amazonensis promastigotes, IC50 46.0 μg/mL; L. amazonensis amastigotes, IC50 42.4 μg/mL; L. guyanensis promastigotes, IC50 15.2 μg/mL)[72]
P. dumosum RudgePorto Velho, Rondônia state, BrazilLeaf (HD)α-Pinene (12.1%), β-pinene (16.0%), α-phellandrene (5.2%), β-caryophyllene (15.9%), aromadendrene (6.9%), bicyclogermacrene (16.2%)---[105]
P. eriopodon (Miq.) C. DC.Pueblo Bello, Cesar, ColombiaAerial parts (MWHD)β-Caryophyllene (8.1%), β-selinene (5.0%), dillapiole (38.8%)Antifungal, broth dilution assay (Trichophyton mentagrophytes, MIC 500 μg/mL); cytotoxic (Vero cells, IC50 15.8 μg/mL)[121]
P. fimbriulatum C. DC.Altos de Campana National Park, PanamaLeaf (HD)Linalool (5.3%), linalyl acetate (5.3%), β-caryophyllene (11.3%), germacrene D (12.8%)---[111]
P. fimbriulatum C. DC.Monteverde, Costa RicaLeaf (HD)α-Pinene (10.2%), δ-elemene (9.4%), germacrene D (32.9%), bicyclogermacrene (8.1%)Antibacterial (Bacillus cereus, MIC 39 μg/mL)[34]
P. friedrichsthalii C. DC.Pacayas, Cartago, Costa RicaLeaf (HD)α-Pinene (14.7%), camphene (5.2%), germacrene D (7.1%)---[133]
P. friedrichsthalii C. DC.Pacayas, Cartago, Costa RicaFloral (HD) aα-Pinene (13.4%), β-phellandrene (5.2%), trans-p-menth-2-en-1-ol (7.0%), cis-p-menth-2-en-1-ol (5.1%)---[133]
P. friedrichsthalii C. DC.Fortuma, Quebrada Honda, Chiriqui, PanamaLeaf (HD)Germacrene D (9.6%), α-selinene (12.0%), β-selinene (7.9%), selin-11-en-4α-ol (12.8%)---[133]
P. gaudichaudianum KunthSapiranga, Rio Grande do Sul state, BrazilLeaf (HD)β-Pinene (5.6%), β-caryophyllene (17.4%), α-humulene (37.5%), allo-aromadendrene (7.7%)---[134]
P. gaudichaudianum KunthUniversidade de São Paulo, BrazilAerial parts (HD)β-Caryophyllene (12.1%), α-humulene (13.3%), β-selinene (15.7%), α-selinene (16.6%)---[135]
P. gaudichaudianum KunthUniversidade de São Paulo, BrazilAerial parts (HD)β-Caryophyllene (19.3%), α-humulene (29.2%), α-selinene (8.9%)---[135]
P. gaudichaudianum KunthState of Rondônia, BrazilLeaf (HD)Aromadendrene (15.6%), ishwarane (10.0%), β-selinene (10.5%), viridiflorol (27.5%), selin-11-en-4α-ol (8.5%)Mosquito larvicidal (Aedes aegypti, LC50 121 μg/mL)[136]
P. gaudichaudianum KunthRiozinho, Rio Grande do Sul state, BrazilLeaf (HD)β-Caryophyllene (8.9%), α-humulene (16.5%), bicyclogermacrene (7.4%), (E)-nerolidol (22.4%)Cytotoxic (V79 Chinese hamster lung cells, IC50 4.0 μg/mL)[137]
P. gaudichaudianum KunthUniversidade de São Paulo, BrazilLeaf (HD)β-Caryophyllene (15.6%), α-humulene (23.4%), β-selinene (6.6%), viridiflorene (8.1%), hinesol (6.4%), α-cadinol (7.0%)Antifungal, broth dilution assay (Candida krusei, MIC 31.25 μg/mL)[35]
P. gaudichaudianum KunthRiozinho, Rio Grande do Sul state, BrazilLeaf (HD)β-Caryophyllene (7.5%), α-humulene (21.3%), bicyclogermacrene (13.2%), (E)-nerolidol (22.1%)Not mutagenic (Saccharomyces cerevisiae); EO and nerolidol generate reactive oxygen species[138]
P. gaudichaudianum KunthPariquera-Açu, São Paulo state, BrazilLeaf (HD)α-Pinene (12.2%), β-pinene (7.0%), β-caryophyllene (8.5%), trans-β-guaiene (6.9%), (E)-nerolidol (17.5%), caryophyllene oxide (8.5%)---[31]
P. gaudichaudianum KunthAntonina, Paraná state, BrazilLeaf (HD)δ-3-Carene (5.9%), γ-elemene (5.4%), δ-cadinene (45.3%)Antileishmanial (L. amazonensis promastigotes, IC50 93.5 μg/mL)[70]
P. glabratum KunthReserva da Matinha, Ilhéus, Bahia state, BrazilLeaf (HD)(Z)-Caryophyllene (5.2%), β-caryophyllene (14.6%), δ-cadinene (6.3%), (E)-nerolidol (5.3%), longiborneol (12.0%)---[125]
P. glabrescens (Miq.) C. DC.Monteverde, Costa RicaLeaf (HD)α-Pinene (26.0%), limonene (56.6%)Cytotoxic (MCF-7 human breast adenocarcinoma)[34]
P. grande VahlParque Nacional Camino de Cruces, PanamaLeaf (HD)α-Pinene (6.3%), β-pinene (14.5%), γ-terpinene (8.0%), p-cymene (43.9%)---[47]
P. heterophyllum Ruiz & Pav.Estancia, BoliviaLeaf (SD)α-Pinene (9.3%), β-pinene (6.2%), 1,8-cineole (39.0%), (E)-β-ocimene (6.5%), asaricin (8.8%)---[101]
P. hispidinervum C. DC.Porto Alegre, Rio Grande do Sul state, BrazilLeaf (HD)Terpinolene (5.4%), safrole (85.1%)Amebicidal (Acanthamoeba polyphaga trophozoites, LC50 66 μg/mL)[139]
P. hispidum Sw.Rondônia state, BrazilLeaf (SD)α-Pinene (5.2%), camphene (15.6%), β-phellandrene (9.7%), β-caryophyllene (5.4%), α-guaiene (11.5%), γ-cadinene (25.1%), γ-elemene (10.9%) c---[112]
P. hispidum Sw.Pinar del Río, CubaLeaf (HD)Curzerene (12.9%), elemol (7.6%), γ-eudesmol (9.3%), β-eudesmol (17.5%), α-eudesmol (8.1%), 14-Hydroxy-α-muurolene (5.0%)---[46]
P. hispidum Sw.Fazenda Sucupira, Embrapa, Brasília, BrazilLeaf (HD)α-Pinene (9.0%), β-pinene (19.7%), δ-3-carene (7.4%), spathulenol (6.2%), α-cadinol (6.9%)---[33]
P. hispidum Sw.Pacurita, Chocó, ColombiaLeaf (HD)β-Elemene (5.1%), β-caryophyllene (5.1%), (E)-nerolidol (23.6%), caryophyllene oxide (5.4%)---[48]
P. hispidum Sw.Fênix, Paraná state, BrazilFloral (HD) aα-Pinene (7.1–13.9%), β-pinene (7.5–13.3%), α-copaene (28.7–36.2%)---[108]
P. hispidum Sw.Chiguará, Mérida state, VenezuelaLeaf (HD)α-Pinene (15.3%), β-pinene (14.8%), δ-3-carene (6.9%), β-elemene (8.1%), β-caryophyllene (6.2%), germacrene B (5.2%), spathulenol (5.0%), caryophyllene oxide (7.8%)Antibacterial (Bacillus subtilis, MIC 12.5 μg/mL; Bacillus cereus, MIC 12.5 μg/mL; Staphylococcus aureus, MIC 12.5 μg/mL; Staphylococcus epidermidis, MIC 12.5 μg/mL; Staphylococcus saprophyticus, MIC 12.5 μg/mL; Enterococcus faecalis, MIC 15.0 μg/mL), antifungal (Candida albicans, MIC 200 μg/mL), cytotoxic (HeLa human cervical carcinoma, IC50 36.6 μg/mL; A-549 human lung carcinoma, IC50 37.5 μg/mL; MCF-7 human breast adenocarcinoma, IC50 34.2 μg/mL)[97]
P. hispidum Sw.Reserva da Matinha, Ilhéus, Bahia state, BrazilLeaf (HD)α-Pinene (6.6%), β-pinene (12.0%), khusimene (12.1%), γ-cadinene (13.2%), δ-cadinene (6.3%), ledol (8.8%)---[125]
P. hispidum Sw.Carajás National Forest, Parauapebas, Pará state, BrazilAerial parts (HD)δ-3-Carene (9.1%), limonene (6.9%), α-copaene (7.3%), β-caryophyllene (10.5%), α-humulene (9.5%), β-selinene (5.1%), caryophyllene oxide (5.9%)Antifungal, TLC bioautography (Cladosporium cladosporioides, Cladosporium sphaerospermum); enzyme inhibitory, TLC bioautography (acetylcholinesterase)[61]
P. hispidum Sw.Atrato, Chocó, ColombiaAerial parts (MWHD)β-Elemene (5.1%), β-caryophyllene (5.1%), (E)-nerolidol (23.6%), caryophyllene oxide (5.4%)Antifungal, broth dilution assay (Fusarium oxysporum, MIC 500 μg/mL; Trichophyton rubrum, MIC 99 μg/mL; Trichophyton mentagrophytes, MIC 125 μg/mL); cytotoxic (Vero cells, IC50 51.7 μg/mL)[121]
P. hispidum Sw.Altos de Campana, PanamaLeaf (HD)Piperitone (10.0%), dillapiole (57.7%)Mosquito larvicidal (Aedes aegypti, LC100 250 μg/mL)[47]
P. hostmannianum (Miq.) C. DC.State of Rondônia, BrazilLeaf (HD)Piperitone (5.6%), germacrene D (6.8%), asaricin (27.4%), myristicin (20.3%), dillapiole (7.7%)Mosquito larvicidal (Aedes aegypti, LC50 54 μg/mL)[136]
P. humaytanum Yunck.State of Rondônia, BrazilLeaf (HD)β-Selinene (15.8%), sesquicineole (5.0%), spathulenol (6.3%), caryophyllene oxide (16.6%), β-oplopenone (6.0%)Mosquito larvicidal (Aedes aegypti, LC50 156 μg/mL)[136]
P. ilheusense Yunck.Ilheus, Bahia, BrazilLeaf (HD)β-Caryophyllene (11.8%), γ-cadinene (6.9%), germacrene B (7.2%), gleenol (7.5%), patchouli alcohol (11.1%)Antimicrobial, agar diffusion assay (Bacillus subtilis, Staphylococcus aureus, Candida albicans, Candida crusei, Candida parapsilosis)[57]
P. imperiale (Miq.) C. DC.Monteverde, Costa RicaLeaf (HD)β-Elemene (5.2%), β-caryophyllene (25.5%), α-guaiene (7.6%), germacrene D (5.5%), bicyclogermacrene (19.7%), germacrene A (8.5%), α-bulnesene (10.8%), dillapiole (6.7%)Antibacterial (Bacillus cereus, MIC 156 μg/mL), cytotoxic (MCF-7 human breast adenocarcinoma)[34]
P. jacquemontianum KunthLachuá, Alta Verapaz, GuatemalaLeaf (HD)Linalool (69.4%), (E)-nerolidol (8.0%)---[140]
P. jacquemontianum KunthParque Nacional Soberania, PanamaLeaf (HD)α-Pinene (9.6%), β-pinene (10.1%), α-phellandrene (13.8%), limonene (12.2%), p-cymene (7.4%), linalool (14.5%)---[47]
P. klotzschianum (Kunth) C. DC.Vila do Riacho, Gimuna Forest, Aracruz, Espírito Santo, BrazilLeaf (HD)4-Butyl-1,2-methylenedioxybenzene (81.0%), γ-asarone (9.1%)---[141]
P. klotzschianum (Kunth) C. DC.Vila do Riacho, Gimuna Forest, Aracruz, Espírito Santo, BrazilRoot (HD)4-Butyl-1,2-methylenedioxybenzene (96.2%)Mosquito larvicidal activity (Aedes aegypti, LC50 10.0 μg/mL)[141]
P. klotzschianum (Kunth) C. DC.Vila do Riacho, Gimuna Forest, Aracruz, Espírito Santo, BrazilSeed (HD)α-Phellandrene (17.0%), p-cymene (7.4%), limonene (17.8%), 4-Butyl-1,2-methylenedioxybenzene (36.9%), α-trans-bergamotene (8.8%)Mosquito larvicidal activity (Aedes aegypti, LC50 13.3 μg/mL)[141]
P. klotzschianum (Kunth) C. DC.Vila do Riacho, Gimuna Forest, Aracruz, Espírito Santo, BrazilStem (HD)4-Butyl-1,2-methylenedioxybenzene (84.8%), γ-asarone (5.4%)---[141]
P. krukoffii Yunck.Carajás National Forest, Parauapebas, Pará state, BrazilAerial parts (HD)β-Elemene (1.7–8.2%), myristicin (26.7–40.6%), τ-muurolol (0.2–5.7%), apiole (25.3–34.1%)---[142]
P. lanceifolium Kunth San Isidro del Tejar, Costa RicaLeaf (HD)β-Caryophyllene (20.6%), germacrene D (12.5%), elemicin (24.4%), apiole (11.7%)---[143]
P. lanceifolium Kunth San Isidro del Tejar, Costa RicaFloral (HD) aα-Pinene (13.7%), β-pinene (15.8%), γ-terpinene (6.9%), β-caryophyllene (5.1%), elemicin (16.4%), apiole (9.8%)---[143]
P. lanceifolium Kunth Monteverde, Costa RicaLeaf (HD)Dillapiole (74.6%)---[34]
P. lanceifolium Kunth Bagadó, Chocó, ColombiaAerial parts (MWHD)β-Pinene (5.4%), β-caryophyllene (11.6%), germacrene D (10.7%), β-selinene (7.8%), δ-cadinene (6.1%), caryophyllene oxide (5.9%)Antiprotozoal (Trypanosoma cruzi epimastigotes, IC50 7.48 μg/mL; Leishmania infantum promastigotes, IC50 37.8 μg/mL); cytotoxic (Vero cells, IC50 46.0 μg/mL; THP-1 human monocytic leukemia, IC50 55.7 μg/mL)[118]
P. leptorum KunthMonte Alegre do Sul, São Paulo state, BrazilLeaf (HD)Seychellene (34.7%), caryophyllene oxide (12.5%)---[31]
P. longispicum C. DC.Altos de Campana, PanamaLeaf (HD)β-Caryophyllene (45.2%), caryophyllene oxide (5.5%)Mosquito larvicidal (Aedes aegypti, LC100 250 μg/mL)[47]
