GeneAnalytics Pathway Analysis and Genetic Overlap among Autism Spectrum Disorder, Bipolar Disorder and Schizophrenia
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
ASD | Autism spectrum disorder |
BPD | Bipolar disorder |
SCH | Schizophrenia |
GWAS | Genome-wide association studies |
CGH | Comparative genomic hybridization |
CNV | Copy number variants |
SIDS | Sudden infant death syndrome |
SCN | Suprachiasmatic nuclei |
PACAP | Pituitary adenylate cyclase-activating polypeptide |
cAMP | Cyclic adenosine monophosphate |
cGAMP | Cyclic guanosine monophosphate–adenosine monophosphate |
nNOS | Nitric oxide synthase |
CREB | cAMP response element-binding protein |
References
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSMIV-TR, 4th ed.; American Psychiatric Association: Washington, DC, USA, 2000. [Google Scholar]
- Carroll, L.S.; Owen, M.J. Genetic overlap between autism, schizophrenia and bipolar disorder. Genome Med. 2009, 1, 102. [Google Scholar] [CrossRef] [PubMed]
- Burbach, J.; Peter, H.; van der Zwaag, B. Contact in the genetics of autism and schizophrenia. Trends Neurosci. 2009, 32, 69–72. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, P.F.; Magnusson, C.; Reichenberg, A.; Boman, M.; Dalman, C.; Davidson, M.; Fruchter, E.; Hultman, C.M.; Lundberg, M.; Långström, N.; et al. Family history of schizophrenia and bipolar disorder as risk factors for autism. Arch. Gen. Psychiatry 2012, 69, 1099–1103. [Google Scholar] [CrossRef] [PubMed]
- Sebat, J.; Lakshmi, B.; Malhotra, D.; Troge, J.; Lese-Martin, C.; Walsh, T.; Yamrom, B.; Yoon, S.; Krasnitz, A.; Kendall, J.; et al. Strong association of de novo copy number mutations with autism. Science 2007, 316, 445–449. [Google Scholar] [CrossRef] [PubMed]
- Szatmari, P.; Paterson, A.D.; Zwaigenbaum, L.; Roberts, W.; Brian, J.; Liu, X.Q.; Vincent, J.B.; Skaug, J.L.; Thompson, A.P.; Senman, L.; et al. Autism Genome Project Consortium, Mapping autism risk loci using genetic linkage and chromosomal rearrangments. Nat. Genet. 2007, 39, 319–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marshall, C.R.; Noor, A.; Vincent, J.B.; Lionel, A.C.; Feuk, L.; Skaug, J.; Shago, M.; Moessner, R.; Pinto, D.; Ren, Y.; et al. Structural variation of chromosomes in autism spectrum disorder. Am. J. Hum. Genet. 2008, 82, 477–488. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.G.; Kishikawa, S.; Higgins, A.W.; Seong, I.S.; Donovan, D.J.; Shen, Y.; Lally, E.; Weiss, L.A.; Najm, J.; Kutsche, K.; et al. Disruption of neurexin 1 associated with autism spectrum disorder. Am. J. Hum. Genet. 2008, 82, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Belmonte, M.K.; Bourgeron, T. Fragile X syndrome and autism at the intersection of genetic and neural networks. Nat. Neurosci. 2006, 9, 1221–1225. [Google Scholar] [CrossRef] [PubMed]
- Kwon, C.H.; Luikart, B.W.; Powell, C.M.; Zhou, J.; Matheny, S.A.; Zhang, W.; Li, Y.; Baker, S.J.; Parada, L.F. Pten regulates neuronal arborization and social interaction in mice. Neuron 2006, 50, 377–388. [Google Scholar] [CrossRef] [PubMed]
