Use of Mature miRNA Strand Selection in miRNAs Families in Cervical Cancer Development
Abstract
:1. Introduction
2. Anti-Oncogenic miR-1 Family Participates in Cervical Cancer
3. miR-7 Family Participates in Cervical Cancer
4. Oncogenic miR-9 Family Participates in Cervical Cancer
5. miR-10 Family Participates in Cervical Cancer
6. Oncogenic miR-15 Family Participates in Cervical Cancer
7. Oncogenic miR-17 Family Participates in Cervical Cancer
8. miR-19 Family Participates in Cervical Cancer
9. Anti-Oncogenic miR-23 Family Participates in Cervical Cancer
10. Oncogenic miR-25 Family Participates in Cervical Cancer
11. Oncogenic miR-27 Family Participates in Cervical Cancer
12. Anti-Oncogenic miR-29 Family Participates in Cervical Cancer
13. Anti-Oncogenic miR-34 Family Participates in Cervical Cancer
14. Anti-Oncogenic miR-99 Family Participates in Cervical Cancer
15. Anti-Oncogenic miR-124 Family Participates in Cervical Cancer
16. Anti-Oncogenic miR-125 Family Participates in Cervical Cancer
17. miR-133 Family Participates in Cervical Cancer
18. Oncogenic miR-146 Family Participates in Cervical Cancer
19. Oncogenic miR-181 Family Participates in Cervical Cancer
20. miR-196 Family Participates in Cervical Cancer
21. miR-200 Family Participates in Cervical Cancer
22. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Demuth, J.P.; de Bie, T.; Stajich, J.E.; Cristianini, N.; Hahn, M.W. The evolution of mammalian gene families. PLoS ONE 2006, 1, e85. [Google Scholar] [CrossRef] [PubMed]
- Chhabra, R.; Dubey, R.; Saini, N. Cooperative and individualistic functions of the micrornas in the miR-23a~27a~24-2 cluster and its implication in human diseases. Mol. Cancer 2010, 9, 232. [Google Scholar] [CrossRef] [PubMed]
- Tehler, D.; Hoyland-Kroghsbo, N.M.; Lund, A.H. The miR-10 microRNA precursor family. RNA Biol. 2011, 8, 728–734. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.X.; Danaher, R.J.; Miller, C.S.; Berger, J.R.; Nubia, V.G.; Wilfred, B.S.; Neltner, J.H.; Norris, C.M.; Nelson, P.T. Expression of miR-15/107 family microRNAs in human tissues and cultured rat brain cells. Genom. Proteom. Bioinform. 2014, 12, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Wang, F.; Yang, G.H.; Wang, F.L.; Ma, Y.N.; Du, Z.W.; Zhang, J.W. Human microRNA clusters: Genomic organization and expression profile in leukemia cell lines. Biochem. Biophys. Res. Commun. 2006, 349, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Lopez, J.A.; Alvarez-Salas, L.M. Differential effects of miR-34c-3p and miR-34c-5p on SiHa cells proliferation apoptosis, migration and invasion. Biochem. Biophys. Res. Commun. 2011, 409, 513–519. [Google Scholar] [CrossRef] [PubMed]
- He, L.; He, X.; Lim, L.P.; de Stanchina, E.; Xuan, Z.; Liang, Y.; Xue, W.; Zender, L.; Magnus, J.; Ridzon, D.; et al. A microRNA component of the p53 tumour suppressor network. Nature 2007, 447, 1130–1134. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.W.; Cannell, I.G.; de Moor, C.H.; Hill, K.; Garside, P.G.; Hamilton, T.L.; Meijer, H.A.; Dobbyn, H.C.; Stoneley, M.; Spriggs, K.A.; et al. The mechanism of micro-RNA-mediated translation repression is determined by the promoter of the target gene. Proc. Natl. Acad. Sci. USA 2008, 105, 8866–8871. [Google Scholar] [CrossRef] [PubMed]
- Das, A.K.; Carmichael, G.G. Adar editing wobbles the microRNA world. ACS Chem. Biol. 2007, 2, 217–220. [Google Scholar] [CrossRef] [PubMed]
- Katoh, T.; Sakaguchi, Y.; Miyauchi, K.; Suzuki, T.; Kashiwabara, S.; Baba, T.; Suzuki, T. Selective stabilization of mammalian microRNAs by 3′ adenylation mediated by the cytoplasmic poly(A) polymerase GLD-2. Genes Dev. 2009, 23, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Landgraf, P.; Rusu, M.; Sheridan, R.; Sewer, A.; Iovino, N.; Aravin, A.; Pfeffer, S.; Rice, A.; Kamphorst, A.O.; Landthaler, M.; et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 2007, 129, 1401–1414. [Google Scholar] [CrossRef] [PubMed]
- Starega-Roslan, J.; Koscianska, E.; Kozlowski, P.; Krzyzosiak, W.J. The role of the precursor structure in the biogenesis of microRNA. Cell. Mol. Life Sci. CMLS 2011, 68, 2859–2871. [Google Scholar] [CrossRef] [PubMed]
- Noland, C.L.; Doudna, J.A. Multiple sensors ensure guide strand selection in human RNAi pathways. RNA 2013, 19, 639–648. [Google Scholar] [CrossRef] [PubMed]
- Meijer, H.A.; Smith, E.M.; Bushell, M. Regulation of miRNA strand selection: Follow the leader? Biochem. Soc. Trans. 2014, 42, 1135–1140. [Google Scholar] [CrossRef] [PubMed]
- Davis-Dusenbery, B.N.; Hata, A. Mechanisms of control of microRNA biogenesis. J. Biochem. 2010, 148, 381–392. [Google Scholar] [PubMed]
- Suzuki, H.I.; Miyazono, K. Emerging complexity of microRNA generation cascades. J. Biochem. 2011, 149, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Granados Lopez, A.J.; Lopez, J.A. Multistep model of cervical cancer: Participation of miRNAs and coding genes. Int J. Mol. Sci. 2014, 15, 15700–15733. [Google Scholar] [CrossRef] [PubMed]