P. lucaeanum var. grandifolium Yunck.Rio de Janeiro state, BrazilLeaf (HD)α-Pinene (30.0%), β-caryophyllene (5.0%), α-zingiberene (30.4%), β-bisabolene (8.9%), β-sesquiphellandrene (11.1%)Antiparasitic (Plasmodium falciparum W2, IC50 2.65 μg/mL)[73]
P. madeiranum Yunck.Reserva da Matinha, Ilhéus, Bahia state, BrazilLeaf (HD)β-Caryophyllene (11.2%), germacrene D-4-ol (11.1%), 1,10-di-epi-cubenol (7.0%), α-bisabolol (7.1%), epi-α-bisabolol (5.4%)---[125]
P. malacophyllum (C. Presl) C. DC.Florianópolis, Santa Catarina, BrazilLeaf (HD)α-Pinene (5.0%), camphene (30.8%), camphor (32.8%)Antibacterial (Staphylococcus aureus, MIC 3700 μg/mL; Bacillus cereus, MIC 1850 μg/mL; Acinetobacter baumanii, MIC 3700 μg/mL; Escherichia coli, MIC 1850 μg/mL; Pseudomonas aeruginosa, MIC 3700 μg/mL); antifungal (Epidermophyton flocosum, MIC 1000 μg/mL; Microsporum gypseum, MIC 1000 μg/mL; Trichophyton mentagrophytes, MIC 500 μg/mL; Trichophyton rubrum, MIC 1000 μg/mL; Candida albicans, MIC 1000 μg/mL; Cryptococcus neoformans, MIC 500 μg/mL); antiparasitic (Trypanosoma cruzi epimastigotes, IC50 312 μg/mL)[56]
P. manausense Yunck.Ananindeua, Pará state, BrazilAerial parts (HD)α-Pinene (5.2–6.6%), β-pinene (4.7–6.5%), β-caryophyllene (7.7–8.5%), germacrene D (3.5–6.1%), bicyclogermacrene (32.0–34.0%), δ-cadinene (5.8–7.0%), gleenol (6.8–9.4%)---[144]
P. manausense Yunck.Acará, Pará state, BrazilAerial parts (HD)α-Pinene (9.1%), β-pinene (9.2%), β-caryophyllene (5.9%), bicyclogermacrene (41.0%), δ-cadinene (5.8%)---[144]
P. manausense Yunck.Marituba, Pará state, BrazilAerial parts (HD)β-Caryophyllene (6.0%), aromadendrene (5.0%), bicyclogermacrene (7.8%), spathulenol (15.0%), globulol (9.4%), α-muurolol (7.6%)---[144]
P. marginatum Jacq.Itacoatiara, Amazonas State, BrazilLeaf (HD)(E)-β-Ocimene (5.2%), α-copaene (5.6%), β-caryophyllene (9.1%), γ-elemene (8.5%), propiopiperone (18.2%)---[145]
P. marginatum Jacq.Itacoatiara, Amazonas State, BrazilStem (HD)δ-3-Carene (6.9%), β-caryophyllene (11.6%), myristicin (19.3%), propiopiperone (18.6%)---[145]
P. marginatum Jacq.Monteverde, Costa RicaAerial parts (HD)p-Cymene (7.1%), estragole (6.6%), p-anisaldehyde (22.0%), (E)-anethole (45.9%), anisyl methyl ketone (14.2%)---[49]
P. marginatum Jacq.Cultivated (State University of Campinas, São Paulo, Brazil)Leaf (HD)---Antibacterial (Escherichia coli, MIC 700 μg/mL)[52]
P. marginatum Jacq.Monte Alegre, Pará state, BrazilLeaf (HD)(E)-β-Ocimene (5.6%), safrole (63.9%), methyleugenol (5.9%), propiopiperone (7.3%)---[45]
P. marginatum Jacq.Xambioá, Tocantins state, BrazilLeaf (HD)Safrole (52.3–52.5%), myristicin (6.3–9.3%), propiopiperone (11.8–14.1%)---[45]
P. marginatum Jacq.Nazaré, Tocantins state, BrazilLeaf (HD)Safrole (41.1%), myristicin (8.2%), propiopiperone (30.4%)---[45]
P. marginatum Jacq.Monte Alegre, Pará state, BrazilLeaf (HD)(Z)-β-Ocimene (5.3%), (E)-β-ocimene (13.5%), safrole (23.9%), β-caryophyllene (6.0%), propiopiperone (33.2%)---[45]
P. marginatum Jacq.Belém, Pará state, BrazilLeaf (HD)p-Mentha-1(7),8-diene (39.0%), (E)-β-ocimene (9.8%), propiopiperone (19.0%) ---[45]
P. marginatum Jacq.Alter do Chão, Pará state, BrazilLeaf (HD)α-Pinene (5.0%), p-mentha-1(7),8-diene (34.8%), (E)-β-ocimene (8.7%), propiopiperone (23.1%), elemicin (6.5%) ---[45]
P. marginatum Jacq.Belterra, Pará state, BrazilLeaf (HD)p-Mentha-1(7),8-diene (22.9%), (E)-β-ocimene (8.2%), propiopiperone (40.7%) ---[45]
P. marginatum Jacq.Melgaço, Pará state, BrazilLeaf (HD)(E)-β-Ocimene (8.0%), safrole (10.4%), germacrene D (8.1%), bicyclogermacrene (6.4%), myristicin (16.0%), propiopiperone (17.4%)---[45]
P. marginatum Jacq.Xinguara, Pará state, BrazilLeaf (HD)(Z)-β-Ocimene (8.6%), (E)-β-ocimene (15.2%), germacrene D (10.4%), myristicin (5.4%), propiopiperone (14.5%), τ-muurolol (5.0%)---[45]
P. marginatum Jacq.Manaus, Amazonas state, BrazilLeaf (HD)Safrole (6.4%), α-copaene (7.4%), β-caryophyllene (9.5%), germacrene D (5.5%), propiopiperone (25.0%)---[45]
P. marginatum Jacq.Macapá, Amapá state, BrazilLeaf (HD)(E)-β-Ocimene (5.5%), β-caryophyllene (10.6%), myristicin (9.6%), propiopiperone (22.9%)---[45]
P. marginatum Jacq.Monte Alegre, Pará state, BrazilLeaf (HD)(Z)-β-Ocimene (5.7%), (E)-β-ocimene (13.5%), β-caryophyllene (9.3%), propiopiperone (40.2%)---[45]
P. marginatum Jacq.Viseu, Pará state, BrazilLeaf (HD)γ-Terpinene (14.4%), myristicin (5.0%), propiopiperone (29.6%), spathulenol (6.6%)---[45]
P. marginatum Jacq.Alta Floresta, Mato Grosso state, BrazilLeaf (HD)γ-Terpinene (8.6%), myristicin (5.5%), propiopiperone (18.4%)---[45]
P. marginatum Jacq.Manaus, Amazonas state, BrazilLeaf (HD)γ-Terpinene (6.5%), safrole (5.7%), β-caryophyllene (13.3%), germacrene D (8.7%), propiopiperone (7.9%)---[45]
P. marginatum Jacq.Manaus, Amazonas state, BrazilLeaf (HD)(Z)-β-Ocimene (5.2%), (E)-β-ocimene (8.7%), α-copaene (11.4%), β-caryophyllene (10.2%), germacrene D (7.6%), bicyclogermacrene (8.2%), propiopiperone (10.4%)---[45]
P. marginatum Jacq.Salvaterra, Pará state, BrazilLeaf (HD)p-Mentha-1(7),8-diene (5.2%), (Z)-anethole (8.4%), (E)-anethole (16.5%), isoosmorhizole (17.4%), (E)-isoosmorhizole (29.1%) ---[45]
P. marginatum Jacq.Manaus, Amazonas state, BrazilLeaf (HD)(Z)-Anethole (6.0%), (E)-anethole (26.4%), isoosmorhizole (11.2%), (E)-isoosmorhizole (32.2%) ---[45]
P. marginatum Jacq.Óbidos, Pará state, BrazilLeaf (HD)(E)-Anethole (13.6%), isoosmorhizole (24.5%), (E)-isoosmorhizole (46.8%) ---[45]
P. marginatum Jacq.Medicilândia, Pará state, BrazilLeaf (HD)β-Caryophyllene (6.7%), (E)-isoosmorhizole (15.8%), crocatone (21.9%), 2′-methoxy-4′,5′-methylenedioxypropiophenone (26.3%)---[45]
P. marginatum Jacq.Paredão, Roraima state, BrazilLeaf (HD)β-Caryophyllene (13.6%), bicyclogermacrene (11.7%), (Z)-asarone (8.8%), exalatacin (7.9%), (E)-asarone (10.8%)---[45]
P. marginatum Jacq.Venadillo, Tolima, ColombiaAerial parts (HD)α-Phellandrene (11.1%), limonene (7.5%), β-caryophyllene (11.0%), elemicin (18.0%), isoelemicin (9.2%)---[120]
P. marginatum Jacq.Universidade Federal Rural de Pernambuco, Recife, BrazilLeaf (HD)β-Caryophyllene (7.5%), α-acoradiene (5.1%), bicyclogermacrene (9.4%), elemol (9.7%), (Z)-asarone (30.4%), patchouli alcohol (16.0%), (E)-asarone (6.4%)Mosquito larvicidal (Aedes aegypti, LC50 23.8 μg/mL)[146]
P. marginatum Jacq.Universidade Federal Rural de Pernambuco, Recife, BrazilFloral (HD) aα-Copaene (9.4%), β-caryophyllene (13.1%), α-acoradiene (9.7%), patchouli alcohol (23.4%), (E)-asarone (22.1%)Mosquito larvicidal (Aedes aegypti, LC50 19.9 μg/mL)[146]
P. marginatum Jacq.Universidade Federal Rural de Pernambuco, Recife, BrazilStem (HD)β-Caryophyllene (6.8%), seychellene (5.8%), elemicin (6.9%), (Z)-asarone (8.5%), patchouli alcohol (25.7%), (E)-asarone (32.6%)Mosquito larvicidal (Aedes aegypti, LC50 19.9 μg/mL)[146]
P. marginatum Jacq.Belém, Pará state, BrazilAerial parts (HD)p-Mentha-1(7),8-diene (39.0%), (E)-β-ocimene (9.8%), propiopiperone (19.0%) Insecticidal (Solenopsis saevissima, IC50 240 μg/mL)[41]
P. marginatum Jacq.Manaus, Amazonas state, BrazilAerial parts (HD)(E)-Anethole (26.4%), isoosmorhizole (11.2%), (E)-isoosmorhizole (32.2%)Insecticidal (Solenopsis saevissima, IC50 439 μg/mL)[41]
P. marginatum Jacq.Venadillo, Tolima, ColombiaAerial parts (MWHD)α-Phellandrene (11.2%), limonene (7.6%), β-caryophyllene (11.1%), elemicin (18.4%), isoelemicin (9.3%)Antiprotozoal (Trypanosoma cruzi epimastigotes, IC50 16.2 μg/mL; Leishmania infantum promastigotes, IC50 88.7 μg/mL); cytotoxic (Vero cells, IC50 40.2 μg/mL) Antifungal, broth dilution assay (Trichophyton rubrum, MIC 500 μg/mL; Trichophyton mentagrophytes, MIC 250 μg/mL)[118,121]
P. marginatum Jacq.Belém, Pará state, BrazilAerial parts (HD)β-Caryophyllene (5.0%), propiopiperone (21.8%), elemol (5.9%)Antifungal, TLC bioautography (Cladosporium cladosporioides, Cladosporium sphareospermum), enzyme inhibitory (acetylcholinesterase)[62]
P. mikanianum (Kunth) Steud.Sapiranga, Rio Grande do Sul state, BrazilLeaf (HD)α-Pinene (6.5%), myrcene (5.6%), limonene (14.8%), β-caryophyllene (10.5%), bicyclogermacrene (14.3%)---[134]
P. mikanianum (Kunth) Steud.Atalanta, Santa Catarina state, BrazilLeaf (HD)Safrole (82.0%)---[147]
P. mikanianum (Kunth) Steud.Curitiba, Paraná state, BrazilLeaf (HD)Bicyclogermacrene (5.3%), (Z)-isoelemicin (21.5%), (E)-asarone (11.6%), β-vetivone (33.5%)---[148]
P. mikanianum (Kunth) Steud.Picada Café, Rio Grando do Sul state, BrazilAerial parts (HD)Bicyclogermacrene (6.6%), germacrene B (7.8%), α-cadinol (5.1%), apiole (64.9%)Acaricidal (Rhipicephalus (Boophilus) microplus, LC50 2.33 μL/mL)[106]
P. mikanianum (Kunth) Steud.Atalanta, Santa Catarina state, BrazilLeaf (HD)α-Thujene (6.0%), safrole (72.4%)---[70]
P. mollicomum KunthCultivated (State University of Campinas, São Paulo, Brazil)Leaf (HD)---Antibacterial (Escherichia coli, MIC 1000 μg/mL)[52]
P. mollicomum KunthCultivated, FIOCRUZ, Rio de Janeiro, BrazilLeaf (HD)(Z)-β-Ocimene (14.1%), (E)-β-ocimene (12.1%), germacrene D (10.8%), germacrene B (13.4%), myrtenic acid (7.5%), α-bisabolol (9.9%), (E)-nerolidol (9.6%)Antinociceptive (mouse model, 1 mg/kg)[91]
P. mosenii C. DC.Antonina, Paraná state, BrazilLeaf (HD)β-Caryophyllene (8.6%), α-humulene (11.3%), bicyclogermacrene (7.4%), caryophyllene oxide (12.1%), viridiflorol (5.8%), humulene epoxide II (6.3%)Antileishmanial (L. amazonensis promastigotes, IC50 17.4 μg/mL; L. amazonensis axenic amastigotes, IC50 >200 μg/mL), anti-Mycobacterium tuberculosis (MIC 250 μg/mL)[70]
P. multiplinervium C. DC.Parque Nacional Soberania, PanamaLeaf (HD)α-Pinene (7.1%), β-pinene (7.9%), α-phellandrene (11.8%), limonene (11.4%), p-cymene (9.0%), linalool (16.5%), (E)-nerolidol (5.5%)---[47]
P. nemorense C. DC.Monteverde, Costa RicaLeaf (HD)α-Phellandrene (8.8%), limonene (6.3%), α-copaene (5.7%), β-bourbonene (14.0%), β-caryophyllene (5.6%), β-copaene (15.0%), γ-elemene (6.8%), germacrene D (8.4%), bicyclogermacrene (7.5%)---[34]