- Hoeffer, C.A.; Tang, W.; Wong, H.; Santillan, A.; Patterson, R.J.; Martinez, L.A.; Tejada-Simon, M.V.; Paylor, R.; Hamilton, S.L.; Klann, E. Removal of FKBP12 enhances mTOR-Raptor interactions, LTP, memory, and perseverative/repetitive behavior. Neuron 2008, 60, 832–845. [Google Scholar] [CrossRef] [PubMed]
- Cuscó, I.; Medrano, A.; Gener, B.; Vilardell, M.; Gallastegui, F.; Villa, O.; González, E.; Rodríguez-Santiago, B.; Vilella, E.; del Campo, M.; et al. Autism-specific copy number variants further implicate the phosphatidylinositol signaling pathway and the glutamatergic synapse in the etiology of the disorder. Hum. Mol. Genet. 2009, 18, 1795–1804. [Google Scholar] [CrossRef] [PubMed]
- Emamian, E.S.; Hall, D.; Birnbaum, M.J.; Karayiorgou, M.; Gogos, J.A. Convergent evidence for impaired AKT1-GSK3β signaling in schizophrenia. Nat. Genet. 2004, 36, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Stopkova, P.; Saito, T.; Papolos, D.F.; Vevera, J.; Paclt, I.; Zukov, I.; Bersson, Y.B.; Margolis, B.A.; Strous, R.D.; Lachman, H.M. Identification of PIK3C3 promoter variant associated with bipolar disorder and schizophrenia. Biol. Psychiatry 2004, 55, 981–988. [Google Scholar] [CrossRef] [PubMed]
- Kalkman, H.O. The role of the phosphatidylinositide 3-kinase-protein kinase B pathway in schizophrenia. Pharmacol. Ther. 2006, 110, 117–134. [Google Scholar] [CrossRef] [PubMed]
- Krivosheya, D.; Tapia, L.; Levinson, J.N.; Huang, K.; Kang, Y.; Hines, R.; Ting, A.K.; Craig, A.M.; Mei, L.; Bamji, S.X.; et al. ErbB4-neuregulin signaling modulates synapse development and dendritic arborization through distinct mechanisms. J. Biol. Chem. 2008, 283, 32944–32956. [Google Scholar] [CrossRef] [PubMed]
- Cox, D.M.; Butler, M.G. The 15q11.2 BP1–BP2 microdeletion syndrome: A review. Int. J. Mol. Sci. 2015, 16, 4068–4082. [Google Scholar] [CrossRef] [PubMed]
- Burnside, R.D.; Pasion, R.; Mikhail, F.M.; Carroll, A.J.; Robin, N.H.; Youngs, E.L.; Gadi, I.K.; Keitges, E.; Jaswaney, V.L.; Papenhausen, P.R.; et al. Microdeletion/microduplication of proximal 15q11.2 between BP1 and BP2: A susceptibility region for neurological dysfunction including developmental and language delay. Hum. Genet. 2011, 130, 517–528. [Google Scholar] [CrossRef] [PubMed]
- Ho, K.S.; Wassman, E.R.; Baxter, A.L.; Hensel, C.H.; Martin, M.M.; Prasad, A.; Twede, H.; Vanzo, R.J.; Butler, M.G. Chromosomal microarray analysis of consecutive individuals with autism spectrum disorders using an ultra-high resolution chromosomal microarray optimized for neurodevelopmental disorders. Int. J. Mol. Sci. 2016, 17, 2070. [Google Scholar] [CrossRef] [PubMed]
- Ben-Ari, F.S.; Lieder, I.; Stelzer, G.; Mazor, Y.; Buzhor, E.; Kaplan, S.; Bogoch, Y.; Plaschkes, I.; Shitrit, A.; Rappaport, N.; et al. GeneAnalytics: An integrative gene set analysis tool for next generation sequencing, RNAseq and microarray data. OMICS J. Integr. Biol. 2016, 20, 139–151. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.G.; Rafi, S.K.; Manzardo, A.M. High-resolution chromosome ideogram representation of currently recognized genes for autism spectrum disorders. Int. J. Mol. Sci. 2015, 16, 6464–6495. [Google Scholar] [CrossRef] [PubMed]
