Determination of VEGFR-2 (KDR) 604A>G Polymorphism in Pancreatic Disorders
Abstract
:1. Introduction
2. Results
3. Discussion
4. Material and Methods
4.1. Patients and Study Protocol
4.2. SNP Genotyping
4.3. Statistical Analysis
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ozhan, G.; Sari, F.M.; Vefai, M.; Yanar, H.T.; Alpertunga, B. Acute pancreatitis is associated with Ser608Leu iNOS polymorphism. Folia Biol. 2012, 58, 256–260. [Google Scholar]
- Powell, J.J.; Fearon, K.C.; Siriwardena, A.K.; Ross, J.A. Evidence against a role for polymorphisms at tumor necrosis factor, interleukin-1 and interleukin-1 receptor antagonist gene loci in the regulation of disease severity in acute pancreatitis. Surgery 2001, 129, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Goldie, A.S.; Fearon, K.C.; Ross, J.A.; Barclay, G.R.; Jackson, R.E.; Grant, I.S.; Ramsay, G.; Blyth, A.S.; Howie, J.C. Natural cytokine antagonists and endogenous antiendotoxin core antibodies in sepsis syndrome. The Sepsis Intervention Group. JAMA 1995, 274, 172–177. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Zhang, L.; Shi, W.; Liang, X.; Ye, Z.; Zhang, B.; Liu, S. Coupled plasma filtration adsorption combined with continuous veno-venous hemofiltration treatment in patients with severe acute pancreatitis. J. Clin. Gastroenterol. 2013, 47, 62–68. [Google Scholar] [CrossRef] [PubMed]
- De-Madaria, E.; Martinez, J.; Sempere, L.; Lozano, B.; Sanchez-Paya, J.; Uceda, F.; Perez-Mateo, M. Cytokine genotypes in acute pancreatitis association with etiology, severity, and cytokine levels in blood. Pancreas 2008, 37, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Uzunoglu, F.G.; Kolbe, J.; Wikman, H.; Güngör, C.; Bohn, B.A.; Nentwich, M.F.; Reeh, M.; König, A.M.; Bockhorn, M.; Kutup, A.; et al. VEGFR-2, CXCR-2 and PAR-1 germline polymorphisms as predictors of survival in pancreatic carcinoma. Ann. Oncol. 2013, 24, 1282–1290. [Google Scholar] [CrossRef] [PubMed]
- Farkas, G., Jr.; Hofner, P.; Balog, A.; Takács, T.; Szabolcs, A.; Farkas, G.; Mándi, Y. Relevance of transforming growth factor-β1, interleukin-8, and tumor necrosis factor-α polymorphisms in patients with chronic pancreatitis. Eur. Cytokine Net. 2007, 18, 31–37. [Google Scholar]
- Zhang, L.; Wu, G.; Herrle, F.; Niedergethmann, M.; Keese, M. Single nucleotide polymorphisms of genes for EGF, TGF-β and TNF-α in patients with pancreatic carcinoma. Cancer Genom. Proteom. 2012, 9, 287–295. [Google Scholar]
- Donahue, T.R.; Hines, O.J. CXCR2 and RET single nucleotide polymorphisms in pancreatic cancer. World J. Surg. 2009, 33, 710–715. [Google Scholar] [CrossRef] [PubMed]
- Balog, A.; Gyulai, Z.; Boros, L.G.; Farkas, G.; Takács, T.; Lonovics, J.; Mándi, Y. Polymorphism of the TNF-α, HSP70–2, and CD14 genes increases susceptibility to severe acute pancreatitis. Pancreas 2005, 30, e46–e50. [Google Scholar] [CrossRef] [PubMed]
- Ozhan, G.; Yanar, H.T.; Ertekin, C.; Alpertunga, B. Polymorphisms in tumour necrosis factor α (TNFα) gene in patients with acute pancreatitis. Mediators Inflamm. 2010, 2010, 482950. [Google Scholar] [CrossRef]
- Levi, F.; Lucchini, F.; Negri, E.; La Vecchia, C. Pancreatic cancer mortality in Europe: The leveling of an epidemic. Pancreas 2003, 27, 139–142. [Google Scholar] [CrossRef] [PubMed]
- Van Ness, B.; Ramos, C.; Haznadar, M.; Hoering, A.; Haessler, J.; Crowley, J.; Jacobus, S.; Oken, M.; Rajkumar, V.; Greipp, P.; et al. Genomic variation in myeloma: Design, content, and initial application of the bank on a cure SNP panel to detect associations with progression-free survival. BMC Med. 2008, 8, 26. [Google Scholar] [CrossRef] [PubMed]
- Toomey, D.P.; Murphy, J.F.; Conlon, K.C. Cox-2, VEGF and tumor angiogenesis. Surgeon 2009, 7, 174–180. [Google Scholar] [CrossRef]
- Waltenberger, J.; Claesson-Welsh, L.; Siegbahn, A.; Shibuya, M.; Heldin, C.H. Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J. Biol. Chem. 1994, 269, 26988–26995. [Google Scholar] [PubMed]