P. oblanceolatum Trel.Monteverde, Costa RicaLeaf (HD)α-Pinene (6.2%), linalool (11.3%), β-caryophyllene (6.8%), germacrene D (8.9%), δ-amorphene (9.0%)Antibacterial (Bacillus cereus, MIC 78 μg/mL), cytotoxic (MCF-7 human breast adenocarcinoma)[34]
P. obliquum Ruiz & Pav.Altos de Campana National Park, PanamaLeaf (HD)β-Caryophyllene (27.6%), spathulenol (10.6%), caryophyllene oxide (8.3%)---[111]
P. obliquum Ruiz & Pav.Wasak'entsa reserve, EcuadorAerial parts (HD)γ-Terpinene (17.1%), terpinolene (11.5%), safrole (45.9%)---[65]
P. obrutum Trel. & Yunck.Samurindó, Chocó, ColombiaAerial parts (MWHD)Linalool (15.8%), β-elemene (7.6%), α-humulene (6.4%), (E)-nerolidol (5.8%)Antiprotozoal (Trypanosoma cruzi epimastigotes, IC50 29.3 μg/mL; Leishmania infantum promastigotes, IC50 35.9 μg/mL; L. infantum amastigotes, IC50 89.0 μg/mL); cytotoxic (Vero cells, IC50 45.3 μg/mL)[118]
P. ovatum VahlFazenda Sucupira, Embrapa, Brasília, BrazilLeaf (HD)α-Pinene (23.1%), β-pinene (14.2%), β-caryophyllene (5.3%), germacrene D (10.3%), epi-cubebol (10.7%)---[33]
P. peltatum L. [syn. Pothomorphe peltata (L.) Miq.]Pinar del Río, CubaLeaf (HD)α-Copaene (5.2%), trans-calamenene (5.4%), spathulenol (9.0%), caryophyllene oxide (22.9%)---[27]
P. permucronatum Yunck. Tijuca Forest, Rio de Janeiro state, BrazilLeaf (HD)β-Caryophyllene (6.8%), δ-cadinene (12.7%), α-cadinol (6.9%)---[149]
P. permucronatum Yunck. State of Rondônia, BrazilLeaf (HD)Asaricin (8.6%), myristicin (25.6%), elemicin (9.9%), dillapiole (54.7%)Mosquito larvicidal (Aedes aegypti, LC50 36 μg/mL)[136]
P. plurinervosum Yunck.Egler Reserva, Amazonas, BrazilAerial parts (HD)1,8-Cineole (31.6%), β-caryophyllene (6.6%), (E)-nerolidol (6.4%), caryophyllene oxide (5.7%), guaiol (6.2%), α-cadinol (8.5%)---[129]
P. pseudolindenii C. DC.Turrialba, Cartago, Costa RicaLeaf (HD)β-Pinene (6.7%), β-elemene (15.0%), β-caryophyllene (11.8%), α-humulene (7.0%), germacrene D (9.0%), germacrene B (5.4%)---[133]
P. regnellii (Miq.) C. DC.Universidade de São Paulo, BrazilAerial parts (HD)β-Caryophyllene (23.4%), (E)-nerolidol (13.7%), spathulenol (11.1%), globulol (6.1%)---[135]
P. regnellii (Miq.) C. DC.Universidade de São Paulo, BrazilLeaf (HD)Myrcene (52.6%), linalool (15.9%), β-caryophyllene (8.5%)Antimicrobial, agar diffusion assay (Staphylococcus aureus, Candida albicans)[38]
P. regnellii (Miq.) C. DC.Cultivated (State University of Campinas, São Paulo, Brazil)Leaf (HD)---Antibacterial (Escherichia coli, MIC 300 μg/mL)[52]
P. regnellii (Miq.) C. DC.Universidade de São Paulo, BrazilLeaf (HD)β-Pinene (13.3%), myrcene (15.5%), β-caryophyllene (7.2%), aromadendrene (8.3%), bicyclogermacrene (9.7%), (E)-nerolidol (8.4%), spathulenol (7.8%)---[35]
P. regnellii (Miq) C. DC. var. regnellii (C. DC.) YunckUniversidade de São Paulo, BrazilLeaf (HD)β-caryophyllene (8.2–9.5%), germacrene D (45.6–51.4%) and α-chamigrene (8.9–11.3%)Cytotoxic (B16F10-Nex2 murine melanoma, IC50 66 μg/mL; A2058 human melanoma, IC50 57 μg/mL; HeLa human cervical carcinoma, IC50 13 μg/mL; SiHa human cervical IC50 71 μg/mL; HCT human colon carcinoma, IC50 61 μg/mL; SKBR3 breast cancer, IC50 79 μg/mL; U87 human glioblastoma, IC50 71 μg/mL; β-caryophyllene, germacrene D, α-chamigrene cytotoxic to HeLa cells: IC50 11, 7, 32 μg/mL, respectively)[98]
P. renitens (Miq.) Yunck.Mirante da Serra, Rondonia, BrazilAerial parts (HD)α-Pinene (12.5%), camphene (5.6%), β-pinene (12.4%), (Z)-caryophyllene (6.9%), germacrene D (13.8%), bicyclogermacrene (6.6%), guaiol (13.9%), eudesm-7(11)-en-4-ol (9.3%)---[150]
P. reticulatum L.Costa Arriba, Rio Cascajal, Colon, PanamaLeaf (HD)β-Elemene (16.1%), β-selinene (19.0%), α-selinene (15.5%), spathulenol (6.1%)---[47]
P. rivinoides KunthCultivated, FIOCRUZ, Rio de Janeiro, BrazilLeaf (HD)α-Pinene (32.9%), β-pinene (20.7%), β-caryophyllene (7.6%), germacrene B (6.7%)Antinociceptive (mouse model, 1 mg/kg)[91]
P. rivinoides KunthUbatuba, São Paulo state, BrazilLeaf (HD)α-Pinene (73.2%), β-pinene (5.2%)---[31]
P. rivinoides KunthAntonina, Paraná state, BrazilLeaf (HD)β-Caryophyllene (6.6%), α-humulene (10.0%), dehydroaromadendrane (7.8%), bicyclogermacrene (11.8%), (Z)-α-bisabolene (10.9%), spathulenol (5.1%)Antileishmanial (L. amazonensis promastigotes, IC50 10.9 μg/mL; L. amazonensis axenic amastigotes, IC50 > 200 μg/mL), anti-Mycobacterium tuberculosis (MIC 125 μg/mL)[70]
P. septuplinervium (Miq.) C. DC.Pandó, Chocó, ColombiaAerial parts (MWHD)β-Caryophyllene (5.0%), epi-cubebol (9.0%), δ-cadinene (10.9%), germacrene D-4-ol (5.6%), viridiflorol (7.9%)Antiprotozoal (Trypanosoma cruzi epimastigotes, IC50 14.0 μg/mL; Leishmania infantum promastigotes, IC50 30.1 μg/mL; L. infantum amastigotes, IC50 64.8 μg/mL); cytotoxic (Vero cells, IC50 42.7 μg/mL; THP-1 human monocytic leukemia, IC50 48.8 μg/mL)[118]
P. solmsianum C. DC.Teresópolis, Rio de Janeiro state, BrazilLeaf (HD)δ-3-Carene (23.3%), asaricin (39.2%)The essential oil and the major component asaricin cause depressant and ataxia effects in mice.[151]
P. solmsianum C. DC.Universidade de São Paulo, BrazilLeaf (HD)Spathulenol (5.2%), isoelemecin (53.5%)Antifungal, broth dilution assay (Cryptococcus neoformans, MIC 62.5 μg/mL) Antifungal, TLC bioautography (Cladosporium cladosporioides, C. sphareospermum)[35,60]
P. solmsianum C. DC.Ubatuba, São Paulo state, BrazilLeaf (HD)α-Pinene (22.7%), myrcene (26.1%), δ-3-carene (66.9%), α-selinene (5.5%)---[31]
P. tectoniaefolium (Kunth) Kunth ex C. DC. Fazenda Sucupira, Embrapa, Brasília, BrazilLeaf (HD)α-Pinene (12.9%), β-pinene (8.8%), caryophyllene oxide (10.9%) e---[33]
P. trigonum C. DC.Altos de Campana, PanamaLeaf (HD)α-Copaene (6.0%), β-elemene (8.4%), β-caryophyllene (7.1%), germacrene D (19.7%), δ-cadinene (7.2%), α-cadinol (5.8%)---[47]
P. tuberculatum Jacq. var. tuberculatumRondônia state, BrazilLeaf (HD)α-Pinene (8.4%), β-pinene (7.0%), limonene (6.7%), (E)-β-ocimene (9.0%), β-caryophyllene (26.3%), (E)-β-farnesene (6.1%), α-cadinol (13.7%)---[152]
P. tuberculatum Jacq.Universidade Estadual Paulista, Araraquara, São Paulo state, BrazilLeaf (HD)α-Pinene (10.4%), β-pinene (12.5%), (E)-β-ocimene (8.6%), β-caryophyllene (40.2%), (E)-β-farnesene (8.3%), germacrene D (5.5%)---[59]
P. tuberculatum Jacq.Universidade Estadual Paulista, Araraquara, São Paulo state, BrazilFloral (HD) aα-Pinene (28.7%), β-pinene (38.2%), (E)-β-ocimene (9.8%), β-caryophyllene (14.0%)---[59]
P. tuberculatum Jacq.Universidade Estadual Paulista, Araraquara, São Paulo state, BrazilStem (HD)α-Pinene (17.3%), β-pinene (27.0%), (E)-β-ocimene (14.5%), β-caryophyllene (32.1%)Antifungal, TLC bioautography (Cladosporium cladosporioides, Cladosporium sphareospermum)[59]
P. tuberculatum Jacq.Universidade de São Paulo, BrazilLeaf (HD)(E)-Nerolidol (12.7%), spathulenol (15.8%), viridiflorol (13.5%), τ-cadinol (6.3%)---[35]
P. umbellatum L.Monteverde, Costa RicaAerial parts (HD)β-Elemene (6.9%), β-caryophyllene (28.3%), germacrene D (16.7%), bicyclogermacrene (6.6%), (E,E)-α-farnesene (14.5%)---[49]
P. umbellatum L.Araraquara, São Paulo state, BrazilLeaf (HD)γ-Muurolene (8.9%), germacrene D (34.2%), bicyclogermacrene (9.0%), γ-cadinene (5.9%), δ-cadinene (15.0%)---[35,60]
P. umbellatum L.Topes de Collantes Nature Reserve, Escambray Mountains, CubaLeaf (HD)Camphor (9.6%), safrole (26.4%), β-caryophyllene (6.6%)Antioxidant (DPPH radical scavenging assay, IC50 32.3 μg/mL)[50]
P. umbellatum L.Campinas, São Paulo state, BrazilLeaf (HD)β-Caryophyllene (6.3%), germacrene D (55.8%), bicyclogermacrene (11.8%)---[31]
P. variabile C. DC.Lachuá, Alta Verapaz, GuatemalaLeaf (HD)Camphene (16.6%), p-cymene (6.3%), limonene (13.9%), camphor (28.4%), guaiol (6.3%)---[140]
P. vicosanum Yunck.Parque Estabdual do Rio Doce, Minas Gerais state, BrazilAerial parts (HD)α-Pinene (6.1%), 1,8-cineole (10.4%), limonene (45.5%)---[153]
P. vicosanum Yunck.Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais state, BrazilAerial parts (HD)α-Pinene (7.2%), 1,8-cineole (15.0%), limonene (40.0%), terpinolene (10.1%)---[153]
P. vicosanum Yunck.Dourados, Mato Grosso do Sul, BrazilLeaf (HD)Limonene (9.1%), γ-elemene (14.2%), α-alaskene (13.4%)Anti-inflammatory (rat paw edema, 100–300 mg/kg)[89]
P. vitaceum Yunck.Manaus-Caracaraí, Amazonas, BrazilAerial parts (HD)p-Cymene (12.8%), limonene (33.2%), (E)-nerolidol (20.6%), caryophyllene oxide (5.2%)---[129]
P. xylosteoides (Kunth) Steud.Fazenda Sucupira, Embrapa, Brasília, BrazilLeaf (HD)Myrcene (31.0%), α-terpinene (11.3%), p-cymene (12.4%), γ-terpinene (26.1%)---[17,33]
P. xylosteoides (Kunth) Steud.São Francisco de Paula, Rio Grande do Sul state, BrazilAerial parts (HD)α-Pinene (6.0%), limonene (5.1%), zingiberene (9.3%), safrole (47.8%)Acaricidal (Rhipicephalus (Boophilus) microplus, LC50 6.15 μL/mL)[106]
P. xylosteoides (Kunth) Steud.Orleans, Santa Catarina state, BrazilLeaf (HD)α-Pinene (7.7%), safrole (84.1%)Antibacterial, broth dilution assay (Bacillus cereus, MIC 2091 μg/mL; Staphylococcus aureus, MIC 2091 μg/mL)[154]
P. xylosteoides (Kunth) Steud.São Bonifácio, Santa Catarina state, BrazilLeaf (HD)α-Pinene (15.3%), safrole (75.8%)Antibacterial, broth dilution assay (Bacillus cereus, MIC 2091 μg/mL; Staphylococcus aureus, MIC 2091 μg/mL)[154]
P. xylosteoides (Kunth) Steud.Ubatuba, São Paulo state, BrazilLeaf (HD)Germacrene B (10.6%), trans-β-guaiene (7.8%), (E)-nerolidol (8.2%), spathulenol (12.3%), β-copaen-4α-ol (9.4%)---[31]
P. xylosteoides (Kunth) Steud.Cerro Azul, Paraná state, BrazilLeaf (HD)α-Thujene (7.9%), β-phellandrene (22.6%), δ-elemene (6.6%), β-caryophyllene (7.0%), bicyclogermacrene (7.2%), (E)-nerolidol (8.5%)---[70]
a Floral = Infloresences or infructesence “spikes”. b The essential oil had two unidentified major components (11.6% and 13.5%). c Based on retention indices (RI), this analysis is doubtful. γ-Elemene should elute before germacrene D. The compound identified as γ-elemene is probably bicyclogermacrene. γ-Cadinene should elute after germacrene D. The compound identified as γ-cadinene may be γ-muurolene. d Percentages are based on isolated yields and not by GC integration. e Only 56.8% of the essential oil composition identified.