- Douglas, L.N.; McGuire, A.B.; Manzardo, A.M.; Butler, M.G. High-resolution chromosome ideogram representation of recognized genes for bipolar disorder. Gene 2016, 586, 136–147. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.G.; McGuire, A.B.; Masoud, H.; Manzardo, A.M. Currently recognized genes for schizophrenia: High-resolution chromosome ideogram representation. Am. J. Med. Genet. B Neuropsychiatr. Genet. Part B 2016, 1B, 181–202. [Google Scholar] [CrossRef] [PubMed]
- Weber, F.; Chung, S.; Beier, K.T.; Xu, M.; Luo, L.; Dan, Y. Control of REM sleep by ventral medulla GABAergic neurons. Nature 2015, 526, 435–438. [Google Scholar] [CrossRef] [PubMed]
- Reischl, S.; Kramer, A. Kinases and phosphatases in the mammalian circadian clock. FEBS Lett. 2011, 585, 1393–1399. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Wang, J.; Klein, P.S.; Lazar, M.A. Nuclear receptor Rev-Erbα is a critical lithium-sensitive component of the circadian clock. Science 2006, 311, 1002–1005. [Google Scholar] [CrossRef] [PubMed]
- Zeidner, L.C.; Buescher, J.L.; Phiel, C.J. A novel interaction between Glycogen Synthase Kinase-3α (GSK-3α) and the scaffold protein receptor for activated C-Kinase 1 (RACK1) regulates the circadian clock. Int. J. Biochem. Mol. Biol. 2011, 2, 318–327. [Google Scholar] [PubMed]
- Tarazi, F.I.; Tomasini, E.C.; Baldessarini, R.J. Postnatal development of dopamine D4-like receptors in rat forebrain regions: Comparison with D2-like receptors. Brain Res. Dev. Brain Res. 1998, 110, 227–233. [Google Scholar] [CrossRef]
- Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017, 45, D353–D361. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Sato, Y.; Kawashima, M.; Furumichi, M.; Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016, 44, D457–D462. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Lavezzi, A.M.; Casale, V.; Oneda, R.; Weese-Mayer, D.E.; Matturri, L. Sudden infant death syndrome and sudden intrauterine unexplained death: Correlation between hypoplasia of raphé nuclei and serotonin transporter gene promoter polymorphism. Pediatr. Res. 2009, 66, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Severson, C.A.; Wang, W.; Pieribone, V.A.; Dohle, C.I.; Richerson, G.B. Midbrain serotoninergic neurons are central pH chemoreceptors. Nat. Neurosci. 2003, 6, 1139–1140. [Google Scholar] [CrossRef] [PubMed]
- Gaspar, P.; Cases, O.; Maroteaux, L. The developmental role of serotonin: News from mouse molecular genetics. Nat. Rev. Neurosci. 2003, 4, 1002–1012. [Google Scholar] [CrossRef] [PubMed]
- Haydon, P.G.; McCobb, D.P.; Kater, S.B. Serotonin selectively inhibits growth cone motility and synaptogenesis of specific identified neurons. Science 1984, 226, 561–564. [Google Scholar] [CrossRef] [PubMed]
- Lauder, J.M. Ontogeny of the serotonergic system in the rat: Serotonin as a developmental signal. Ann. N. Y. Acad. Sci. 1990, 600, 297–313. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, D.; Lueras, P.; Bhide, P.G. Elevated dopamine levels during gestation produce region-specific decreases in neurogenesis and subtle deficits in neuronal numbers. Brain Res. 2007, 1182, 11–25. [Google Scholar] [CrossRef] [PubMed]