- Servin-Gonzalez, L.S.; Granados-Lopez, A.J.; Lopez, J.A. Families of microRNAs expressed in clusters regulate cell signaling in cervical cancer. Int. J. Mol. Sci. 2015, 16, 12773–12790. [Google Scholar] [CrossRef] [PubMed]
- Sweetman, D.; Goljanek, K.; Rathjen, T.; Oustanina, S.; Braun, T.; Dalmay, T.; Munsterberg, A. Specific requirements of MRFs for the expression of muscle specific microRNAs, miR-1, miR-206 and miR-133. Dev. Biol. 2008, 321, 491–499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozomara, A.; Griffiths-Jones, S. Mirbase: Annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014, 42, D68–D73. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Shuang, D.; Yi, Z.; Sheng, H.; Liu, Y. Up-regulated microRNA-155 expression is associated with poor prognosis in cervical cancer patients. Biomed. Pharmacother. 2016, 83, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhang, P.; Chen, Z.; Liu, M.; Li, X.; Tang, H. MicroRNA-7 downregulates XIAP expression to suppress cell growth and promote apoptosis in cervical cancer cells. FEBS Lett. 2013, 587, 2247–2253. [Google Scholar] [CrossRef] [PubMed]
- Hao, Z.; Yang, J.; Wang, C.; Li, Y.; Zhang, Y.; Dong, X.; Zhou, L.; Liu, J.; Zhang, Y.; Qian, J. MicroRNA-7 inhibits metastasis and invasion through targeting focal adhesion kinase in cervical cancer. Int. J. Clin. Exp. Med. 2015, 8, 480–487. [Google Scholar] [PubMed]
- Rao, Q.; Shen, Q.; Zhou, H.; Peng, Y.; Li, J.; Lin, Z. Aberrant microRNA expression in human cervical carcinomas. Med. Oncol. 2012, 29, 1242–1248. [Google Scholar] [CrossRef] [PubMed]
- Witten, D.; Tibshirani, R.; Gu, S.G.; Fire, A.; Lui, W.O. Ultra-high throughput sequencing-based small RNA discovery and discrete statistical biomarker analysis in a collection of cervical tumours and matched controls. BMC Biol. 2010, 8, 58. [Google Scholar] [CrossRef] [PubMed]
- Cheung, T.H.; Man, K.N.; Yu, M.Y.; Yim, S.F.; Siu, N.S.; Lo, K.W.; Doran, G.; Wong, R.R.; Wang, V.W.; Smith, D.I.; et al. Dysregulated microRNAs in the pathogenesis and progression of cervical neoplasm. Cell Cycle 2012, 11, 2876–2884. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Choi, C.H.; Choi, J.J.; Park, Y.A.; Kim, S.J.; Hwang, S.Y.; Kim, W.Y.; Kim, T.J.; Lee, J.H.; Kim, B.G.; et al. Altered microRNA expression in cervical carcinomas. Clin. Cancer Res. 2008, 14, 2535–2542. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Gao, G.; Hu, X.; Wang, Y.; Schwarz, J.K.; Chen, J.J.; Grigsby, P.W.; Wang, X. Activation of miR-9 by human papillomavirus in cervical cancer. Oncotarget 2014, 5, 11620–11630. [Google Scholar] [CrossRef] [PubMed]
- Vojtechova, Z.; Sabol, I.; Salakova, M.; Smahelova, J.; Zavadil, J.; Turek, L.; Grega, M.; Klozar, J.; Prochazka, B.; Tachezy, R. Comparison of the miRNA profiles in HPV-positive and HPV-negative tonsillar tumors and a model system of human keratinocyte clones. BMC Cancer 2016, 16, 382. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Jia, J.; Zhao, L.; Li, X.; Xie, Q.; Chen, X.; Wang, J.; Lu, F. Down-regulation of microRNA-9 leads to activation of il-6/Jak/STAT3 pathway through directly targeting IL-6 in Hela cell. Mol. Carcinogen. 2016, 55, 732–742. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.M.; Lin, K.Y.; Chen, Y.Q. Diverse functions of miR-125 family in different cell contexts. J. Hematol. Oncol. 2013, 6, 6. [Google Scholar] [CrossRef] [PubMed]
- Pereira, P.M.; Marques, J.P.; Soares, A.R.; Carreto, L.; Santos, M.A. MicroRNA expression variability in human cervical tissues. PLoS ONE 2010, 5, e11780. [Google Scholar] [CrossRef] [PubMed]
- Li, J.H.; Xiao, X.; Zhang, Y.N.; Wang, Y.M.; Feng, L.M.; Wu, Y.M.; Zhang, Y.X. MicroRNA miR-886-5p inhibits apoptosis by down-regulating Bax expression in human cervical carcinoma cells. Gynecol. Oncol. 2011, 120, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Wilting, S.M.; Snijders, P.J.; Verlaat, W.; Jaspers, A.; van de Wiel, M.A.; van Wieringen, W.N.; Meijer, G.A.; Kenter, G.G.; Yi, Y.; le Sage, C.; et al. Altered microRNA expression associated with chromosomal changes contributes to cervical carcinogenesis. Oncogene 2013, 32, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Li, M.Y.; Hu, X.X. Meta-analysis of microRNA expression profiling studies in human cervical cancer. Med. Oncol. 2015, 32, 510. [Google Scholar] [CrossRef] [PubMed]
- Long, M.J.; Wu, F.X.; Li, P.; Liu, M.; Li, X.; Tang, H. MicroRNA-10a targets CHL1 and promotes cell growth, migration and invasion in human cervical cancer cells. Cancer Lett. 2012, 324, 186–196. [Google Scholar] [CrossRef] [PubMed]
- Zeng, T.; Li, G. MicroRNA10a enhances the metastatic potential of cervical cancer cells by targeting phosphatase and tensin homologue. Mol. Med. Rep. 2014, 10, 1377–1382. [Google Scholar] [PubMed]