Appendix B

Figure A1. Major monoterpenoids found in Neotropical Piper species.
Figure A1. Major monoterpenoids found in Neotropical Piper species.
Ijms 18 02571 g0a1
Figure A2. Major sesquiterpene hydrocarbons found in Neotropical Piper species.
Figure A2. Major sesquiterpene hydrocarbons found in Neotropical Piper species.
Ijms 18 02571 g0a2aIjms 18 02571 g0a2b
Figure A3. Major oxygenated sesquiterpenoids found in Neotropical Piper species.
Figure A3. Major oxygenated sesquiterpenoids found in Neotropical Piper species.
Ijms 18 02571 g0a3aIjms 18 02571 g0a3b
Figure A4. Major phenylpropanoids and miscellaneous compounds found in Neotropical Piper species.
Figure A4. Major phenylpropanoids and miscellaneous compounds found in Neotropical Piper species.
Ijms 18 02571 g0a4

Appendix C

Table A2. Chemical classes and concentrations of Piper essential oils used for the principal component analysis.
Table A2. Chemical classes and concentrations of Piper essential oils used for the principal component analysis.
Piper SpeciesClasses (%)Biological activityRef.
PPMHOMSHOSTotal
P. aducum0.013.740.816.824.395.6Antiprotozoal[53]
P. aduncum0.020.97.542.218.388.9Antiprotozoal[70]
P. aduncum87.80.90.06.52.497.6Antimicrobial[30]
P. aduncum0.014.131.826.011.683.5Antimicrobial[35]
P. aduncum0.99.713.419.343.987.2Antiprotozoal[68]
P. aduncum0.09.750.38.329.397.6Antiprotozoal[32]
P. aduncum0.013.731.739.811.897.0Antimicrobial[59]
P. aduncum0.055.111.813.910.691.4Antimicrobial[59]
P. aduncum46.825.115.76.31.094.8Antimicrobial[65]
P. aduncum89.21.12.23.82.698.9Insecticidal[16]
P. aduncum95.20.00.00.03.999.2Acaricidal[28]
P. aequale0.029.20.042.920.993.0Citotoxic[95]
P. aequale3.770.20.212.413.5100.0Antimicrobial[34]
P. angustifolium0.013.44.721.953.093.0Antiprotozoal[69]
P. anonifolium0.011.70.038.638.989.2Antimicrobial/Enzimaitc[61]
P. aleyreanum0.010.10.056.723.189.9Antimicrobial/Citotoxic[61]
P. aleyreanum0.016.616.416.228.377.5Antinociceptive/Anti-inflammatory[90]
P. arboreum0.00.01.746.741.089.4Antiprotozoal[70]
P. auritum88.53.40.73.20.696.4Antiprotozoal[117]
P. biasperatum0.04.50.094.90.099.4Cytotoxic[34]
P. bredemeyeri0.00.20.099.80.0100.0Antimicrobial[34]
P. caldense0.00.047.17.224.378.6Antimicrobial[54]
P. caldense0.00.06.517.259.783.4Antimicrobial[54]
P. caldense0.00.40.063.520.184.0Antimicrobial[54]
P. callosun80.16.94.24.92.198.2Enzyme inhibitory[62]
P. cernuum0.018.90.062.416.797.9Antimicrobial[38]
P. cernuum0.03.10.081.315.099.4Antimicrobial[60]
P. cernuum0.00.00.078.90.078.9Cytotoxic[39]
P. cernuum0.052.223.20.00.075.4Cytotoxic[96]
P. cernuum0.020.50.031.035.086.5Antiprotozoal/Antimicrobial[70]
P. cernuum0.012.31.210.475.599.4Antimicrobial[37]
P. claussenianum0.00.30.09.186.295.6Antiprotozoal/Antimicrobial[71,126]
P. claussenianum0.01.551.47.528.388.7Antiprotozoal/Antimicrobial[71,126]
P. corcovadensis30.635.10.220.46.492.7Insecticidal[127]
P. crassinervium0.07.80.054.837.199.7Antimicrobial[60]
P. demeraranum0.029.90.063.00.092.9Antiprotozoal[72]
P. diospyrifolium0.019.51.168.211.2100.0Antimicrobial[55]
P. diospyrifolium0.016.10.046.528.591.1Antiprotozoal[70]
P. divaricatum89.63.30.05.60.699.1Antimicrobial[40]
P. divaricatum98.00.00.00.00.098.0Antimicrobial[44]
P. divaricatum89.17.20.11.90.298.5Antimicrobial[42]
P. duckei0.01.15.860.223.090.1Antiprotozoal[72]
P. fimbriulatum0.019.50.076.44.1100.0Antimicrobial[34]
P. gaudichaudianum0.02.40.044.344.090.8Insecticidal[136]
P. gaudichaudianum0.00.10.165.428.393.8Cytotoxic[138]
P. gaudichaudianum0.14.20.456.029.590.2Cytotoxic[137]
P. gaudichaudianum0.00.90.072.614.487.9Antimicrobial[35]
P. gaudichaudianum0.07.10.076.09.993.0Antiprotozoal[70]
P. glabratum0.225.81.050.421.298.6Anti-inflammatory[88]
P. glabrescens0.083.70.015.31.0100.0Cytotoxic[34]
P. hispidinervum85.59.30.02.50.898.0Antimicrobial[139]
P. hispidum0.018.51.052.216.688.3Antimicrobial/Enzyme inhibitory[61]
P. hispidum0.043.91.727.815.488.8Antimicrobial/Cytotoxic[97]
P. hispidum58.35.012.614.25.095.1Insecticidal[47]
P. hostmannianum57.01.05.620.110.694.3Insecticidal[136]
P. humaytanum0.01.50.034.045.480.9Insecticidal[136]
P. ilheuense0.00.00.046.534.180.6Antimicrobial[57]
P. imperiale6.72.70.089.41.2100.0Antimicrobial/Cytotoxic[34]
P. klotzschianum98.50.00.00.60.599.6Insecticidal[141]
P. klotzschianum39.444.30.014.50.098.2Insecticidal[141]
P. longispicum1.11.40.266.011.980.6Insecticidal[47]
P. marginatum0.01.40.72.226.230.5Insecticidal[146]
P. marginatum28.40.00.044.626.299.2Insecticidal[146]
P. marginatum51.60.00.021.726.499.7Insecticidal[146]
P. marginatum42.010.31.617.617.589.0Antimicrobial/Enzyme inhibitory[62]
P. mikanianum67.90.50.023.48.6100.4Acaricidal[106]
P. mollicomum0.624.29.833.225.192.9Antinociceptive[91]
P. mosenii0.07.20.041.537.786.4Antiprotozoal/Antimicrobial[70]
P. oblanceolatum0.016.612.261.49.8100.0Antimicrobial/Cytotoxic[34]
P. permucronatum98.80.80.00.00.099.6Insecticidal[136]
P. regnellii0.060.817.813.86.198.5Antimicrobial[38]
P. regnellii0.30.00.482.010.893.5Cytotoxic[98]
P. rivinoides0.065.90.821.84.893.2Antinociceptive[91]
P. rivinoides0.010.40.054.720.185.2Antiprotozoal[70]
P. solmsianum40.330.30.05.84.280.7Depressant/Ataxia[151]
P. solmsianum53.50.00.012.412.378.2Antimicrobial[35]
P. tuberculatum0.035.70.360.22.999.1Antimicrobial[59]
P. vicosanum0.016.40.062.620.899.8Anti-inflammatory[89]
P. xylosteoides48.517.00.423.710.4100.0Acaricidal[106]
Figure A5. : Antimicrobial (fungal and bactericidal), : Cytotoxic activity, : Antiprotozoal (Trypanosoma spp. and Leishmania spp.), : Inseticidal (Aedes aegypti), : Acaricidal, : Anti-inflammatory; : Anticholinesterase, : Antinociceptive, : Central nervous system depressant, : Antimicrobial and cytotoxic, : Fungicidal and Anticholinesterase.
Figure A5. : Antimicrobial (fungal and bactericidal), : Cytotoxic activity, : Antiprotozoal (Trypanosoma spp. and Leishmania spp.), : Inseticidal (Aedes aegypti), : Acaricidal, : Anti-inflammatory; : Anticholinesterase, : Antinociceptive, : Central nervous system depressant, : Antimicrobial and cytotoxic, : Fungicidal and Anticholinesterase.
Ijms 18 02571 g0a5