- Popolo, M.; McCarthy, D.M.; Bhide, P. Influence of dopamine on precursor cell proliferation and differentiation in the embryonic mouse telencephalon. Dev. Neurosci. 2004, 26, 229–244. [Google Scholar] [CrossRef] [PubMed]
- Fitzsimons, C.P.; Herbert, J.; Schouten, M.; Meijer, O.C.; Lucassen, P.J.; Lightman, S. Circadian and ultradian glucocorticoid rhythmicity: Implications for the effects of glucocorticoids on neural stem cells and adult hippocampal neurogenesis. Front. Neuroendocrinol. 2016, 41, 44–58. [Google Scholar] [CrossRef] [PubMed]
- Tam, S.K.; Pritchett, D.; Brown, L.A.; Foster, R.G.; Bannerman, D.M.; Peirson, S.N. Sleep and circadian rhythm disruption and recognition memory in schizophrenia. Methods Enzymol. 2015, 552, 325–349. [Google Scholar] [PubMed]
- Iyer, R.; Wang, T.A.; Gillette, M.U. Circadian gating of neuronal functionality: A basis for iterative metaplasticity. Front. Syst. Neurosci. 2014, 8, 164. [Google Scholar] [CrossRef] [PubMed]
Gene Symbol | Gene Name | Chromosome Location |
---|---|---|
BDNF | Brain-derived neurotrophic factor | 11p14.1 |
ANK3 | Ankyrin 3 | 10q21.2 |
CACNA1C | Ca2+ channel, voltage-dependent, L type, α1C subunit | 12p13.33 |
CACNB2 | Ca+ channel, voltage dependent, β2 subunit | 10p12.33 |
CHRNA7 | Cholinergic receptor, nicotinic, α7 (neuronal) | 15q13.3 |
CNTNAP5 | Contactin associated protein-like 5 | 2q14.3 |
CSMD1 | CUB and sushi multiple domains 1 | 8p23.2 |
DISC1 | Disruption in schizophrenia 1 | 1q42.2 |
DPP10 | Dipeptidyl-peptidase 10 (non-functional) | 2q14.1 |
DRD2 | Dopamine receptor D2 | 11q23.2 |
FOXP2 | Forkhead box P2 | 7q31.1 |
GSK3B | Glycogen synthase kinase 3β | 3q13.33 |
HTR2A | 5-Hydroxytryptamine (serotonin) receptor 2A, G-protein-coupled | 13q14.2 |
MAOA | Monoamine oxidase A | Xp11.3 |
MTHFR | Methylenetetrahydrofolate reductase | 1p36.22 |
NOS1AP | Nitric oxide synthase 1 (neuronal) adaptor protein | 1q23.3 |
NRG1 | Neuregulin 1 | 8p12 |
PDE4B | Phosphodiesterase 4B, CAMP-specific | 1p31.3 |
SLC6A3 | Solute carrier family 6 (neurotransmitter transporter, dopamine), member 3 | 5p15.33 |
SYN3 | Synapsin III | 22q12.3 |
TCF4 | Transcription factor 4 | 18q21.1 |
TPH2 | Tryptophan hydroxylase 2 | 12q21.1 |
ZNF804A | Zinc finger protein 804 A | 2q32.1 |
A. Diseases | Genes Matched to Disease Type (Highmatch Score) | No. of Genes in Disease Type | Score |
Schizophrenia | ANK3, BDNF, CACNA1C, CHRNA7, DISC1, NRG1, DRD2, GSK3B, HTR2A, MAOA, MTHFR, NOS1AP, PDE4B, SLC6A3, SYN3, TPH2, ZNF804A | 249 | 15.1 |
(Mediummatch scores > 6.0) | |||
Bipolar disorder | BDNF, DISC1, DRD2, GSK3B, HTR2A, MAOA, NRG1, SLC6A3, ZNF804A | 39 | 9.6 |
Autism spectrum disorder | BDNF, CHRNA7, DISC1, DRD2, FOXP2, HTR2A, MAOA, MTHFR, SLC6A3, TPH2 | 103 | 9.1 |
Disease of mental health | BDNF, DISC1, DRD2, HTR2A, MAOA, NRG1, SLC6A3, ZNF804A | 57 | 8.0 |
Attention deficit hyperactivity disorder | BDNF, CHRNA7, DRD2, HTR2A, MAOA, SLC6A3, TPH2, ZNF804A | 63 | 7.8 |
Mood disorder | BDNF, CACNA1C, DISC1, DRD2, HTR2A, MAOA, TPH2 | 31 | 7.7 |
Psychotic disorder | BDNF, CHRNA7, DISC1, DRD2, HTR2A, NRG1, SLC6A3 | 37 | 7.5 |
Anxiety disorder | BDNF, DRD2, HTR2A, MAOA, SLC6A3, TPH2 | 21 | 7.1 |