- Zou, D.; Zhou, Q.; Wang, D.; Guan, L.; Yuan, L.; Li, S. The downregulation of microRNA-10b and its role in cervical cancer. Oncol. Res. 2016, 24, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Finnerty, J.R.; Wang, W.X.; Hebert, S.S.; Wilfred, B.R.; Mao, G.; Nelson, P.T. The miR-15/107 group of microRNA genes: Evolutionary biology, cellular functions, and roles in human diseases. J. Mol. Biol. 2010, 402, 491–509. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, D.; Wang, F.; Xu, D.; Guo, Y.; Cui, W. Serum miRNAs panel (miR-16-2*, miR-195, miR-2861, miR-497) as novel non-invasive biomarkers for detection of cervical cancer. Sci. Rep. 2015, 5, 17942. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.; Wu, J.; Qiu, W.; Lyu, Q.; He, J.; Xie, W.; Xu, N.; Zhang, Y. MiR-15a and miR-16 induce autophagy and enhance chemosensitivity of camptothecin. Cancer Biol. Ther. 2015, 16, 941–948. [Google Scholar] [CrossRef] [PubMed]
- Druz, A.; Chen, Y.C.; Guha, R.; Betenbaugh, M.; Martin, S.E.; Shiloach, J. Large-scale screening identifies a novel microRNA, miR-15a-3p, which induces apoptosis in human cancer cell lines. RNA Biol. 2013, 10, 287–300. [Google Scholar] [CrossRef] [PubMed]
- Zubillaga-Guerrero, M.I.; Alarcon-Romero Ldel, C.; Illades-Aguiar, B.; Flores-Alfaro, E.; Bermudez-Morales, V.H.; Deas, J.; Peralta-Zaragoza, O. MicroRNA miR-16-1 regulates CCNE1 (cyclin E1) gene expression in human cervical cancer cells. Int. J. Clin. Exp. Med. 2015, 8, 15999–16006. [Google Scholar] [PubMed]
- Wang, N.; Wei, H.; Yin, D.; Lu, Y.; Zhang, Y.; Zhang, Q.; Ma, X.; Zhang, S. MicroRNA-195 inhibits proliferation of cervical cancer cells by targeting cyclin D1A. Tumour Biol. 2016, 37, 4711–4720. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Lin, L.I.; Zhang, L.; Jiang, J. MicroRNA-195 inhibits the proliferation, migration and invasion of cervical cancer cells via the inhibition of CCND2 and myb expression. Oncol. Lett. 2015, 10, 2639–2643. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, H.; Wang, Z.; Cai, H. MiR-195 inhibits the proliferation of human cervical cancer cells by directly targeting cyclin d1. Tumour Biol. 2016, 37, 6457–6463. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Han, L.R.; Zhou, Y.X.; Li, Y. MiR-195 suppresses cervical cancer migration and invasion through targeting Smad3. Int. J. Gynecol. Cancer 2016, 26, 817–824. [Google Scholar] [CrossRef] [PubMed]
- Shin, C.; Nam, J.W.; Farh, K.K.; Chiang, H.R.; Shkumatava, A.; Bartel, D.P. Expanding the microRNA targeting code: Functional sites with centered pairing. Mol. Cell 2010, 38, 789–802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cipolla, G.A. A non-canonical landscape of the microRNA system. Front. Genet. 2014, 5, 337. [Google Scholar] [CrossRef] [PubMed]
- Su, W.; Slepenkov, S.V.; Slevin, M.K.; Lyons, S.M.; Ziemniak, M.; Kowalska, J.; Darzynkiewicz, E.; Jemielity, J.; Marzluff, W.F.; Rhoads, R.E. MRNAs containing the histone 3′ stem-loop are degraded primarily by decapping mediated by oligouridylation of the 3′ end. RNA 2013, 19, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Ventura, A.; Young, A.G.; Winslow, M.M.; Lintault, L.; Meissner, A.; Erkeland, S.J.; Newman, J.; Bronson, R.T.; Crowley, D.; Stone, J.R.; et al. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 2008, 132, 875–886. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Zhang, S.; Zhao, Z.; Mao, X.; Huang, J.; Wu, Z.; Zheng, L.; Wang, Q. MicroRNA-27b up-regulated by human papillomavirus 16 E7 promotes proliferation and suppresses apoptosis by targeting polo-like kinase2 in cervical cancer. Oncotarget 2016, 7, 19666–19679. [Google Scholar] [CrossRef] [PubMed]
- Chiantore, M.V.; Mangino, G.; Iuliano, M.; Zangrillo, M.S.; de Lillis, I.; Vaccari, G.; Accardi, R.; Tommasino, M.; Columba Cabezas, S.; Federico, M.; et al. Human papillomavirus E6 and E7 oncoproteins affect the expression of cancer-related microRNAs: Additional evidence in HPV-induced tumorigenesis. J. Cancer Res. Clin. Oncol. 2016, 142, 1751–1763. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Pan, X.; Yang, Q.; Wen, L.; Jiang, Y.; Zhao, Y.; Li, G. MicroRNA-18a enhances the radiosensitivity of cervical cancer cells by promoting radiation-induced apoptosis. Oncol. Rep. 2015, 33, 2853–2862. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.W.; Wang, F.; Wei, Q.; Zhao, Y.F.; Liu, M.; Li, X.; Tang, H. MiR-20a promotes migration and invasion by regulating TNKS2 in human cervical cancer cells. FEBS Lett. 2012, 586, 897–904. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Yao, D.; Chen, J.; Ding, N.; Ren, F. MiR-20a promotes cervical cancer proliferation and metastasis in vitro and in vivo. PLoS ONE 2015, 10, e0120905. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, F.; Xu, J.; Wang, X.; Ye, F.; Xie, X. Micro ribonucleic acid-93 promotes oncogenesis of cervical cancer by targeting RAB11 family interacting protein 1. J. Obstet. Gynaecol. Res. 2016, 42, 1168–1179. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Guo, Y.; Zhang, Y.; You, K.; Li, Z.; Geng, L. MicroRNA-106b is involved in transforming growth factor β1-induced cell migration by targeting disabled homolog 2 in cervical carcinoma. J. Exp. Clin. Cancer Res. 2016, 35, 11. [Google Scholar] [CrossRef]