References

  1. Quijano-Abril, M.A.; Callejas-Posada, R.; Miranda-Esquivel, D.R. Areas of endemism and distribution patterns for Neotropical Piper species (Piperaceae). J. Biogeogr. 2006, 33, 1266–1278. [Google Scholar] [CrossRef]
  2. Ramírez Amezcua, J.M. Piper commutatum (Piperaceae), the correct name for a widespread species in Mexico and Mesoamerica. Acta Botanica Mexicana 2016, 116, 9–19. [Google Scholar] [CrossRef]
  3. Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 2016, 181, 1–20. [Google Scholar]
  4. Jaramillo, M.A.; Manos, P.S. Phylogeny and patterns of floral diversity in the genus Piper (Piperaceae). Am. J. Bot. 2001, 88, 706–716. [Google Scholar] [CrossRef] [PubMed]
  5. Guimarães, E.F.; Monteiro, D. Neotropical Piperaceae. Available online: https://www.kew.org/science/tropamerica/neotropikey/families/Piperaceae.htm (accessed on 12 October 2017).
  6. Di Stasi, L.C.; Hiruma-Lima, C.A. Plantas Medicinais na Amazônia e na Mata Atlântica; Editora UNESP: São Paulo, Brazil, 2002. [Google Scholar]
  7. Brú, J.; Guzman, J.D. Folk medicine, phytochemistry and pharmacological application of Piper marginatum. Rev. Bras. Farmacogn. 2016, 26, 767–779. [Google Scholar] [CrossRef]
  8. Duke, J.A.; Bogenschutz-Godwin, M.J.; Ottesen, A.R. Duke’s Handbook of Medicinal Plants of Latin America; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
  9. Cáceres, A.; Kato, M.J. Importance of a multidisciplinary evaluation of Piper genus for development of new natural products in Latin America. Int. J. Phytocosmetics Nat. Ingred. 2014, 1, 4. [Google Scholar]
  10. Takeara, R.; Gonçalves, R.; Ayres, V.F.S.; Guimarães, A.C. Biological properties of essential oils from the Piper species of Brazil: A review. In Aromatic and Medicinal Plants—Back to Nature; El-Shemy, H., Ed.; InTech: Rijeka, Croatia, 2017; pp. 81–93. [Google Scholar]
  11. Dyer, L.A.; Palmer, A.D.N. Piper: A Model Genus for Studies of Phytochemistry, Ecology, and Evolution; Kluwer Academic/Plenum Publishers: New York, NY, USA, 2004. [Google Scholar]
  12. Nascimento, J.C.; de Paula, V.F.; David, J.M.; David, J.P. Occurrence, biological activities and 13C NMR data of amides from Piper (Piperaceae). Quim. Nova 2012, 35, 2288–2311. [Google Scholar] [CrossRef]
  13. Paz, R.F.; Guimarães, E.F.; Ramos, C.S. The occurrence of phenylpropanoids in the saps of six Piper species (Piperaceae) from Brazil. Gayana Bot. 2017, 74, 236–239. [Google Scholar] [CrossRef]
  14. Maia, J.G.S.; Andrade, E.H.A. Database of the Amazon aromatic plants and their essential oils. Quim. Nova 2009, 32, 595–622. [Google Scholar] [CrossRef]
  15. Maia, J.G.S.; Zoghbi, M.G.B.; Andrade, E.H.A.; Santos, A.S.; da Silva, M.H.; Luz, A.I.R.; Bastos, C.N. Constituents of the essential oil of Piper aduncum L. growing wild in the Amazon region. Flavour Fragr. J. 1998, 13, 269–272. [Google Scholar] [CrossRef]
  16. De Almeida, R.R.P.; Souto, R.N.P.; Bastos, C.M.; da Silva, M.H.L.; Maia, J.G.S. Chemical variation in Piper aduncum and biological properties of its dillapiole-rich essential oil. Chem. Biodivers. 2009, 6, 1427–1434. [Google Scholar] [CrossRef] [PubMed]
  17. Potzernheim, M.; Costa, A.F.; Bizzo, H.R.; Carvalho-Silva, M.; Vieira, R.F. Essential oil of Piper xylosteoides (Kunth) Steud. from Federal District, Brazil. J. Essent. Oil Res. 2006, 18, 523–524. [Google Scholar] [CrossRef]
  18. Silva, J.P.L.; Queiroz, D.M.; Azevedo, L.H.; Leal, L.C.; Rodrigues, J.L.; Lima, A.F.; Marchi, G.M.; Brito-Júnior, M.; Faria-e-Silva, A.L. Effect of eugenol exposure time and post-removal delay on the bond strength of a self-etching adhesive to dentin. Oper. Dent. 2011, 36, 66–71. [Google Scholar] [CrossRef] [PubMed]
  19. Ribeiro, A.S.; Batista, E.D.; Dairiki, J.K.; Chaves, F.C.; Inoue, L.A. Anesthetic properties of Ocimum gratissimum essential oil for juvenile matrinxã. Acta Sci. Anim. Sci. 2016, 38, 1–7. [Google Scholar] [CrossRef]
  20. Ravindran, P.N. Black Pepper: Piper nigrum; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
  21. Shivashankar, M. Genetic diversity and relationships of Piper species using molecular marker. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 1101–1109. [Google Scholar]
  22. Sen, S.; Skaria, R.; Muneer, P.M.A. Genetic diversity analysis in Piper species (Piperaceae) Using RAPD markers. Mol. Biotechnol. 2010, 46, 72–79. [Google Scholar] [CrossRef] [PubMed]
  23. Chaveerach, A.; Tanee, T.; Sanubol, A.; Monkheang, P.; Sudmoon, R. Efficient DNA barcode regions for classifying Piper species (Piperaceae). PhytoKeys 2016, 70, 1–10. [Google Scholar]
  24. Singh, K.; Das, G.; Jadhao, K.R.; Rout, G.R. Molecular diversity and phytochemical characterization of Piper species. J. Appl. Hortic. 2016, 18, 187–194. [Google Scholar]
  25. Oliveira, G.L.; Moreira, D.D.; Mendes, A.D.; Guimarães, E.F.; Figueiredo, L.S.; Kaplan, M.A.; Martins, E.R. Growth study and essential oil analysis of Piper aduncum from two sites of Cerrado biome of Minas Gerais State, Brazil. Rev. Bras. Farmacogn. 2013, 23, 743–753. [Google Scholar] [CrossRef]
  26. De Oliveira, J.C.S.; Dias, I.J.M.; da Camara, C.A.G.; Schwartz, M.O.E. Volatile constituents of the leaf oils of Piper aduncum L. from different regions of Pernambuco (northeast of Brazil). J. Essent. Oil Res. 2006, 18, 557–559. [Google Scholar] [CrossRef]
  27. Pino, J.A.; Marbot, R.; Bello, A.; Urquiola, A. Essential oils of Piper peltata (L.) Miq. and Piper aduncum L. from Cuba. J. Essent. Oil Res. 2004, 16, 124–126. [Google Scholar] [CrossRef]
  28. Silva, W.C.; de Souza Martins, J.R.; de Souza, H.E.M.; Heinzen, H.; Cesio, M.V.; Mato, M.; Albrecht, F.; de Azevedo, J.L.; de Barros, N.M. Toxicity of Piper aduncum L. (Piperales: Piperaceae) from the Amazon forest for the cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Vet. Parasitol. 2009, 164, 267–274. [Google Scholar] [CrossRef] [PubMed]
  29. Araújo, M.J.C.; Câmara, C.A.G.; Born, F.S.; Moraes, M.M.; Badji, C.A. Acaricidal activity and repellency of essential oil from Piper aduncum and its components against Tetranychus urticae. Exp. Appl. Acarol. 2012, 57, 139–155. [Google Scholar] [CrossRef] [PubMed]
  30. Ferreira, R.G.; Monteiro, M.C.; da Silva, J.K.R.; Maia, J.G.S. Antifungal action of the dillapiole-rich oil of Piper aduncum against dermatomycoses caused by filamentous fungi. Br. J. Med. Med. Res. 2016, 15, 1–10. [Google Scholar] [CrossRef]
  31. Perigo, C.V.; Torres, R.B.; Bernacci, L.C.; Guimarães, E.F.; Haber, L.L.; Facanali, R.; Vieira, M.A.R.; Quecini, V.; Marques, M.O.M. The chemical composition and antibacterial activity of eleven Piper species from distinct rainforest areas in Southeastern Brazil. Ind. Crops Prod. 2016, 94, 528–539. [Google Scholar] [CrossRef]
  32. Monzote, L.; Scull, R.; Cos, P.; Setzer, W.N. Essential oil from Piper aduncum: Chemical analysis, antimicrobial assessment, and literature review. Medicines 2017, 4, 49. [Google Scholar] [CrossRef] [PubMed]
  33. Potzernheim, M.; Bizzo, H.R.; Agostini-Costa, T.S.; Vieira, R.F.; Carvalho-Cilva, M.; Gracindo, L.A.M.B. Chemical characterization of seven Piper species (Piperaceae) from Federal District, Brazil, based on volatile oil constituents. Rev. Bras. Plantas Med. 2006, 8, 10–12. [Google Scholar]
  34. Setzer, W.N.; Park, G.; Agius, B.R.; Stokes, S.L.; Walker, T.M.; Haber, W.A. Chemical compositions and biological activities of leaf essential oils of twelve species of Piper from Monteverde, Costa Rica. Nat. Prod. Commun. 2008, 3, 1367–1374. [Google Scholar]
  35. Morandim-Giannetti, A.A.; Pin, A.R.; Pietro, N.A.S.; de Oliveira, H.C.; Mendes-Giannini, M.J.S.; Alecio, A.C.; Kato, M.J.; de Oliveira, J.E.; Furlan, M. Composition and antifungal activity against Candida albicans, Candida parapsilosis, Candida krusei and Cryptococcus neoformans of essential oils from leaves of Piper and Peperomia species. J. Med. Plants Res. 2010, 4, 1810–1814. [Google Scholar]
  36. Torquilho, H.S.; Pinto, A.C.; de Godoy, R.L.O.; Guimarães, E.F. Essential oil of Piper cernum Vell. var. cernum Yuncker from Rio de Janeiro, Brazil. J. Essent. Oil Res. 2000, 12, 443–444. [Google Scholar] [CrossRef]
  37. Gasparetto, A.; Cruz, A.B.; Wagner, T.M.; Bonomini, T.J.; Correa, R.; Malheiros, A. Seasonal variation in the chemical composition, antimicrobial and mutagenic potential of essential oils from Piper cernuum. Ind. Crops Prod. 2017, 95, 256–263. [Google Scholar] [CrossRef]
  38. Costantin, M.B.; Sartorelli, P.; Limberger, R.; Henriques, A.T.; Steppe, M.; Ferreira, M.J.P.; Ohara, M.T.; Emerenciano, V.P.; Kato, M.J. Essential oils from Piper cernuum and Piper regnellii: Antimicrobial activities and analysis by GC/MS and 13C-NMR. Planta Med. 2001, 67, 771–773. [Google Scholar] [CrossRef] [PubMed]
  39. Capello, T.M.; Martins, E.G.A.; de Farias, C.F.; Figueiredo, C.R.; Matsuo, A.L.; Passero, L.F.D.; Oliveira-Silva, D.; Sartorelli, P.; Lago, J.H.G. Chemical composition and in vitro cytotoxic and antileishmanial activities of extract and essential oil from leaves of Piper cernuum. Nat. Prod. Commun. 2015, 10, 285–288. [Google Scholar] [PubMed]
  40. Da Silva, J.K.R.; Andrade, E.H.A.; Guimarães, E.F.; Maia, J.G.S. Essential oil composition, antioxidant capacity and antifungal activity of Piper divaricatum. Nat. Prod. Commun. 2010, 5, 477–480. [Google Scholar] [PubMed]
  41. Souto, R.N.P.; Harada, A.Y.; Andrade, E.H.A.; Maia, J.G.S. Insecticidal activity of Piper essential oils from the Amazon against the fire ant Solenopsis saevissima (Smith) (Hymenoptera: Formicidae). Neotrop. Entomol. 2012, 41, 510–517. [Google Scholar] [CrossRef] [PubMed]
  42. Da Silva, J.K.R.; Silva, J.R.A.; Nascimento, S.B.; Luz, S.F.M.; Meireles, E.N.; Alves, C.N.; Ramos, A.R.; Maia, J.G.S. Antifungal activity and computational study of constituents from Piper divaricatum essential oil against Fusarium infection in black pepper. Molecules 2014, 19, 17926–17942. [Google Scholar] [CrossRef] [PubMed]
  43. Meireles, E.N.; Xavier, L.P.; Ramos, A.R.; Maia, J.G.S.; Setzer, W.N.; da Silva, J.K.R. Phenylpropanoids produced by Piper divaricatum, a resistant species to infection by Fusarium solani f. sp. piperis, the pathogenic agent of fusariosis in black pepper. J. Plant Pathol. Microbiol. 2016, 7, 333. [Google Scholar]
  44. Barbosa, Q.P.S.; da Câmara, C.A.G.; Ramos, C.S.; Nascimento, D.C.O.; Lima-Filho, J.V.; Guimarães, E.F. Chemical composition, circadian rhythm and antibacterial activity of essential oils of Piper divericatum: A new source of safrole. Quim. Nova 2012, 35, 1806–1808. [Google Scholar] [CrossRef]
  45. Andrade, E.H.A.; Carreira, L.M.M.; da Silva, M.H.L.; da Silva, J.D.; Bastos, C.N.; Sousa, P.J.C.; Guimarães, E.F.; Maia, J.G.S. Variability in essential-oil composition of Piper marginatum sensu lato. Chem. Biodivers. 2008, 5, 197–208. [Google Scholar] [CrossRef] [PubMed]
  46. Pino, J.A.; Marbot, R.; Bello, A.; Urquiola, A. Composition of the essential oil of Piper hispidum Sw. from Cuba. J. Essent. Oil Res. 2004, 16, 459–460. [Google Scholar] [CrossRef]
  47. Santana, A.I.; Vila, R.; Cañigueral, S.; Gupta, M.P. Chemical composition and biological activity of essential oils from different species of Piper from Panama. Planta Med. 2016, 82, 986–991. [Google Scholar] [CrossRef] [PubMed]
  48. Benitez, N.P.; León, E.M.M.; Stashenko, E.E. Essential oil composition from two species of Piperaceae family grown in Colombia. J. Chromatogr. Sci. 2009, 47, 804–807. [Google Scholar] [CrossRef]
  49. Vogler, B.; Noletto, J.A.; Haber, W.A.; Setzer, W.N. Chemical constituents of the essential oils of three Piper species from Monteverde, Costa Rica. J. Essent. Oil Bear. Plants 2006, 9, 230–238. [Google Scholar] [CrossRef]
  50. Rodriguez, E.J.; Saucedo-Hernández, Y.; Vander Heyden, Y.; Simó-Alfonso, E.F.; Ramis-Ramos, G.; Lerma-García, M.J.; Monteagudo, U.; Bravo, L.; Medinilla, M.; de Armas, Y.; et al. Chemical analysis and antioxidant activity of the essential oils of three Piperaceae species growing in the central region of Cuba. Nat. Prod. Commun. 2013, 8, 1325–1328. [Google Scholar] [PubMed]
  51. Roca, I.; Akova, M.; Baquero, F.; Carlet, J.; Cavaleri, M.; Coenen, S.; Cohen, J.; Findlay, D.; Gyssens, I.; Heure, O.E.; et al. The global threat of antimicrobial resistance: Science for intervention. New Microbes New Infect. 2015, 6, 22–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  52. Duarte, M.C.T.; Leme, E.E.; Delarmelina, C.; Soares, A.A.; Figueira, G.M.; Sartoratto, A. Activity of essential oils from Brazilian medicinal plants on Escherichia coli. J. Ethnopharmacol. 2007, 111, 197–201. [Google Scholar] [CrossRef] [PubMed]
  53. Gutiérrez, Y.; Montes, R.; Scull, R.; Sánchez, A.; Cos, P.; Monzote, L.; Setzer, W.N. Chemodiversity associated with cytotoxicity and antimicrobial activity of Piper aduncum var. ossanum. Chem. Biodivers. 2016, 13, 1715–1719. [Google Scholar] [CrossRef] [PubMed]
  54. Silva Rocha, D.; da Silva, J.M.; do Amaral Ferraz Navarro, D.M.; Gomes Camara, C.A.; de Lira, C.S.; Souza Ramos, C. Potential antimicrobial and chemical composition of essential oils from Piper caldense tissues. J. Mex. Chem. Soc. 2016, 60, 148–151. [Google Scholar]