Obsessive compulsive disorder | BDNF, DRD2, HTR2A, MAOA, SLC6A3, TPH2 | 29 | 6.8 |
Personality disorder | DRD2, HTR2A, MAOA, SLC6A3, TPH2 | 14 | 6.4 |
B. Tissues and Cells | Genes Matched to Tissues and Cells | No. of Genes in Tissues And Cells | Score |
Medulla oblongata | BDNF, CHRNA7, DRD2, FOXP2, HTR2A, MAOA, NRG1, PDE4B, SLC6A3, TCF4, TPH2 | 2179 | 2.1 |
Thalamus | BDNF, CHRNA7, DRD2, HTR2A, MTHFR, PDE4B, SLC6A3, TCF4, TPH2 | 1736 | 2.0 |
Hypothalamus | BDNF, CHRNA7, DRD2, FOXP2, HTR2A, MTHFR, PDE4B, SLC6A3, TCF4, TPH2 | 1666 | 2.0 |
Hippocampus | ANK3, BDNF, CHRNA7, DISC1, DRD2, FOXP2, HTR2A, SLC6A3, TPH2 | 3335 | 1.9 |
Cerebellum | ANK3, BDNF, CHRNA7, DRD2, FOXP2, HTR2A, SLC6A3, TPH2 | 2609 | 1.9 |
Superpathways | Genes Matched to Superpathways | No. of Genes in Superpathways | Score |
---|---|---|---|
Circadian entrainment | SLC6A3, GSK3B, HTR2A, MAOA, NOS1AP, PDE4B, TPH2, CACNA1C, CHRNA7, DRD2 | 390 | 37.0 |
Amphetamine addiction | SLC6A3, MAOA, BDNF, CACNA1C, DRD2 | 87 | 24.3 |
SID susceptibility pathways | HTR2A, MAOA, NOS1AP, TPH2, BDNF, CHRNA7 | 185 | 24.1 |
Selective serotonin reuptake inhibitor pathways | HTR2A, MAOA, TPH2 | 29 | 17.5 |
Monoamine transport | SLC6A3, MAOA, TPH2 | 36 | 16.6 |
Transmission across chemical synapses | SLC6A3, MAOA, SYN3, CACNB2, CHRNA7 | 316 | 15.2 |
CREB pathways | HTR2A, NRG1, BDNF, CACNA1C, CACNB2, CHRNA7 | 562 | 14.9 |
Neurotransmitter clearance in the synaptic cleft | SLC6A3, MAOA | 8 | 14.6 |
CAMP signaling pathways | PDE4B, BDNF, CACNA1C, DRD2 | 211 | 13.4 |
GO-Biological Processes | Genes Matched to GO-Biological Processes | No. of Genes in GO-Biological Processes | Score |
---|---|---|---|
Startle response | NRG1, CSMD1, DRD2 | 20 | 19.1 |
Positive regulation of axon extension | GSK3B, NRG1, DISC1 | 30 | 17.4 |
Cellular calcium ion homeostasis | HTR2A, CACNA1C, CHRNA7, DRD2 | 107 | 17.2 |
Synaptic transmission | SLC6A3, HTR2A, MAOA, CACNA1C, CACNB2, CHRNA7 | 432 | 17.0 |
Dopamine catabolic process | SLC6A3, MAOA | 5 | 16.0 |
Axon guidance | GSK3B, NRG1, ANK3, BDNF, CACNA1C, CACNB2 | 537 | 15.3 |
Synapse assembly | NRG1, BDNF, DRD2 | 52 | 15.0 |
Regulation of high voltage-gated calcium channel activity | NOS1AP, PDE4B | 7 | 15.0 |
Regulation of potassium Ion transport | ANK3, DRD2 | 7 | 15.0 |
Response to hypoxia | MTHFR, BDNF, CHRNA7, DRD2 | 180 | 14.3 |
Negative regulation of synaptic transmission, glutamatergic | HTR2A, DRD2 | 9 | 14.3 |
Adenohypophysis development | SLC6A3, DRD2 | 9 | 14.3 |
Regulation of synaptic transmission, GABAergic | SYN3, DRD2 | 10 | 14.0 |
Behavioral response to ethanol | CHRNA7, DRD2 | 11 | 13.7 |
Regulation of dopamine secretion | SLC6A3, CHRNA7 | 11 | 13.7 |
Dopamine biosynthetic process | HTR2A, DRD2 | 12 | 13.4 |
Phenotypes | Genes Matched to Phenotypes | No. of Genes | Score |
---|---|---|---|
Behavioral despair | GSK3B, CACNA1C, CSMD1, DISC1 | 28 | 24.8 |
Hypoactivity | MAOA, FOXP2, ANK3, BDNF, CACNA1C, CHRNA7, DRD2 | 314 | 24.4 |
Abnormal serotonin level | MAOA, FOXP2, TPH2, BDNF | 32 | 24.1 |
Abnormal response to novel object | SLC6A3, FOXP2, TPH2, DISC1 | 44 | 22.2 |
Abnormal GABAergic neuron morphology | BDNF, CHRNA7, DRD2 | 11 | 21.7 |