- Gille, H.; Kowalski, J.; Li, B.; LeCouter, J.; Moffat, B.; Zioncheck, T.F.; Pelletier, N.; Ferrara, N. Analysis of biological effects and signaling properties of Flt-1 (VEGFR-1) and KDR (VEGFR-2). A reassessment using novel receptor-specific vascular endothelial growth factor mutants. J. Biol. Chem. 2001, 276, 3222–3230. [Google Scholar] [CrossRef] [PubMed]
- Millauer, B.; Wizigmann-Voos, S.; Schnurch, H.; Martinez, R.; Moller, N.P.; Risau, W.; Ullrich, A. High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 1993, 72, 835–846. [Google Scholar] [CrossRef]
- Peters, K.G.; de Vries, C.; Williams, L.T. Vascular endothelial growth factor receptor expression during embryogenesis and tissue repair suggests a role in endothelial differentiation and blood vessel growth. Proc. Natl. Acad. Sci. USA 1993, 90, 8915–8919. [Google Scholar] [CrossRef] [PubMed]
- Quinn, T.P.; Peters, K.G.; de Vries, C.; Ferrara, N.; Williams, L.T. Fetal liver kinase 1 is a receptor for vascular endothelial growth factor and is selectively expressed in vascular endothelium. Proc. Natl. Acad. Sci. USA 1993, 90, 7533–7537. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.K.; Suh, C.; Chi, H.S.; Cho, H.S.; Bae, Y.K.; Lee, K.H.; Lee, G.W.; Kim, I.S.; Eom, H.S.; Kong, S.Y.; et al. VEGFA and VEGFR2 genetic polymorphisms and survival in patients with diffuse large B cell lymphoma. Cancer Sci. 2012, 103, 497–503. [Google Scholar] [CrossRef] [PubMed]
- Hicklin, D.J.; Ellis, L.M. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J. Clin. Oncol. 2005, 23, 1011–1027. [Google Scholar] [CrossRef] [PubMed]
- Carmeliet, P. VEGF as a key mediator of angiogenesis in cancer. Oncology 2005, 69, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Tammela, T.; Enholm, B.; Alitalo, K.; Paavonen, K. The biology of vascular endothelial growth factors. Cardiovasc. Res. 2005, 65, 550–563. [Google Scholar] [CrossRef] [PubMed]
- Korc, M. Pathways for aberrant angiogenesis in pancreatic cancer. Mol. Cancer 2003. [Google Scholar] [CrossRef] [Green Version]
- Mukhopadhyay, D.; Zeng, H.; Bhattacharya, R. Complexity in the vascular permeability factor/vascular endothelial growth factor (VPF/VEGF)—Receptors signaling. Mol. Cell. Biochem. 2004, 264, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Kuehn, R.; Lelkes, P.I.; Bloechle, C. Angiogenesis, angiogenic growth factors and cell adhesion molecules are upregulated in chronic pancreatic diseases: Angiogenesis in chronic pancreatitis and in pancreatic cancer. Pancreas 1999, 18, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Sivaprasad, S.; Govardhan, B.; Harithakrishna, R.; Venkat Rao, G.; Pradeep, R.; Kunal, B.; Ramakrishna, N.; Anuradha, S.; Reddy, D.N. Association of vascular endothelial growth factor (VEGF) gene polymorphism and increased serum VEGF concentration with pancreatic adenocarcinoma. Pancreatology 2013, 13, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Xu, W.; Kamel-Reid, S.; Liu, X.; Jung, C.W.; Kim, S.; Lipton, J.H. Clinical relevance of vascular endothelial growth factor (VEGFA) and VEGF receptor (VEGFR2) gene polymorphism on the treatment outcome following imatinib therapy. Ann. Oncol. 2010, 21, 1179–1188. [Google Scholar] [CrossRef] [PubMed]
- Hansen, T.F.; Sorensen, F.B.; Spindler, K.L.; Olsen, D.A.; Andersen, R.F.; Lindebjerg, J.; Brandslund, I.; Jakobsen, A. Microvessel density and the association with single nucleotide polymorphisms of the vascular endothelial growth factor receptor 2 in patients with colorectal cancer. Virchows Arch. 2010, 456, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Glubb, D.M.; Cerri, E.; Giese, A.; Zhang, W.; Mirza, O.; Thompson, E.E.; Chen, P.; Das, S.; Jassem, J.; Rzyman, W.; et al. Novel functional germline variants in the VEGF receptor 2 gene and their effect on gene expression and microvessel density in lung cancer. Clin. Cancer Res. 2011, 17, 5257–5267. [Google Scholar] [CrossRef] [PubMed]