  55. Vieira, S.C.; Paulo, L.F.; Svidzinski, T.I.; Dias Filho, B.P.; Nakamura, C.V.; Souza, A.D.; Young, M.C.; Cortez, D.A. Antifungal activity of Piper diospyrifolium Kunth (Piperaceae) essential oil. Brazilian J. Microbiol. 2011, 42, 1001–1005. [Google Scholar] [CrossRef]
  56. Santos, T.G.; Rebeleo, R.A.; Dalmarco, E.M.; Guedes, A.; de Gasper, A.L.; Bella Cruz, A.; Schmit, A.P.; Bella Cruz, R.C.; Steindel, M.; Nunes, R.K. Composição química e avaliação da atividade antimicrobiana do oleo essencial das folhas de Piper malacophyllum (C. Presl.) C. DC. Quim. Nova 2012, 35, 477–481. [Google Scholar] [CrossRef]
  57. De Oliveira, R.A.; de Assis, A.M.A.D.; da Silva, L.A.M.; Andrioli, J.L.; de Oliveira, F.F. Chemical profile and antimicrobial activity of essential oil of Piper ilheusense. Chem. Nat. Compd. 2016, 52, 331–333. [Google Scholar] [CrossRef]
  58. Osorio, J.R.; Mora, L.E.; Dulcey, A.J.C.; Andica, R.S. Extraction, chemical composition and antimicrobial activity of the essential oils of pipilongo (Piper tuberculatum) using supercritical carbon dioxide. Rev. Ciencias 2013, 17, 45–56. [Google Scholar]
  59. Navickiene, H.M.; Morandim, A.D.; Alécio, A.C.; Regasini, L.O.; Bergamo, D.C.; Telascrea, M.; Cavalheiro, A.J.; Lopes, M.N.; Bolzani, V.D.; Furlan, M.; et al. Composition and antifungal activity of essential oils from Piper aduncum, Piper arboreum and Piper tuberculatum. Quim. Nova 2006, 29, 467–470. [Google Scholar] [CrossRef]
  60. Morandim, A.D.; Pin, A.R.; Pietro, N.A.; Alecio, A.C.; Kato, M.J.; Young, C.M.; de Oliveira, J.E.; Furlan, M. Composition and screening of antifungal activity against Cladosporium sphaerospermum and Cladosporium cladosporioides of essential oils of leaves and fruits of Piper species. Afr. J. Biotechnol. 2010, 9, 6135–6139. [Google Scholar]
  61. Da Silva, J.K.; Pinto, L.C.; Burbano, R.M.; Montenegro, R.C.; Guimarães, E.F.; Andrade, E.H.; Maia, J.G. Essential oils of Amazon Piper species and their cytotoxic, antifungal, antioxidant and anti-cholinesterase activities. Ind. Crops Prod. 2014, 58, 55–60. [Google Scholar] [CrossRef]
  62. Da Silva, J.K.; Silva, N.N.; Santana, J.F.; Andrade, E.H.; Maia, J.G.; Setzer, W.N. Phenylpropanoid-rich essential oils of Piper species from the Amazon and their antifungal and anti-cholinesterase activities. Nat. Prod. Commun. 2016, 11, 1907–1911. [Google Scholar]
  63. Tasić, S.; Miladinović-Tasić, N. Cladosporium spp.: Cause of opportunistic mycoses. Acta Fac. Medicae Naissensis 2007, 24, 15–19. [Google Scholar]
  64. Ng, K.P.; Yew, S.M.; Chan, C.L.; Soo-Hoo, T.S.; Na, S.L.; Hassan, H.; Ngeow, Y.F.; Hoh, C.-C.; Lee, K.-W.; Yee, W.-Y. Sequencing of Cladosporium sphaerospermum, a dematiaceous fungus isolated from blood culture. Eukaryot. Cell 2012, 11, 705–706. [Google Scholar] [CrossRef] [PubMed]
  65. Guerrini, A.; Sacchetti, G.; Rossi, D.; Paganetto, G.; Muzzoli, M.; Andreotti, E.; Tognolini, M.; Maldonado, M.E.; Bruni, R. Bioactivities of Piper aduncum L. and Piper obliquum Ruiz & Pavon (Piperaceae) essential oils from Eastern Ecuador. Environ. Toxicol. Pharmacol. 2009, 27, 39–48. [Google Scholar] [PubMed]
  66. Pink, R.; Hudson, A.; Mouriès, M.-A.; Bendig, M. Opportunities and challenges in antiparasitic drug discovery. Nat. Rev. Drug Discov. 2005, 4, 727–741. [Google Scholar] [CrossRef] [PubMed]
  67. Ceole, L.F.; Cardoso, M.D.; Soares, M.J. Nerolidol, the main constituent of Piper aduncum essential oil, has anti-Leishmania braziliensis activity. Parasitology 2017, 144, 1179–1190. [Google Scholar] [CrossRef] [PubMed]
  68. Villamizar, L.H.; Cardoso, M.D.; de Andrade, J.; Teixeira, M.L.; Soares, M.J. Linalool, a Piper aduncum essential oil component, has selective activity against Trypanosoma cruzi trypomastigote forms at 4 °C. Memórias do Instituto Oswaldo Cruz 2017, 112, 131–139. [Google Scholar] [CrossRef] [PubMed]
  69. Bosquiroli, L.S.S.; Demarque, D.P.; Rizk, Y.S.; Cunha, M.C.; Marques, M.C.S.; de Matos, M.F.C.; Kadri, M.C.T.; Carollo, C.A.; Arruda, C.C.P. In vitro anti-Leishmania infantum activity of essential oil from Piper angustifolium. Rev. Bras. Farmacogn. 2015, 25, 124–128. [Google Scholar] [CrossRef]
  70. Bernuci, K.Z.; Iwanaga, C.C.; Fernadez-Andrade, C.M.; Lorenzetti, F.B.; Torres-Santos, E.C.; Faiões, V.D.; Gonçalves, J.E.; do Amaral, W.; Deschamps, C.; Scodro, R.B.; Cardoso, R.F. Evaluation of chemical composition and antileishmanial and antituberculosis activities of essential oils of Piper species. Molecules 2016, 21, 1698. [Google Scholar] [CrossRef] [PubMed]
  71. Marques, A.M.; Barreto, A.L.S.; Batista, E.M.; da Curvelo, J.A.R.; Velozo, L.S.M.; de Moreira, D.L.; Guimarães, E.F.; Soares, R.M.A.; Kaplan, M.A.C. Chemistry and biological activity of essential oils from Piper claussenianum (Piperaceae). Nat. Prod. Commun. 2010, 5, 1837–1840. [Google Scholar] [PubMed]
  72. Do Carmo, D.F.M.; Amaral, A.C.F.; Machado, G.M.C.; Leon, L.L.; de Silva, J.R.A. Chemical and biological analyses of the essential oils and main constituents of Piper species. Molecules 2012, 17, 1819–1829. [Google Scholar] [CrossRef] [PubMed]
  73. Marques, A.M.; Peixoto, A.C.C.; de Paula, R.C.; Nascimento, M.F.A.; Soares, L.F.; Velozo, L.S.M.; Guimarães, E.F.; Kaplan, M.A.C. Phytochemical investigation of anti-plasmodial metabolites from Brazilian native Piper species. J. Essent. Oil Bear. Plants 2015, 18, 74–81. [Google Scholar] [CrossRef]
  74. Monzote, L.; Alarcón, O.; Setzer, W.N. Antiprotozoal activity of essential oils. Agric. Conspec. Sci. 2012, 77, 167–175. [Google Scholar]
  75. Setzer, W.N.; Stokes, S.L.; Penton, A.F.; Takaku, S.; Haber, W.A.; Hansell, E.; Caffrey, C.R.; McKerrow, J.H. Cruzain inhibitory activity of leaf essential oils of neotropical lauraceae and essential oil components. Nat. Prod. Commun. 2007, 2, 1203–1210. [Google Scholar]
  76. Colovic, M.B.; Krstic, D.Z.; Lazarevic-Pasti, T.D.; Bondzic, A.M.; Vasic, V.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr. Neuropharmacol. 2013, 11, 315–335. [Google Scholar] [CrossRef] [PubMed]
  77. Ingkaninan, K.; Temkitthawon, P.; Chuenchom, K.; Yuyaem, T.; Thongnoi, W. Screening for acetylcholinesterase inhibitory activity in plants used in Thai traditional rejuvenating and neurotonic remedies. J. Ethnopharmacol. 2003, 89, 261–264. [Google Scholar] [CrossRef] [PubMed]
  78. Adewusi, E.A.; Moodley, N.; Steenkamp, V. Antioxidant and acetylcholinesterase inhibitory activity of selected southern African medicinal plants. S. Afr. J. Bot. 2011, 77, 638–644. [Google Scholar] [CrossRef]
  79. Ferreres, F.; Oliveira, A.P.; Gil-Izquierdo, A.; Valentão, P.; Andrade, P.B. Piper betle leaves: Profiling phenolic compounds by HPLC/DAD–ESI/MSn and anti-cholinesterase activity. Phytochem. Anal. 2014, 25, 453–460. [Google Scholar] [CrossRef] [PubMed]
  80. Salleh, W.M.; Hashim, N.A.; Ahmad, F.; Yen, K.H. Anticholinesterase and antityrosinase activities of ten Piper species from Malaysia. Adv. Pharm. Bull. 2014, 4, 527–531. [Google Scholar] [PubMed]
  81. Xiang, C.-P.; Han, J.-X.; Li, X.-C.; Li, Y.-H.; Zhang, Y.; Chen, L.; Qu, Y.; Hao, C.-Y.; Li, H.-Z.; Yang, C.-R.; et al. Chemical composition and acetylcholinesterase inhibitory activity of essential oils from Piper species. J. Agric. Food Chem. 2017, 65, 3702–3710. [Google Scholar] [CrossRef] [PubMed]
  82. Wani, T.A.; Chandrashekara, H.H.; Kumar, D.; Prasad, R.; Sardar, K.K.; Kumar, D.; Tandan, S.K. Anti-inflammatory and antipyretic activities of the ethanolic extract of Shorea robusta Gaertn. f. resin. Indian J. Biochem. Biophys. 2012, 49, 463–467. [Google Scholar] [PubMed]
  83. Adorjan, B.; Buchbauer, G. Biological properties of essential oils: An updated review. Flavour Fragr. J. 2010, 25, 407–426. [Google Scholar] [CrossRef]
  84. Miguel, M.G. Antioxidant and anti-inflammatory activities of essential oils: A short review. Molecules 2010, 15, 9252–9287. [Google Scholar] [CrossRef] [PubMed]
  85. De Sousa, D.P. Analgesic-like activity of essential oils constituents. Molecules 2011, 16, 2233–2252. [Google Scholar] [CrossRef] [PubMed]
  86. De Cássia da Silveira e Sá, R.; Andrade, L.N.; de Sousa, D.P. A review on anti-inflammatory activity of monoterpenes. Molecules 2013, 18, 1227–1254. [Google Scholar] [CrossRef] [PubMed]
  87. De Cássia da Silveira e Sá, R.; Andrade, L.N.; dos Reis Barreto de Oliveira, R.; de Sousa, D.P. A review on anti-inflammatory activity of phenylpropanoids found in essential oils. Molecules 2014, 19, 1459–1480. [Google Scholar] [CrossRef] [PubMed]
  88. Branquinho, L.S.; Santos, J.A.; Cardoso, C.A.; da Silva Mota, J.; Junior, U.L.; Kassuya, C.A.; Arena, A.C. Anti-inflammatory and toxicological evaluation of essential oil from Piper glabratum leaves. J. Ethnopharmacol. 2017, 198, 372–378. [Google Scholar] [CrossRef] [PubMed]
  89. Brait, D.R.; Vaz, M.S.; da Silva Arrigo, J.; de Carvalho, L.N.; de Araújo, F.H.; Vani, J.M.; da Silva Mota, J.; Cardoso, C.A.; Oliveira, R.J.; Negrão, F.J.; et al. Toxicological analysis and anti-inflammatory effects of essential oil from Piper vicosanum leaves. Regul. Toxicol. Pharmacol. 2015, 73, 699–705. [Google Scholar] [CrossRef] [PubMed]
  90. Lima, D.K.; Ballico, L.J.; Lapa, F.R.; Gonçalves, H.P.; de Souza, L.M.; Iacomini, M.; de Paula Werner, M.F.; Baggio, C.H.; Pereira, I.T.; da Silva, L.M.; et al. Evaluation of the antinociceptive, anti-inflammatory and gastric antiulcer activities of the essential oil from Piper aleyreanum C DC in rodents. J. Ethnopharmacol. 2012, 142, 274–282. [Google Scholar] [CrossRef] [PubMed]
  91. De Souza, S.P.; Valverde, S.S.; Costa, N.F.; Calheiros, A.S.; Lima, K.S.C.; Frutuoso, V.S.; Lima, A.L.S. Chemical composition and antinociceptive activity of the essential oil of Piper mollicomum and Piper rivinoides. J. Med. Plants Res. 2014, 8, 788–793. [Google Scholar]
  92. Yu, J.-Q.; Lei, J.-C.; Zhang, X.-Q.; Yu, H.-D.; Tian, D.-Z.; Liao, Z.-X.; Zou, G. Anticancer, antioxidant and antimicrobial activities of the essential oil of Lycopus lucidus Turcz. var. hirtus Regel. Food Chem. 2011, 126, 1593–1598. [Google Scholar] [CrossRef] [PubMed]
  93. Mitoshi, M.; Kuriyama, I.; Nakayama, H.; Miyazato, H.; Sugimoto, K.; Kobayashi, Y.; Jippo, T.; Kanazawa, K.; Yoshida, H.; Mizushina, Y. Effects of essential oils from herbal plants and citrus fruits on DNA. J. Agric. Food Chem. 2012, 60, 11343–11350. [Google Scholar] [CrossRef] [PubMed]
  94. Gautam, N.; Mantha, A.K.; Mittal, S. Essential oils and their constituents as anticancer agents: A mechanistic view. BioMed Res. Int. 2014, 2014, 154106. [Google Scholar] [CrossRef] [PubMed]
  95. Da Silva, J.K.R.; Pinto, L.C.; Burbano, R.M.R.; Montenegro, R.C.; Andrade, E.H.A.; Maia, J.G.S. Composition and cytotoxic and antioxidant activities of the oil of Piper aequale Vahl. Lipids Health Dis. 2016, 15, 174. [Google Scholar] [CrossRef] [PubMed]
  96. Girola, N.; Figueiredo, C.R.; Farias, C.F.; Azevedo, R.A.; Ferreira, A.K.; Teixeira, S.F.; Capello, T.M.; Martins, E.G.A.; Matsuo, A.L.; Travassos, L.R.; et al. Camphene isolated from essential oil of Piper cernuum (Piperaceae) induces intrinsic apoptosis in melanoma cells and displays antitumor activity in vivo. Biochem. Biophys. Res. Commun. 2015, 467, 928–934. [Google Scholar] [CrossRef] [PubMed]
  97. Morales, A.; Rojas, J.; Moujir, L.M.; Araujo, L.; Rondón, M. Chemical composition, antimicrobial and cytotoxic activities of Piper hispidum Sw. essential oil collected in Venezuela. J. Appl. Pharm. Sci. 2013, 3, 16–20. [Google Scholar]
  98. Anderson, R.R.; Girola, N.; Figueiredo, C.R.; Londero, V.S.; Lago, J.H.G. Circadian variation and in vitro cytotoxic activity evaluation of volatile compounds from leaves of Piper regnellii (Miq) C. DC. var. regnellii (C. DC.) Yunck (Piperaceae). Nat. Prod. Res. 2017. [Google Scholar] [CrossRef] [PubMed]
  99. Lognay, G.C.; Bouxin, P.; Marlier, M.; Haubruge, E.; Gaspar, C.; Rodriguez, A. Composition of the essential oil of Piper acutifolium Ruiz. and Pav. from Peru. J. Essent. Oil Res. 1996, 8, 689–691. [Google Scholar] [CrossRef]
  100. Vila, R.; Tomi, F.; Mundina, M.; Santana, A.I.; Solís, P.N.; López Arce, J.B.; Balderrama Iclina, J.L.; Iglesias, J.; Gupta, M.P.; Casanova, J.; et al. Unusual composition of the essential oils from the leaves of Piper aduncum. Flavour Fragr. J. 2005, 20, 67–69. [Google Scholar] [CrossRef]
  101. Lopez Arze, J.B.; Collin, G.; Garneau, F.-X.; Jean, F.-I.; Gagnon, H. Essential oils from Bolivia. VIII. Piperaceae: Piper heterophyllum Ruiz et Pavón, P. aduncum L. J. Essent. Oil Bear. Plants 2008, 11, 53–57. [Google Scholar] [CrossRef]
  102. Oliveira, G.L.; Vieira, T.M.; Nunes, V.F.; Ruas, M.D.; Duarte, E.R.; Moreira, D.D.; Kaplan, M.A.; Martins, E.R. Chemical composition and efficacy in the egg-hatching inhibition of essential oil of Piper aduncum against Haemonchus contortus from sheep. Rev. Bras. Farmacogn. 2014, 24, 288–292. [Google Scholar] [CrossRef]
  103. Pacheco, F.V.; de Paula Avelar, R.; Alvarenga, I.C.; Bertolucci, S.K.; de Alvarenga, A.A.; Pinto, J.E. Essential oil of monkey-pepper (Piper aduncum L.) cultivated under different light environments. Ind. Crops Prod. 2016, 85, 251–257. [Google Scholar] [CrossRef]
  104. Pino, J.A.; Bello, A.; Urquiola, A. The leaf oil of Piper ossanum Trel. from Cuba. J. Essent. Oil Res. 2002, 14, 375. [Google Scholar] [CrossRef]