- Xu, X.M.; Wang, X.B.; Chen, M.M.; Liu, T.; Li, Y.X.; Jia, W.H.; Liu, M.; Li, X.; Tang, H. MicroRNA-19a and -19b regulate cervical carcinoma cell proliferation and invasion by targeting CUL5. Cancer Lett. 2012, 322, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Campos-Viguri, G.E.; Jimenez-Wences, H.; Peralta-Zaragoza, O.; Torres-Altamirano, G.; Soto-Flores, D.G.; Hernandez-Sotelo, D.; Alarcon-Romero Ldel, C.; Jimenez-Lopez, M.A.; Illades-Aguiar, B.; Fernandez-Tilapa, G. MiR-23b as a potential tumor suppressor and its regulation by DNA methylation in cervical cancer. Infect. Agent Cancer 2015, 10, 42. [Google Scholar] [CrossRef] [PubMed]
- Au Yeung, C.L.; Tsang, T.Y.; Yau, P.L.; Kwok, T.T. Human papillomavirus type 16 E6 induces cervical cancer cell migration through the p53/microRNA-23b/urokinase-type plasminogen activator pathway. Oncogene 2011, 30, 2401–2410. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, H.K.; Li, Y.; Hafner, M.; Banerjee, N.S.; Tang, S.; Briskin, D.; Meyers, C.; Chow, L.T.; Xie, X.; et al. MicroRNAs are biomarkers of oncogenic human papillomavirus infections. Proc. Natl. Acad. Sci. USA 2014, 111, 4262–4267. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Li, Y. MiR-25-3p reverses epithelial-mesenchymal transition via targeting Sema4C in cisplatin-resistance cervical cancer cells. Cancer Sci. 2016, 108, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Zhang, Y.; Zhang, S. MicroRNA-92 regulates cervical tumorigenesis and its expression is upregulated by human papillomavirus-16 E6 in cervical cancer cells. Oncol. Lett. 2013, 6, 468–474. [Google Scholar] [PubMed]
- Zhou, C.; Shen, L.; Mao, L.; Wang, B.; Li, Y.; Yu, H. MiR-92a is upregulated in cervical cancer and promotes cell proliferation and invasion by targeting FBXW7. Biochem. Biophys. Res. Commun. 2015, 458, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wu, J.F.; Chen, W.J.; Tang, S.L.; Mo, Z.C.; Tang, Y.Y.; Li, Y.; Wang, J.L.; Liu, X.Y.; Peng, J.; et al. MicroRNA-27a/b regulates cellular cholesterol efflux, influx and esterification/hydrolysis in THP-1 macrophages. Atherosclerosis 2014, 234, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Gocze, K.; Gombos, K.; Kovacs, K.; Juhasz, K.; Gocze, P.; Kiss, I. MicroRNA expressions in HPV-induced cervical dysplasia and cancer. Anticancer Res. 2015, 35, 523–530. [Google Scholar] [PubMed]
- Sun, Y.; Yang, X.; Liu, M.; Tang, H. B4galt3 up-regulation by miR-27a contributes to the oncogenic activity in human cervical cancer cells. Cancer Lett. 2016, 375, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Deng, B.; Zheng, L.; Dou, L.; Guo, Y.; Guo, K. MiR-27b is upregulated in cervical carcinogenesis and promotes cell growth and invasion by regulating CDH11 and epithelial-mesenchymal transition. Oncol. Rep. 2016, 35, 1645–1651. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, N.; Kinoshita, T.; Nohata, N.; Yoshino, H.; Itesako, T.; Fujimura, L.; Mitsuhashi, A.; Usui, H.; Enokida, H.; Nakagawa, M.; et al. Tumor-suppressive microRNA-29a inhibits cancer cell migration and invasion via targeting HSP47 in cervical squamous cell carcinoma. Int. J. Oncol. 2013, 43, 1855–1863. [Google Scholar] [PubMed]
- Jia, W.; Wu, Y.; Zhang, Q.; Gao, G.E.; Zhang, C.; Xiang, Y. Expression profile of circulating microRNAs as a promising fingerprint for cervical cancer diagnosis and monitoring. Mol. Clin. Oncol. 2015, 3, 851–858. [Google Scholar] [CrossRef] [PubMed]
- Kriegel, A.J.; Liu, Y.; Fang, Y.; Ding, X.; Liang, M. The miR-29 family: Genomics, cell biology, and relevance to renal and cardiovascular injury. Physiol. Genom. 2012, 44, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Li, J.; Wang, Y.; Liu, C.; Jia, H.; Jiang, C.; Wang, Y.; Luo, M.; Zhao, H.; Dong, L.; et al. Characterization of microRNA-29 family expression and investigation of their mechanistic roles in gastric cancer. Carcinogenesis 2014, 35, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, F.; Xu, J.; Ye, F.; Shen, Y.; Zhou, J.; Lu, W.; Wan, X.; Ma, D.; Xie, X. Progressive miRNA expression profiles in cervical carcinogenesis and identification of HPV-related target genes for miR-29. J. Pathol. 2011, 224, 484–495. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, K.S.; Sathyanarayanan, A.; Karunagaran, D. Downregulation of hmgb1 by miR-34a is sufficient to suppress proliferation, migration and invasion of human cervical and colorectal cancer cells. Tumour Biol. 2016, 37, 13155–13166. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yu, L.; Shen, Z.; Li, Y.; Chen, B.; Wei, W.; Chen, X.; Wang, Q.; Tong, F.; Lou, H.; et al. MiR-34a and its novel target, NLRC5, are associated with HPV16 persistence. Infect. Genet. Evol. 2016, 44, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Su, J.; Xue, S.L.; Yang, H.; Ju, L.L.; Ji, Y.; Wu, K.H.; Zhang, Y.W.; Zhang, Y.X.; Hu, J.F.; et al. HPV E6/p53 mediated down-regulation of miR-34a inhibits warburg effect through targeting ldha in cervical cancer. Am. J. Cancer Res. 2016, 6, 312–320. [Google Scholar] [PubMed]
- Geng, D.; Song, X.; Ning, F.; Song, Q.; Yin, H. MiR-34a inhibits viability and invasion of human papillomavirus-positive cervical cancer cells by targeting E2F3 and regulating survivin. Int. J. Gynecol. Cancer 2015, 25, 707–713. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.H.; Zhang, L.; Ma, Y.W.; Xiao, J.; Zhang, Y.; Liu, M.; Tang, H. MicroRNA-34a-upregulated retinoic acid-inducible gene-i promotes apoptosis and delays cell cycle transition in cervical cancer cells. DNA Cell Biol. 2016, 35, 267–279. [Google Scholar] [CrossRef] [PubMed]
- Orth, J.D.; Loewer, A.; Lahav, G.; Mitchison, T.J. Prolonged mitotic arrest triggers partial activation of apoptosis, resulting in DNA damage and p53 induction. Mol. Biol. Cell 2012, 23, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Schlereth, K.; Beinoraviciute-Kellner, R.; Zeitlinger, M.K.; Bretz, A.C.; Sauer, M.; Charles, J.P.; Vogiatzi, F.; Leich, E.; Samans, B.; Eilers, M.; et al. DNA binding cooperativity of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol. Cell 2010, 38, 356–368. [Google Scholar] [CrossRef] [PubMed]
- Airley, R.E.; Mobasheri, A. Hypoxic regulation of glucose transport, anaerobic metabolism and angiogenesis in cancer: Novel pathways and targets for anticancer therapeutics. Chemotherapy 2007, 53, 233–256. [Google Scholar] [CrossRef] [PubMed]
- Bommer, G.T.; Gerin, I.; Feng, Y.; Kaczorowski, A.J.; Kuick, R.; Love, R.E.; Zhai, Y.; Giordano, T.J.; Qin, Z.S.; Moore, B.B.; et al. P53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr. Biol. CB 2007, 17, 1298–1307. [Google Scholar] [CrossRef] [PubMed]
- Ji, Q.; Hao, X.; Zhang, M.; Tang, W.; Yang, M.; Li, L.; Xiang, D.; Desano, J.T.; Bommer, G.T.; Fan, D.; et al. MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS ONE 2009, 4, e6816. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Fu, H.; Liu, Q.; Tie, Y.; Zhu, J.; Xing, R.; Sun, Z.; Zheng, X. Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest. FEBS Lett. 2008, 582, 1564–1568. [Google Scholar] [CrossRef] [PubMed]
- Tarasov, V.; Jung, P.; Verdoodt, B.; Lodygin, D.; Epanchintsev, A.; Menssen, A.; Meister, G.; Hermeking, H. Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: MiR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 2007, 6, 1586–1593. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.I.; Yamagata, K.; Sugimoto, K.; Iwamoto, T.; Kato, S.; Miyazono, K. Modulation of microRNA processing by p53. Nature 2009, 460, 529–533. [Google Scholar] [CrossRef] [PubMed]
- Xin, J.X.; Yue, Z.; Zhang, S.; Jiang, Z.H.; Wang, P.Y.; Li, Y.J.; Pang, M.; Xie, S.Y. MiR-99 inhibits cervical carcinoma cell proliferation by targeting TRIB2. Oncology Lett. 2013, 6, 1025–1030. [Google Scholar]
- Zhang, Y.; Liu, Y.; Yang, Y.X.; Xia, J.H.; Zhang, H.X.; Li, H.B.; Yu, C.Z. The expression of PLK-1 in cervical carcinoma: A possible target for enhancing chemosensitivity. J. Exp. Clin. Cancer Res. CR 2009, 28, 130. [Google Scholar] [CrossRef] [PubMed]
- Li, B.H.; Zhou, J.S.; Ye, F.; Cheng, X.D.; Zhou, C.Y.; Lu, W.G.; Xie, X. Reduced miR-100 expression in cervical cancer and precursors and its carcinogenic effect through targeting PLK1 protein. Eur. J. Cancer 2011, 47, 2166–2174. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Chen, Z.; Jin, Y.; Dragas, D.; Zhang, L.; Adjei, B.S.; Wang, A.; Dai, Y.; Zhou, X. MicroRNA-99 family members suppress homeobox A1 expression in epithelial cells. PLoS ONE 2013, 8, e80625. [Google Scholar] [CrossRef] [PubMed]
- Wilting, S.M.; van Boerdonk, R.A.; Henken, F.E.; Meijer, C.J.; Diosdado, B.; Meijer, G.A.; le Sage, C.; Agami, R.; Snijders, P.J.; Steenbergen, R.D. Methylation-mediated silencing and tumour suppressive function of hsa-miR-124 in cervical cancer. Mol. Cancer 2010, 9, 167. [Google Scholar] [CrossRef] [PubMed]
- Hesselink, A.T.; Heideman, D.A.; Steenbergen, R.D.; Gok, M.; van Kemenade, F.J.; Wilting, S.M.; Berkhof, J.; Meijer, C.J.; Snijders, P.J. Methylation marker analysis of self-sampled cervico-vaginal lavage specimens to triage high-risk HPV-positive women for colposcopy. Int. J. Cancer 2014, 135, 880–886. [Google Scholar] [CrossRef] [PubMed]
- Snellenberg, S.; de Strooper, L.M.; Hesselink, A.T.; Meijer, C.J.; Snijders, P.J.; Heideman, D.A.; Steenbergen, R.D. Development of a multiplex methylation-specific PCR as candidate triage test for women with an HPV-positive cervical scrape. BMC Cancer 2012, 12, 551. [Google Scholar] [CrossRef] [PubMed]
- Harris, T.G.; Burk, R.D.; Yu, H.; Minkoff, H.; Massad, L.S.; Watts, D.H.; Zhong, Y.; Gange, S.; Kaplan, R.C.; Anastos, K.; et al. Insulin-like growth factor axis and oncogenic human papillomavirus natural history. Cancer Epidemiol. Biomark. Prev. 2008, 17, 245–248. [Google Scholar] [CrossRef] [PubMed]
- Hirano, S.; Ito, N.; Takahashi, S.; Tamaya, T. Clinical implications of insulin-like growth factors through the presence of their binding proteins and receptors expressed in gynecological cancers. Eur. J. Gynaecol. Oncol. 2004, 25, 187–191. [Google Scholar] [PubMed]