- Talar-Wojnarowska, R.; Gasiorowska, A.; Olakowski, M.; Lekstan, A.; Lampe, P.; Smolarz, B.; Romanowicz-Makowska, H.; Kulig, A.; Malecka-Panas, E. Vascular endothelial growth factor (VEGF) genotype and serum concentration in patients with pancreatic adenocarcinoma and chronic pancreatitis. J. Physiol. Pharmacol. 2010, 61, 711–716. [Google Scholar] [PubMed]
- Catalano, M.F.; Sahai, A.; Levy, M.; Romagnuolo, J.; Wiersema, M.; Brugge, W.; Freeman, M.; Yamao, K.; Canto, M.; Hernandez, L.V. EUS-based criteria for the diagnosis of chronic pancreatitis: The Rosemont classification. Gastrointest. Endosc. 2009, 69, 1251–1261. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Pancreatic Disorders n = 217 | Control Subjects n = 232 | p-Value |
---|---|---|---|
Age (year) | 59.55 (stdev.14.08) | 60.61 (stdev.14.05) | 0.496 (unpaired t-test) |
Sex: male/female | 113/104 | 122/110 | 0.924 (Fisher’s exact test) |
VEGFR-2 (KDR) 604A>G | Acute Pancreatitis | Control | OR (95% CI) | p |
AA | 22 (20.00%) | 68 (29.31%) | reference | |
AG | 60 (54.55%) | 127 (54.74%) | 0.685 (0.387 to 1.211) | 0.1933 |
GG | 28 (25.45%) | 37 (15.95%) | 0.427 (0.215 to 0.850) | 0.0154 * |
G allele carriers | 88 (80.00%) | 164 (70.69%) | 0.603 (0.349 to 1.041) | 0.0494 * |
VEGFR-2 (KDR) 604A>G | Chronic Pancreatitis | Control | OR (95% CI) | p |
AA | 7 (28.00%) | 68 (29.31%) | reference | |
AG | 12 (48.00%) | 127 (54.74%) | 1.089 (0.410 to 2.896) | 0.8636 |
GG | 6 (24.00%) | 37 (15.95%) | 0.635 (0.199 to 2.028) | 0.4432 |
G allele carriers | 18 (72.00%) | 164 (70.69%) | 0.938 (0.375 to 2.348) | 0.8911 |
VEGFR-2 (KDR) 604A>G | Pancreatic Cancer | Control | OR (95% CI) | p |
AA | 14 (17.07%) | 68 (29.31%) | reference | |
AG | 50 (60.98%) | 127 (54.74%) | 0.523 (0.270 to 1.014) | 0.050 * |
GG | 18 (21.95%) | 37 (15.95%) | 0.423 (0.190 to 0.947) | 0.036 * |
G allele carriers | 68 (82.93%) | 164 (70.69%) | 0.496 (0.262 to 0.943) | 0.032 * |
Major A Criteria | Major B Criteria | Minor Criteria |
---|---|---|
Hyperechoic foci with shadowing, main pancreatic duct (MPD) calculi | Lobularity, honeycombing type | Cysts, Dilated MPD (≥3.5 mm), irregular MPD contour, Dilated side branches (≥1 mm), hyperechoic duct wall, hyperechoic non-shadowing foci, non-honeycombing lobularity |
Patients with Pancreatic Disorders | Healthy Subjects | ||
---|---|---|---|
Inclusion criteria | Exclusion criteria | Inclusion criteria | Exclusion criteria |
Age 18–90 years | Age <18 years | Age 18–90 years | Age <18 years |
Certain diagnosis of chronic pancreatitis, acute pancreatitis or pancreatic cancer | Absence of pancreatic disorders | Absence of pancreatic disorders | Other cancers |
Signed informed consent | Pancreatic neuroendocrine tumours Other cancers | Signed informed consent |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pădureanu, V.; Boldeanu, M.V.; Streaţă, I.; Cucu, M.G.; Siloşi, I.; Boldeanu, L.; Bogdan, M.; Enescu, A.Ş.; Forţofoiu, M.; Enescu, A.; et al. Determination of VEGFR-2 (KDR) 604A>G Polymorphism in Pancreatic Disorders. Int. J. Mol. Sci. 2017, 18, 439. https://doi.org/10.3390/ijms18020439
Pădureanu V, Boldeanu MV, Streaţă I, Cucu MG, Siloşi I, Boldeanu L, Bogdan M, Enescu AŞ, Forţofoiu M, Enescu A, et al. Determination of VEGFR-2 (KDR) 604A>G Polymorphism in Pancreatic Disorders. International Journal of Molecular Sciences. 2017; 18(2):439. https://doi.org/10.3390/ijms18020439
Chicago/Turabian StylePădureanu, Vlad, Mihail Virgil Boldeanu, Ioana Streaţă, Mihai Gabriel Cucu, Isabela Siloşi, Lidia Boldeanu, Maria Bogdan, Anca Ştefania Enescu, Maria Forţofoiu, Aurelia Enescu, and et al. 2017. "Determination of VEGFR-2 (KDR) 604A>G Polymorphism in Pancreatic Disorders" International Journal of Molecular Sciences 18, no. 2: 439. https://doi.org/10.3390/ijms18020439