  105. Facundo, V.A.; Ferreira, S.A.; de Morais, S.M. Essential oils of Piper dumosum Rudge and Piper aleyreanum C.DC (Piperaceae) from Brazilian Amazonian forest. J. Essent. Oil Res. 2007, 19, 165–166. [Google Scholar] [CrossRef]
  106. De BF Ferraz, A.; Balbino, J.M.; Zini, C.A.; Ribeiro, V.L.; Bordignon, S.A.; von Poser, G. Acaricidal activity and chemical composition of the essential oil from three Piper species. Parasitol. Res. 2010, 107, 243–248. [Google Scholar] [CrossRef] [PubMed]
  107. Da Silva Mota, J.; de Souza, D.S.; Boone, C.V.; Lima Cardoso, C.A.; Bastos Caramão, E. Identification of the volatile compounds of leaf, flower, root and stem oils of Piper amalago (Piperaceae). J. Essent. Oil Bear. Plants 2013, 16, 11–16. [Google Scholar] [CrossRef]
  108. Simeone, M.L.F.; Mikich, S.B.; Côcco, L.C.; Hansel, F.A.; Bianconi, G.V. Chemical composition of essential oils from ripe and unripe fruits of Piper amalago L. var. medium (Jacq.)Yunck and Piper hispidum Sw. J. Essent. Oil Res. 2011, 23, 54–58. [Google Scholar] [CrossRef]
  109. Tirillini, B.; Velasquez, E.R.; Pellegrino, R. Chemical composition and antimicrobial activity of essential oil of Piper angustifolium. Planta Med. 1996, 62, 372–373. [Google Scholar] [CrossRef] [PubMed]
  110. Andrade, E.H.A.; Ribeiro, A.F.; Guimarães, E.F.; Maia, J.G.S. Essential oil composition of Piper anonofolium (Kunth) C. DC. J. Essent. Oil Bear. Plants 2005, 8, 289–294. [Google Scholar] [CrossRef]
  111. Mundina, M.; Vila, R.; Tomi, F.; Gupta, M.P.; Adzet, T.; Casanova, J.; Igueral, S. Leaf essential oils of three Panamanian Piper species. Phytochemistry 1998, 47, 1277–1282. [Google Scholar] [CrossRef]
  112. Machado, S.M.F.; Militão, J.S.L.T.; Facundo, V.A.; Ribeiro, A.; Morais, S.M.; Machado, M.I.L. Leaf oils of two Brazilian Piper species: Piper arboreum Aublet var. latifolium (C.DC) Yuncker and Piper hispidum Sw. J. Essent. Oil Res. 1994, 6, 643–644. [Google Scholar] [CrossRef]
  113. Avella, E.; Rios-Motta, J. Main constituents and cytotoxic activity of the essential oil of Piper artanthe. Chem. Nat. Compd. 2010, 46, 547–549. [Google Scholar] [CrossRef]
  114. Cicció, J.F. Essential oil from the leaves of Piper augustum from “Alberto M. Brenes” Biological Preserve, Costa Rica. J. Essent. Oil Res. 2005, 17, 251–253. [Google Scholar] [CrossRef]
  115. Gupta, M.P.; Arias, T.D.; Williams, N.H.; Bos, R.; Tattje, D.H.E. Safrole, the main component of the essential oil from Piper auritum of Panama. J. Nat. Prod. 1985, 48, 330. [Google Scholar] [CrossRef]
  116. Pino, J.A.; Rosado, A.; Rodriguez, M.; Garcia, D. Composition of leaf oil of Piper auritum H.B.K. grown in Cuba. J. Essent. Oil Res. 1998, 10, 333–334. [Google Scholar] [CrossRef]
  117. Monzote, L.; García, M.; Montalvo, A.M.; Scull, R.; Miranda, M. Chemistry, cytotoxicity and antileishmanial activity of the essential oil from Piper auritum. Memorias do Instituto Oswaldo Cruz 2010, 105, 168–173. [Google Scholar] [CrossRef] [PubMed]
  118. Leal, S.M.; Pino, N.; Stashenko, E.E.; Martinez, J.R.; Escobar, P. Antiprotozoal activity of essential oils derived from Piper spp. grown in Colombia. J. Essent. Oil Res. 2013, 25, 512–519. [Google Scholar] [CrossRef]
  119. Vargas, L.; Pérez-Alonso, M.J.; Velasco-Negueruela, A.; Palá-Paúl, J.; García Vallejo, M.C. Leaf essential oil of Piper barbatum H.B.K. (Piperaceae) from Peru. J. Essent. Oil Res. 2003, 15, 163–164. [Google Scholar] [CrossRef]
  120. Olivero-Verbel, J.; Güette-Fernandez, J.; Stashenko, E. Acute toxicity against Artemia franciscana of essential oils isolated from plants of the genus Lippia and Piper collected in Colombia. Boletin Latinoamericano y del Caribe de Plantas Medicinales y Aromaticas 2009, 8, 419–427. [Google Scholar]
  121. Tangarife-Castaño, V.; Correa-Royero, J.B.; Roa-Linares, V.C.; Pino-Benitez, N.; Betancur-Gavis, L.A.; Durán, D.C.; Stashenko, E.E.; Mesa-Arango, A.C. Anti-dermatophyte, anti-Fusarium and cytotoxic activity of essential oils and plant extracts of Piper genus. J. Essent. Oil Res. 2014, 26, 221–227. [Google Scholar] [CrossRef]
  122. Facundo, V.A.; Rezende, C.M.; Pinto, Â.C. Essential oil of Piper carniconnectivum C. CD. leaves and stems. J. Essent. Oil Res. 2006, 18, 296–297. [Google Scholar] [CrossRef]
  123. Vargas, L.; Velasco-Negueruela, A.; Pérez-Alonso, M.J.; Palá-Paúl, J.; García Vallejo, M.C. Essential oil composition of the leaves and spikes of Piper carpunya Ruíz et Pavón (Piperaceae) from Peru. J. Essent. Oil Res. 2004, 16, 122–123. [Google Scholar] [CrossRef]
  124. De Abreu, A.M.; Brighente, I.M.C.; Aguilar, E.M.; Rebelo, R.A. Volatile constituents of Piperaceae from Santa Catarina, Brazil—Essential oil composition of Piper cernuum Vell. and Peperomia emarginella (Sw.) C. DC. J. Essent. Oil Res. 2005, 17, 286–288. [Google Scholar] [CrossRef]
  125. Assis, A.; Brito, V.; Bittencourt, M.; Silva, L.; Oliveira, F.; Oliveira, R. Essential oils composition of four Piper species from Brazil. J. Essent. Oil Res. 2013, 25, 203–209. [Google Scholar] [CrossRef]
  126. Curvelo, J.A.R.; Marques, A.M.; Barreto, A.L.S.; Romanos, M.T.V.; Portela, M.B.; Kaplan, M.A.C.; Soares, R.M.A. A novel nerolidol-rich essential oil from Piper claussenianum modulates Candida albicans biofilm. J. Med. Microbiol. 2014, 63, 697–702. [Google Scholar] [CrossRef] [PubMed]
  127. Da Silva, M.F.; Bezerra-Silva, P.C.; de Lira, C.S.; de Lima Albuquerque, B.N.; Neto, A.C.; Pontual, E.V.; Maciel, J.R.; Paiva, P.M.; Navarro, D.M. Composition and biological activities of the essential oil of Piper corcovadensis (Miq.) C. DC (Piperaceae). Exp. Parasitol. 2016, 165, 64–70. [Google Scholar] [CrossRef] [PubMed]
  128. Andrade, E.H.A.; Guimarães, E.F.; da Silva, M.H.L.; Pereira, R.A.; Bastos, C.N.; Maia, J.G.S. Essential oil composition of Piper cyrtopodon (Miq.) C. DC. J. Essent. Oil Bear. Plants 2006, 9, 53–59. [Google Scholar] [CrossRef]
  129. Luz, A.I.R.; da Silva, J.D.; Zoghbi, M.G.B.; Andrade, E.H.A.; da Silva, M.H.L.; Maia, J.G.S. Volatile constituents of Brazilian Piperaceae. Part 4. Essential oil composition of Piper dactylostigmum, P. plurinervosum and P. vitaceum. J. Essent. Oil Res. 2000, 12, 94–96. [Google Scholar] [CrossRef]
  130. Andrade, E.H.A.; Guimarães, E.F.; Maia, J.G.S. Essential oil composition of Piper demeraranum (Miq.) C. DC. J. Essent. Oil Bear. Plants 2006, 9, 47–52. [Google Scholar] [CrossRef]
  131. Andrade, E.H.A.; Alves, C.N.; Guimarães, E.F.; Carreira, L.M.M.; Maia, J.G.S. Variability in essential oil composition of Piper dilatatum L.C. Rich. Biochem. Syst. Ecol. 2011, 39, 669–675. [Google Scholar] [CrossRef]
  132. De Almeida, J.G.L.; Silveira, E.R.; Pessoa, O.D.L.; Nunes, E.P. Essential oil composition from leaves and fruits of Piper divaricatum G. Mey. J. Essent. Oil Res. 2009, 21, 228–230. [Google Scholar] [CrossRef]
  133. Vila, R.; Mundina, M.; Tomi, F.; Cicció, J.F.; Gupta, M.P.; Iglesias, J.; Casanova, J.; Cañigueral, S. Constituents of the essential oils from Piper friedrichsthalii C.DC. and P. pseudolindenii C.DC. from Central America. Flavour Fragr. J. 2003, 18, 198–201. [Google Scholar] [CrossRef]
  134. Von Poser, G.L.; Rörig, L.R.; Henriques, A.T.; Lamaty, G.; Menut, C.; Bessière, J.M. Aromatic plants from Brazil. III. The chemical composition of Piper gaudichaudianum Kunth and P. mikanianum (Kunth) Steudel essential oils. J. Essent. Oil Res. 1994, 6, 337–340. [Google Scholar] [CrossRef]
  135. Andrade, E.H.; Zoghbi, M.D.; Santos, A.S.; Maia, J.G. Essential oils of Piper gaudichaudianum Kunth and P. regnellii (Miq.) C.DC. J. Essent. Oil Res. 1998, 10, 465–467. [Google Scholar] [CrossRef]
  136. De Morais, S.M.; Facundo, V.A.; Bertini, L.M.; Cavalcanti, E.S.; dos Anjos Júnior, J.F.; Ferreira, S.A.; de Brito, E.S.; de Souza Neto, M.A. Chemical composition and larvicidal activity of essential oils from Piper species. Biochem. Syst. Ecol. 2007, 35, 670–675. [Google Scholar] [CrossRef]
  137. Péres, V.F.; Moura, D.J.; Sperotto, A.R.M.; Damasceno, F.C.; Caramão, E.B.; Zini, C.A.; Saffi, J. Chemical composition and cytotoxic, mutagenic and genotoxic activities of the essential oil from Piper gaudichaudianum Kunth leaves. Food Chem. Toxicol. 2009, 47, 2389–2395. [Google Scholar] [CrossRef] [PubMed]
  138. Sperotto, A.R.M.; Moura, D.J.; Péres, V.F.; Damasceno, F.C.; Caramão, E.B.; Henriques, J.A.P.; Saffi, J. Cytotoxic mechanism of Piper gaudichaudianum Kunth essential oil and its major compound nerolidol. Food Chem. Toxicol. 2013, 57, 57–68. [Google Scholar] [CrossRef] [PubMed]
  139. Sauter, I.P.; Rossa, G.E.; Lucas, A.M.; Cibulski, S.P.; Roehe, P.M.; da Silva, L.A.A.; Rott, M.B.; Mário, R.; Vargas, R.M.F.; Cassel, E.; et al. Chemical composition and amoebicidal activity of Piper hispidinervum (Piperaceae) essential oil. Ind. Crop. Prod. 2012, 40, 292–295. [Google Scholar] [CrossRef]
  140. Cruz, S.M.; Cáceres, A.; Álvarez, L.; Morales, J.; Apel, M.A.; Henriques, A.T.; Salamanca, E.; Giménez, A.; Vásquez, Y.; Gupta, M.P. Piper jacquemontianum and Piper variabile from Guatemala and bioactivity of the dichloromethane and methanol extracts. Rev. Bras. Farmacogn. 2011, 21, 587–593. [Google Scholar] [CrossRef]
  141. Do Nascimento, J.C.; David, J.M.; Barbosa, L.C.A.; de Paula, V.F.; Demuner, A.J.; David, J.P.; Conserva, L.M.; Ferreira, J.C.; Guimarães, E.F. Larvicidal activities and chemical composition of essential oils from Piper klotzschianum (Kunth) C. DC. (Piperaceae). Pest Manag. Sci. 2013, 69, 1267–1271. [Google Scholar] [PubMed]
  142. Da Silva, J.K.R.; Andrade, E.H.A.; Kato, M.J.; Carreira, L.M.M.; Guimarães, E.F.; Maia, J.G.S. Antioxidant capacity and larvicidal and antifungal activities of essential oils and extracts from Piper krukoffii. Nat. Prod. Commun. 2011, 6, 1361–1366. [Google Scholar] [PubMed]
  143. Mundina, M.; Vila, R.; Tomi, F.; Tomàs, X.; Cicció, J.F.; Adzet, T.; Casanova, J.; Cañigueral, S. Composition and chemical polymorphism of the essential oils from Piper lanceaefolium. Biochem. Syst. Ecol. 2001, 29, 739–748. [Google Scholar] [CrossRef]
  144. Andrade, E.H.A.; Ribeiro, A.F.; Guimarães, E.F.; Maia, J.G.S. Essential oil composition of Piper manausense Yuncker. J. Essent. Oil Bear. Plants 2005, 8, 295–299. [Google Scholar] [CrossRef]
  145. Ramos, L.S.; da Silva, M.L.; Luz, A.I.R.; Zoghbi, M.G.B.; Maia, J.G.S. Essential oil of Piper marginatum. J. Nat. Prod. 1986, 49, 712–713. [Google Scholar] [CrossRef]
  146. Autran, E.S.; Neves, I.A.; Silva, C.S.B.; Santos, G.K.N.; Câmara, C.A.G.; Navarro, D.M.A.F. Chemical composition, oviposition deterrent and larvicidal activities against Aedes aegypti of essential oils from Piper marginatum Jacq. (Piperaceae). Bioresour. Technol. 2009, 100, 2284–2288. [Google Scholar] [CrossRef] [PubMed]
  147. De Abreu, A.M.; Sevegnani, L.; Machicado, A.R.; Zimermann, D.; Rebelo, R.A. Piper mikanianum (Kunth) Steudel from Santa Catarina, Brazil—A new source of safrole. J. Essent. Oil Res. 2002, 14, 361–363. [Google Scholar] [CrossRef]
  148. Leal, L.F.; Miguel, O.G.; Silva, R.Z.; Yunes, R.A.; Santos, A.S.; Cechinel-Filho, V. Chemical composition of Piper mikanianum essential oil. J. Essent. Oil Res. 2005, 17, 316–317. [Google Scholar] [CrossRef]
  149. Torquilho, H.S.; Pinto, A.C.; Godoy, R.L.O.; Guimarães, E.F. Essential oil of Piper permucronatum Yuncker (Piperaceae) from Rio de Janeiro, Brazil. J. Essent. Oil Res. 1999, 11, 429–430. [Google Scholar] [CrossRef]
  150. Soleane, H.; De Azevedo, M.S.; Facundo, V.A.; Rover, M.; Santos, O.D.; Slana, G.B.; Barreto, A.S. Essential oil of Piper renitens (Miq.) Yunck leaves and stems (Piperaceae) from Brazilian Amazonian forest. J. Essent. Oil Res. 2007, 19, 557–558. [Google Scholar] [CrossRef]
  151. Moreira, D.L.; Souza, P.O.; Kaplan, M.A.C.; Pereira, N.A.; Cardoso, G.L.; Guimarães, E.F. Effect of leaf essential oil from Piper solmsianum C. DC. in mice behaviour. Anais da Academia Brasileira de Ciências 2001, 73, 33–57. [Google Scholar] [CrossRef] [PubMed]
  152. Facundo, V.A.; de Morais, S.M. Essential oil of Piper tuberculatum var. tuberculatum (Micq.) CDC leaves. J. Essent. Oil Res. 2005, 17, 304–305. [Google Scholar] [CrossRef]
  153. Mesquita, J.M.O.; Oliveira, A.B.; Braga, F.C.; Lombardi, J.A.; da Cunha, A.P.; Salgueiro, L.; Cavaleiro, C. Essential oil constituents of Piper vicosanum Yunker from the Brazilian Atlantic forest. J. Essent. Oil Res. 2006, 18, 392–395. [Google Scholar] [CrossRef]
  154. Dognini, J.; Meneghetti, E.K.; Teske, M.N.; Begnini, I.M.; Rebelo, R.A.; Dalmarco, E.M.; Verdi, M.; de Gasper, A.L. Antibacterial activity of high safrole contain essential oils from Piper xylosteoides (Kunth) Steudel. J. Essent. Oil Res. 2012, 24, 241–244. [Google Scholar] [CrossRef]
Table 1. Relationship between biological activity and compound classes presents in the Piper oils obtained by PCA analysis.
Table 1. Relationship between biological activity and compound classes presents in the Piper oils obtained by PCA analysis.
ActivityClasses (%)
MHOMSHOSPP
Antimicrobial0–70.20–51.40–99.80–86.20–98.0
Cytotoxic0–83.70–23.20–94.90–29.50–6.7
Antiprotozoal0–29.90–50.33.3–76.00–86.20–88.5
Insecticidal0–44.30–12.60–66.00–45.40–98.8
Enzymatic6.9–18.51–4.24.9–52.22.1–17.50–80.8
Anti-inflammatory16.4–25.80–16.416.2–62.620.8–28.30–0.2
Antinociceptive16.6–65.90.8–16.416.2–33.24.8–28.30–0.6