- Wan, H.Y.; Li, Q.Q.; Zhang, Y.; Tian, W.; Li, Y.N.; Liu, M.; Li, X.; Tang, H. MiR-124 represses vasculogenic mimicry and cell motility by targeting AMOTL1 in cervical cancer cells. Cancer Lett. 2014, 355, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Cai, D.; Meng, L.; Wang, B. Microrna-124 inhibits proliferation, invasion, migration and epithelial-mesenchymal transition of cervical carcinoma cells by targeting astrocyte-elevated gene-1. Oncol. Rep. 2016, 36, 2321–2328. [Google Scholar] [CrossRef] [PubMed]
- Cui, F.; Li, X.; Zhu, X.; Huang, L.; Huang, Y.; Mao, C.; Yan, Q.; Zhu, J.; Zhao, W.; Shi, H. MiR-125b inhibits tumor growth and promotes apoptosis of cervical cancer cells by targeting phosphoinositide 3-kinase catalytic subunit delta. Cell. Physiol. Biochem. 2012, 30, 1310–1318. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.D.; Cai, N.; Wu, X.L.; Cao, H.Z.; Xie, L.L.; Zheng, P.S. OCT4 promotes tumorigenesis and inhibits apoptosis of cervical cancer cells by miR-125b/bak1 pathway. Cell Death Dis. 2013, 4, e760. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Cui, H.; Xu, X.; Lin, Z.; Zhang, X.; Kang, L.; Han, B.; Meng, J.; Yan, Z.; Yan, X.; et al. MiR-125a suppresses tumor growth, invasion and metastasis in cervical cancer by targeting Stat3. Oncotarget 2015, 6, 25266–25280. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Wan, Y.; Wang, S.; Xue, M. MicroRNA-125a-5p modulates human cervical carcinoma proliferation and migration by targeting ABL2. Drug Des. Dev. Ther. 2016, 10, 71–79. [Google Scholar]
- Ribeiro, J.; Marinho-Dias, J.; Monteiro, P.; Loureiro, J.; Baldaque, I.; Medeiros, R.; Sousa, H. MiR-34a and miR-125b expression in hpv infection and cervical cancer development. BioMed Res. Int. 2015, 2015, 304584. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Shi, B.; Huang, K.; Zhang, W. MiR-133a inhibits cervical cancer growth by targeting EGFR. Oncol. Rep. 2015, 34, 1573–1580. [Google Scholar] [CrossRef] [PubMed]
- Qin, W.; Dong, P.; Ma, C.; Mitchelson, K.; Deng, T.; Zhang, L.; Sun, Y.; Feng, X.; Ding, Y.; Lu, X.; et al. MicroRNA-133b is a key promoter of cervical carcinoma development through the activation of the ERK and AKT1 pathways. Oncogene 2012, 31, 4067–4075. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjya, S.; Roy, K.S.; Ganguly, A.; Sarkar, S.; Panda, C.K.; Bhattacharyya, D.; Bhattacharyya, N.P.; Roychoudhury, S. Inhibition of nucleoporin member Nup214 expression by miR-133b perturbs mitotic timing and leads to cell death. Mol. Cancer 2015, 14, 42. [Google Scholar] [CrossRef] [PubMed]
- Sathyanarayanan, A.; Chandrasekaran, K.S.; Karunagaran, D. MicroRNA-146a inhibits proliferation, migration and invasion of human cervical and colorectal cancer cells. Biochem. Biophys. Res. Commun. 2016, 480, 528–533. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Sit, A.; Feinberg, M.W. Role of miR-181 family in regulating vascular inflammation and immunity. Trends Cardiovasc. Med. 2014, 24, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Ke, G.; Liang, L.; Yang, J.M.; Huang, X.; Han, D.; Huang, S.; Zhao, Y.; Zha, R.; He, X.; Wu, X. MiR-181a confers resistance of cervical cancer to radiation therapy through targeting the pro-apoptotic prkcd gene. Oncogene 2013, 32, 3019–3027. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Ke, G.; Han, D.; Liang, S.; Yang, G.; Wu, X. MicroRNA-181a enhances the chemoresistance of human cervical squamous cell carcinoma to cisplatin by targeting PRKCD. Exp. Cell Res. 2014, 320, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wang, Y.L.; Liu, S.; Zhang, P.P.; Chen, Z.; Liu, M.; Tang, H. MiR-181b promotes cell proliferation and reduces apoptosis by repressing the expression of adenylyl cyclase 9 (AC9) in cervical cancer cells. FEBS Lett. 2014, 588, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Velazquez, M.; Melendez-Zajgla, J.; Maldonado, V. Apoptosis induced by camp requires smac/diablo transcriptional upregulation. Cell Signal. 2007, 19, 1212–1220. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Zhu, J.; Hu, C.; Song, H.; Li, Y. Inhibition of microRNA-181a may suppress proliferation and invasion and promote apoptosis of cervical cancer cells through the PTEN/Akt/FOXO1 pathway. J. Physiol. Biochem. 2016, 72, 721–732. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Xin, F.; Ma, C.F. Clinical significance of serum miR-196a in cervical intraepithelial neoplasia and cervical cancer. Genet. Mol. Res. 2015, 14, 17995–18002. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zheng, F.; Yu, G.; Yin, Y.; Lu, Q. MiR-196a targets netrin 4 and regulates cell proliferation and migration of cervical cancer cells. Biochem. Biophys. Res. Commun. 2013, 440, 582–588. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Lin, J.; Li, L.; Zhang, Y.; Chen, W.; Cao, Z.; Zuo, H.; Chen, C.; Kee, K. Hpv16 early gene E5 specifically reduces miRNA-196a in cervical cancer cells. Sci. Rep. 2015, 5, 7653. [Google Scholar] [CrossRef] [PubMed]
- Hou, T.; Ou, J.; Zhao, X.; Huang, X.; Huang, Y.; Zhang, Y. MicroRNA-196a promotes cervical cancer proliferation through the regulation of FOXO1 and p27Kip1. Br. J. Cancer 2014, 110, 1260–1268. [Google Scholar] [CrossRef] [PubMed]
- Cao, Q.; Lu, K.; Dai, S.; Hu, Y.; Fan, W. Clinicopathological and prognostic implications of the miR-200 family in patients with epithelial ovarian cancer. Int. J. Clin. Exp. Pathol. 2014, 7, 2392–2401. [Google Scholar] [PubMed]
- Cheng, Y.X.; Zhang, Q.F.; Hong, L.; Pan, F.; Huang, J.L.; Li, B.S.; Hu, M. MicroRNA-200b suppresses cell invasion and metastasis by inhibiting the epithelial-mesenchymal transition in cervical carcinoma. Mol. Med. Rep. 2016, 13, 3155–3160. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.X.; Chen, G.T.; Chen, C.; Zhang, Q.F.; Pan, F.; Hu, M.; Li, B.S. MicroRNA-200b inhibits epithelial-mesenchymal transition and migration of cervical cancer cells by directly targeting RhoE. Mol. Med. Rep. 2016, 13, 3139–3146. [Google Scholar] [CrossRef] [PubMed]
- Zeng, F.; Xue, M.; Xiao, T.; Li, Y.; Xiao, S.; Jiang, B.; Ren, C. MiR-200b promotes the cell proliferation and metastasis of cervical cancer by inhibiting FOXG1. Biomed. Pharmacother. 2016, 79, 294–301. [Google Scholar] [CrossRef] [PubMed]
- Bosse, G.D.; Simard, M.J. A new twist in the microRNA pathway: Not dicer but argonaute is required for a microRNA production. Cell Res. 2010, 20, 735–737. [Google Scholar] [CrossRef] [PubMed]
- Nishikura, K. Editor meets silencer: Crosstalk between RNA editing and RNA interference. Nat. Rev. Mol. Cell Biol. 2006, 7, 919–931. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Witmer, P.D.; Casey, E.; Valle, D.; Sukumar, S. DNA methylation regulates microRNA expression. Cancer Biol. Ther. 2007, 6, 1284–1288. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, D.S.; Hutvagner, G.; Du, T.; Xu, Z.; Aronin, N.; Zamore, P.D. Asymmetry in the assembly of the RNAi enzyme complex. Cell 2003, 115, 199–208. [Google Scholar] [CrossRef]
- Kai, Z.S.; Pasquinelli, A.E. MicroRNA assassins: Factors that regulate the disappearance of miRNAs. Nat. Struct. Mol. Biol. 2010, 17, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Martinez, I.; Gardiner, A.S.; Board, K.F.; Monzon, F.A.; Edwards, R.P.; Khan, S.A. Human papillomavirus type 16 reduces the expression of microRNA-218 in cervical carcinoma cells. Oncogene 2008, 27, 2575–2582. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Shen, D.; Wang, W.; Xian, J. Aberrant expression of microRNA-26b and its prognostic potential in human cervical cancer. Int. J. Clin. Exp. Pathol. 2015, 8, 5542–5548. [Google Scholar] [PubMed]
- Yang, Y.; Song, K.L.; Chang, H.; Chen, L. Decreased expression of microRNA-126 is associated with poor prognosis in patients with cervical cancer. Diagn. Pathol. 2014, 9, 220. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Liu, B.; Xie, P.; Zhang, M.Q.; Li, Y.; Xie, Z.; Wang, X. Model-guided quantitative analysis of microRNA-mediated regulation on competing endogenous RNAs using a synthetic gene circuit. Proc. Natl. Acad. Sci. USA 2015, 112, 3158–3163. [Google Scholar] [CrossRef] [PubMed]
- Salzman, D.W.; Nakamura, K.; Nallur, S.; Dookwah, M.T.; Metheetrairut, C.; Slack, F.J.; Weidhaas, J.B. MiR-34 activity is modulated through 5′-end phosphorylation in response to DNA damage. Nat. Commun. 2016, 7, 10954. [Google Scholar] [CrossRef] [PubMed]
miRNA Family | Mature Strand | Expression | Function | Chromosomal Localization | DNA Strand | Strand Conservation | nts |
---|---|---|---|---|---|---|---|
miR-1-1 | 5p | ? | ? | 20 | + | NC | 22 |
3p [22,23] | Down | A | C | 22 | |||
miR-1-2 | 3p [22,23] | Down | A | 18 | − | C | 22 |
miR-206 | 3p [24] | Down | A | 6 | + | C | 22 |
miR-7-1 | 5p [22,23,25,26] | Up/Down | A | 9 | − | C | 22 |
3p | ? | ? | NC | 22 | |||
miR-7-2 | 5p [22,23,25,26] | Up/Down | A | 15 | + | C | 22 |
3p | ? | ? | NC | 22 | |||
miR-7-3 | 5p [22,23,25,26] | Up/Down | A | 19 | + | C | 22 |
miR-9-1 | 5p [27,28,29,30] | Up | A | 1 | − | C | 21 |
3p | ? | ? | NC | 22 | |||
miR-9-2 | 5p [27,28,29,30] | Up | A | 5 | − | C | 21 |
3p | ? | ? | NC | 22 | |||
miR-9-3 | 5p [27,28,29,30] | Up | A | 15 | + | C | 21 |
3p | ? | ? | NC | 22 | |||
miR-10a | 5p [28,31,32,33] | Up | O | 17 | − | C | 22 |
3p [33] | Down | ? | 22 | ||||
miR-10b | 5p [22,23,34] | Down/Up | A | 2 | + | C | 22 |
3p | ? | ? | NC | 22 | |||
miR-15a | 5p [34,35] | Up | A | 13 | − | C | 22 |
3p [36] | Up | A | NC | 22 | |||
miR-15b | 5p [37,38,39,40] | Up | ? | 3 | + | C | 22 |
3p | ? | ? | NC | 22 | |||
miR-16-1 | 5p [31,34,39,41] | Up | A | 13 | − | C | 22 |
3p | ? | ? | NC | 22 | |||
miR-16-2 | 5p [31,34,39,41] | Up | A | 3 | + | C | 22 |
3p [42] | Up | ? | NC | 22 | |||
miR-195 | 5p [22,34,40,43,44] | Down | A | 17 | − | C | 22 |
3p | ? | ? | NC | 22 | |||
miR-17 | 5p [28,34,45] | Down | ? | 13 | + | C | 22 |
3p | ? | ? | NC | 22 | |||
miR-18a | 5p [46,47] | Up | A | 13 | + | C | 23 |
3p | ? | ? | NC | 23 | |||
miR-18b | 5p | ? | ? | X | − | C | 23 |
3p | ? | ? | NC | 23 | |||
miR-20a | 5p [22,48,49,50,51] | Up | A | 13 | + | C | 22 |
3p | ? | O | NC | 22 | |||
miR-20b | 5p [22,28,34,35] | Up | ? | X | − | C | 22 |
3p | ? | ? | NC | 22 | |||
miR-93 | 5p [22,34,40,52,53] | Up | O | 7 | − | C | 22 |
3p | ? | ? | NC | 22 | |||
miR-106a | 5p | ? | ? | X | − | C | 23 |
3p | ? | ? | NC | 22 | |||
miR-106b | 5p [34,35,40,54] | Up | O | 7 | − | C | 21 |
3p | ? | ? | NC | 22 | |||
miR-19a | 5p | ? | ? | 13 | NC | 22 | |
3p [40,55] | Up | O | C | 23 | |||
miR-19b-1 | 5p | ? | ? | 13 | NC | 23 | |
3p [40,55] | Up | O | C | 23 | |||
miR-19b-2 | 5p | ? | ? | X | NC | 22 | |
3p [40,55] | Up | O | C | 23 | |||
miR-23a | 5p | ? | ? | 19 | − | NC | 22 |
3p | ? | ? | C | 21 | |||
miR-23b | 5p | ? | ? | 9 | + | NC | 22 |
3p [40,56,57] | Down | A | C | 21 | |||
miR-23c | 3p | ? | ? | X | − | C | 22 |
miR-25 | 5p | ? | ? | 7 | − | NC | 22 |
3p [41,58] | Up | A | C | 22 | |||
miR-92a-1 | 5p | ? | ? | 13 | + | NC | 22 |
3p [40,41,43,59,60] | Up | O | C | 22 | |||
miR-92a-2 | 5p | ? | ? | X | − | NC | 22 |
3p [40,41,43,59,60] | Up | O | C | 22 | |||
miR-92b | 5p | ? | ? | 1 | + | NC | 22 |
3p | ? | ? | C | 22 | |||
miR-27a | 5p | ? | ? | 19 | − | NC | 22 |
3p [31,40,49,61,62] | Up | O | C | 21 | |||
miR-27b | 5p | ? | ? | 9 | + | NC | 22 |
3p [40,49,63,64] | Up/Down | O | C | 21 | |||
miR-29a | 5p | ? | ? | 7 | − | NC | 22 |
3p [31,41,43] | Down | A | C | 22 | |||
miR-29b-1 | 5p | ? | ? | 7 | − | NC | 22 |
3p [65] | Down | ? | C | 23 | |||
miR-29b-2 | 5p | ? | ? | 1 | − | NC | 22 |
3p [65] | Down | ? | C | 23 | |||
miR-29c | 5p | ? | ? | 1 | − | NC | 22 |
3p [31,43] | Down | ? | C | 22 | |||
miR-34a | 5p [49,66,67] | Down | A | 1 | − | C | 22 |
3p | ? | ? | NC | 22 | |||
miR-34b | 5p [28,68] | Down | A | 11 | + | C | 23 |
3p | ? | ? | NC | 22 | |||
miR-34c | 5p [28] | Down | A | 11 | + | C | 23 |
3p | ? | ? | NC | 22 | |||
miR-99a | 5p [22,31,34,40,43] | Down | A | 21 | + | C | 22 |
3p | ? | ? | NC | 22 | |||
miR-99b | 5p [22,23] | Down | A | 19 | + | C | 22 |
3p | ? | ? | NC | 22 | |||
miR-100 | 5p [22,34,40,41,43,69] | Down | A | 11 | − | C | 22 |
3p | ? | ? | NC | 22 | |||
miR-124-1 | 5p | ? | ? | 8 | − | NC | 22 |
3p [70,71,72] | Down | A | C | 20 | |||
miR-124-2 | 5p | ? | ? | 8 | + | NC | 22 |
3p [70,71,72] | Down | A | C | 20 | |||
miR-124-3 | 5p | ? | ? | 20 | + | NC | 22 |
3p [70,71,72] | Down | A | C | 20 | |||
miR-125a | 5p [37,40,49,73,74] | Up/Down | A | 19 | + | C | 24 |
3p | ? | ? | NC | 22 | |||
miR-125b-1 | 5p [23,34,40,49,75] | Down | A | 11 | − | C | 22 |
3p | ? | ? | NC | 22 | |||
miR-125b-2 | 5p [23,34,40,49,75] | Down | A | 21 | + | C | 22 |
3p | ? | ? | NC | 22 | |||
miR-133a-1 | 5p | ? | ? | 18 | − | NC | 22 |
3p [27,76,77] | Down | A | C | 22 | |||
miR-133a-2 | 5p | ? | ? | 20 | + | NC | 22 |
3p [27,76,77] | Down | A | C | 22 | |||
miR-133b | 3p [27,76,78] | Up | O | 6 | + | C | 22 |
miR-146a | 5p [39,40,79] | Up | O | 5 | + | C | 22 |
3p | ? | ? | NC | 22 | |||
miR-146b | 5p [22,34] | Up | ? | 10 | + | C | 22 |
3p | ? | ? | NC | 22 | |||
miR-181a-1 | 5p [80,81] | Up | O | 1 | − | C | 23 |
3p | ? | ? | NC | 22 | |||
miR-181a-2 | 5p [80,81] | Up | O | 9 | + | C | 23 |
3p | ? | ? | NC | 22 | |||
miR-181b-1 | 5p [82] | Up | O | 1 | − | C | 23 |
3p | ? | ? | NC | 21 | |||
miR-181b-2 | 5p [82] | Up | O | 9 | + | C | 23 |
3p | ? | ? | NC | 20 | |||
miR-181c | 5p | ? | ? | 19 | + | C | 23 |
3p | ? | ? | NC | 22 | |||
miR-181d | 5p | ? | ? | 19 | + | C | 23 |
3p | ? | ? | NC | 21 | |||
miR-196a-1 | 5p [83,84,85] | Up | O | 17 | − | C | 22 |
miR-196a-2 | 5p [83,84,85] | Up | O | C | 22 | ||
3p | ? | ? | 12 | + | NC | 22 | |
miR-196b | 5p [57,86] | Down | A | 7 | C | 22 | |
3p | ? | ? | − | NC | 22 | ||
miR-200a | 5p [40] | Up | ? | 1 | + | NC | 22 |
3p [22,52,87] | Up | O | C | 22 | |||
miR-200b | 5p | ? | ? | 1 | + | NC | 22 |
3p [88,89,90] | Up/Down | A | C | 22 | |||
miR-200c | 5p | ? | ? | 12 | + | NC | 22 |
3p [34,37,40,49] | Up/Down | O | C | 23 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Granados-López, A.J.; Ruiz-Carrillo, J.L.; Servín-González, L.S.; Martínez-Rodríguez, J.L.; Reyes-Estrada, C.A.; Gutiérrez-Hernández, R.; López, J.A. Use of Mature miRNA Strand Selection in miRNAs Families in Cervical Cancer Development. Int. J. Mol. Sci. 2017, 18, 407. https://doi.org/10.3390/ijms18020407
Granados-López AJ, Ruiz-Carrillo JL, Servín-González LS, Martínez-Rodríguez JL, Reyes-Estrada CA, Gutiérrez-Hernández R, López JA. Use of Mature miRNA Strand Selection in miRNAs Families in Cervical Cancer Development. International Journal of Molecular Sciences. 2017; 18(2):407. https://doi.org/10.3390/ijms18020407
Chicago/Turabian StyleGranados-López, Angelica Judith, José Luis Ruiz-Carrillo, Luis Steven Servín-González, José Luis Martínez-Rodríguez, Claudia Araceli Reyes-Estrada, Rosalinda Gutiérrez-Hernández, and Jesús Adrián López. 2017. "Use of Mature miRNA Strand Selection in miRNAs Families in Cervical Cancer Development" International Journal of Molecular Sciences 18, no. 2: 407. https://doi.org/10.3390/ijms18020407
APA StyleGranados-López, A. J., Ruiz-Carrillo, J. L., Servín-González, L. S., Martínez-Rodríguez, J. L., Reyes-Estrada, C. A., Gutiérrez-Hernández, R., & López, J. A. (2017). Use of Mature miRNA Strand Selection in miRNAs Families in Cervical Cancer Development. International Journal of Molecular Sciences, 18(2), 407. https://doi.org/10.3390/ijms18020407