Abnormal prepulse inhibition | NRG1, DISC1, DRD2 | 14 | 20.7 |
Abnormal social Investigation | MAOA, SYN3, CACNA1C, DISC1 | 14 | 20.7 |
Increase aggression towards males | MAOA, TPH2, BDNF | 64 | 20.1 |
Small cerebellum | MTHFR, FOXP2, ANK3, DISC1 | 67 | 19.8 |
Decrease exploration in new environment | GSK3B, FOXP2, BDNF, CACNA1C | 79 | 18.9 |
Abnormal CNS synaptic transmission | SLC6A3, BDNF, CACNA1C, DRD2 | 79 | 18.9 |
Premature death | SLC6A3, MTHFR, FOXP2, ANK3, TPH2, BDNF, CACNA1C, DRD2 | 830 | 18.6 |
Decrease startle reflex | FOXP2, CSMD1, DISC1, DRD2 | 84 | 18.6 |
Decrease anxiety-related response | HTR2A, CHRNA7, DISC1, DRD2 | 89 | 18.2 |
Increase dopamine level | SLC6A3, MAOA, FOXP2 | 31 | 17.2 |
Abnormal vocalization | FOXP2, CACNA1C, DRD2 | 37 | 16.5 |
Hyperactivity | SLC6A3, NRG1, BDNF, CSMD1, DISC1 | 272 | 16.3 |
Increased thigmotaxis | SLC6A3, CACNA1C, CSMD1 | 45 | 15.6 |
Abnormal serotonergic neuron morphology | TPH2, BDNF | 6 | 15.4 |
Abnormal response to novel odor | SLC6A3, DRD2 | 6 | 15.4 |
Abnormal latent inhibition of conditioning | DISC1, DRD2 | 6 | 15.4 |
Impaired coordination | SLC6A3, FOXP2, BDNF, CACNA1C, DRD2 | 309 | 15.4 |
Abnormal learning/memory/conditioning | GSK3B, CACNA1C, DISC1 | 49 | 15.3 |
Limp posture | NRG1, DRD2 | 7 | 15.0 |
Decreased serotonin Level | TPH2, DISC1 | 7 | 15.0 |
Postnatal growth retardation | SLC6A3, MTHFR, FOXP2, TPH2, BDNF, DRD2 | 581 | 14.6 |
Abnormal pituitary gland physiology | SLC6A3, DRD2 | 8 | 14.6 |
Abnormal inhibitory postsynaptic currents | SLC6A3, SYN3, BDNF | 60 | 14.4 |
Small nodose ganglion | NRG1, BDNF | 9 | 14.3 |
Complete postnatal lethality | FOXP2, ANK3, TCF4, BDNF, CACNA1C | 375 | 14.1 |
Small petrosal ganglion | NRG1, BDNF | 10 | 14.0 |
Decreased somatotroph cell number | SLC6A3, DRD2 | 11 | 13.7 |
Abnormal grooming behavior | SLC6A3, MAOA | 11 | 13.7 |
Abnormal excitatory postsynaptic currents | NRG1, SYN3, DRD2 | 72 | 13.6 |
Decreased left ventricle systolic pressure | MAOA, NRG1 | 12 | 13.4 |
Hunched posture | MAOA, BDNF, DRD2 | 78 | 13.3 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khanzada, N.S.; Butler, M.G.; Manzardo, A.M. GeneAnalytics Pathway Analysis and Genetic Overlap among Autism Spectrum Disorder, Bipolar Disorder and Schizophrenia. Int. J. Mol. Sci. 2017, 18, 527. https://doi.org/10.3390/ijms18030527
Khanzada NS, Butler MG, Manzardo AM. GeneAnalytics Pathway Analysis and Genetic Overlap among Autism Spectrum Disorder, Bipolar Disorder and Schizophrenia. International Journal of Molecular Sciences. 2017; 18(3):527. https://doi.org/10.3390/ijms18030527
Chicago/Turabian StyleKhanzada, Naveen S., Merlin G. Butler, and Ann M. Manzardo. 2017. "GeneAnalytics Pathway Analysis and Genetic Overlap among Autism Spectrum Disorder, Bipolar Disorder and Schizophrenia" International Journal of Molecular Sciences 18, no. 3: 527. https://doi.org/10.3390/ijms18030527
APA StyleKhanzada, N. S., Butler, M. G., & Manzardo, A. M. (2017). GeneAnalytics Pathway Analysis and Genetic Overlap among Autism Spectrum Disorder, Bipolar Disorder and Schizophrenia. International Journal of Molecular Sciences, 18(3), 527. https://doi.org/10.3390/ijms18030527