Share and Cite

MDPI and ACS Style

Da Silva, J.K.; Da Trindade, R.; Alves, N.S.; Figueiredo, P.L.; Maia, J.G.S.; Setzer, W.N. Essential Oils from Neotropical Piper Species and Their Biological Activities. Int. J. Mol. Sci. 2017, 18, 2571. https://doi.org/10.3390/ijms18122571

AMA Style

Da Silva JK, Da Trindade R, Alves NS, Figueiredo PL, Maia JGS, Setzer WN. Essential Oils from Neotropical Piper Species and Their Biological Activities. International Journal of Molecular Sciences. 2017; 18(12):2571. https://doi.org/10.3390/ijms18122571

Chicago/Turabian Style

Da Silva, Joyce Kelly, Rafaela Da Trindade, Nayara Sabrina Alves, Pablo Luís Figueiredo, José Guilherme S. Maia, and William N. Setzer. 2017. "Essential Oils from Neotropical Piper Species and Their Biological Activities" International Journal of Molecular Sciences 18, no. 12: 2571. https://doi.org/10.3390/ijms18122571

APA Style

Da Silva, J. K., Da Trindade, R., Alves, N. S., Figueiredo, P. L., Maia, J. G. S., & Setzer, W. N. (2017). Essential Oils from Neotropical Piper Species and Their Biological Activities. International Journal of Molecular Sciences, 18(12), 2571. https://doi.org/10.3390/ijms18122571

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop