Specificity in Legume-Rhizobia Symbioses
Abstract
:1. Introduction
2. Framework and Assumptions of Study
3. Caesalpinioideae-Rhizobia Symbioses
4. Mimosoideae-Rhizobia Symbioses
5. Papilionoideae-Rhizobia Symbioses
5.1. The IRLC
5.2. Clades with Indeterminate Nodules, Excluding the IRLC
5.3. Clades with Determinate Nodules
6. Legume Specificity for Rhizobial Symbionts
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lewis, G.A.; Schrire, B.B.; Mackinder, B.C.; Lock, M.D. Legumes of the World; Kew: Royal Botanic Gardens, London, UK, 2005. [Google Scholar]
- Sprent, J.I. Legume Nodulation A Global Perspective; Wiley Blackwell: Chichester, UK, 2009. [Google Scholar]
- LPWG. Legume phylogeny and classification in the 21st century: Progress, prospects and lessons for other species-rich clades. Taxon 2013, 62, 217–248. [Google Scholar]
- Cardoso, D.; Pennington, R.T.; de Queiroz, L.P.; Boatwright, J.S.; van Wyk, B.-E.; Wojciechowski, M.F.; Lavin, M. Reconstructing the deep-branching relationships of the papilionoid legumes. S. Afr. J. Bot. 2013, 89, 58–75. [Google Scholar] [CrossRef]
- LPWG. A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny. Taxon 2017, 66, 44–77. [Google Scholar]
- Sprent, J.I.; Ardley, J.; James, E.K. Biogeography of nodulated legumes and their nitrogen-fixing symbionts. New Phytol. 2017. [Google Scholar] [CrossRef] [PubMed]
- Raven, J.A. Why are mycorrhizal fungi and symbiotic nitrogen-fixing bacteria not genetically integrated into plants? Ann. Appl. Biol. 2010, 157, 381–391. [Google Scholar] [CrossRef]
- Andrews, M.; Raven, J.A.; Lea, P.J. Do plants need nitrate? The mechanisms by which nitrogen form affects plants. Ann. Appl. Biol. 2013, 163, 174–199. [Google Scholar] [CrossRef]
- Andrews, M.; Scholefield, D.; Abberton, M.T.; McKenzie, B.A.; Hodge, S.; Raven, J.A. Use of white clover as an alternative to nitrogen fertilizer for dairy pastures in nitrate vulnerable zones in the UK: Productivity, environmental impact and economic considerations. Ann. Appl. Biol. 2007, 151, 11–23. [Google Scholar] [CrossRef]
- Andrews, M.; James, E.K.; Sprent, J.I.; Boddey, R.M.; Gross, E.; dos Reis, F.B., Jr. Nitrogen fixation in legumes and actinorhizal plants in natural ecosystems: Values obtained using 15N natural abundance. Plant Ecol. Divers. 2011, 4, 131–140. [Google Scholar] [CrossRef]
- Jackson, L.E.; Burger, M.; Cavagnaro, T.R. Roots, nitrogen transformations, and ecosystem services. Ann. Rev. Plant Biol. 2008, 59, 341–363. [Google Scholar] [CrossRef] [PubMed]
- Vitousek, P.M.; Menge, D.N.L.; Reed, S.C.; Cleveland, C.C. Biological nitrogen fixation: Rates, patterns and ecological controls in terrestrial ecosystems. Philos. Trans. R. Soc. B 2013, 368, 20130119. [Google Scholar] [CrossRef] [PubMed]
- Sprent, J.I.; Ardley, J.K.; James, E.K. From north to south: A latitudinal look at legume nodulation processes. S. Afr. J. Bot. 2013, 89, 31–41. [Google Scholar] [CrossRef]
- Fernández-López, M.; Goormachtig, S.; Gao, M.; D’Haeze, W.; van Montagu, M.; Holsters, M. Ethylene-mediated phenotypic plasticity in root nodule development on Sesbania rostrata. Proc. Natl. Acad. Sci. USA 1998, 95, 12724–12728. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.Y.Y.; Ridgway, H.J.; James, T.K.; James, E.K.; Chen, W.-M.; Sprent, J.I.; Young, J.P.W.; Andrews, M. Burkholderia sp. induces functional nodules on the South African invasive legume Dipogon lignosus (Phaseoleae) in New Zealand soils. Microb. Ecol. 2014, 68, 542–555. [Google Scholar] [CrossRef] [PubMed]
- Yates, R.J.; Howieson, J.G.; Reeve, W.G.; Nandasena, K.G.; Law, I.J.; Bräu, L.; Ardley, J.K.; Nistelberger, H.M.; Real, D.; O’Hara, G.W. Lotononis angolensis forms nitrogen fixing, lupinoid nodules with phylogenetically unique, fast growing, pink-pigmented bacteria, which do not nodulate L. bainesii or L. listii. Soil Biol. Biochem. 2007, 39, 1680–1688. [Google Scholar] [CrossRef]
- Ardley, J.K.; Reeve, W.G.; O’Hara, G.W.; Yates, R.J.; Dilworth, M.J.; Howieson, J.G. Nodule morphology, symbiotic specificity and association with unusual rhizobia are distinguishing features of the genus Listia within the southern African crotalarioid clade Lotononis s.l. Ann. Bot. 2013, 112, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Yang, S.; Tang, F.; Zhu, H. Symbiosis specificity in the legume-rhizobial mutualism. Cell Microbiol. 2012, 14, 334–342. [Google Scholar] [CrossRef] [PubMed]
- Downie, J.A. Legume nodulation. Curr. Biol. 2014, 24, R184–R190. [Google Scholar] [CrossRef] [PubMed]
- Oldroyd, G.E.; Downie, J.A. Coordinating nodule morphogenesis with rhizobial infection in legumes. Ann. Rev. Plant Biol. 2008, 59, 519–546. [Google Scholar] [CrossRef] [PubMed]
- Czernic, P.; Gully, D.; Cartieaux, F.; Moulin, L.; Guefrachi, I.; Patrel, D.; Pierre, O.; Fardoux, J.; Chaintreuil, C.; Nguyen, P.; et al. Convergent evolution of endosymbiont differentiation in dalbergioid and inverted repeat-lacking clade legumes mediated by nodule specific cysteine rich peptides. Plant Physiol. 2015, 169, 1254–1265. [Google Scholar] [CrossRef] [PubMed]
- Okubo, T.; Fukushima, S.; Minamisawa, K. Evolution of Bradyrhizobium–Aeschynomene mutualism: Living testimony of the ancient world or highly evolved state? Plant Cell Physiol. 2012, 53, 2000–2007. [Google Scholar] [CrossRef] [PubMed]
- Bianco, L. Rhizobial infection in Adesmia bicolor (Fabaceae) roots. Arch. Microbiol. 2014, 196, 675–679. [Google Scholar] [CrossRef] [PubMed]
- González-Sama, A.; Lucas, M.M.; de Felipe, M.R.; Pueyo, J.J. An unusual infection mechanism and nodule morphogenesis in white lupin (Lupinus albus). New Phytol. 2004, 163, 371–380. [Google Scholar] [CrossRef]
- Martens, M.; Delaere, M.; Coopman, R.; de Vos, P.; Gillis, M.; Willems, A. Multilocus sequence analysis of Ensifer and related taxa. Int. J. Syst. Evol. Microbiol. 2007, 57, 489–503. [Google Scholar] [CrossRef] [PubMed]
- Peix, A.; Ramírez-Bahena, M.H.; Velázquez, E.; Bedmar, E.J. Bacterial associations with legumes. Crit. Rev. Plant Sci. 2015, 34, 17–42. [Google Scholar] [CrossRef]
- Lindström, K.; Aserse, A.A.; Mousavi, S.A. Evolution and Taxonomy of Nitrogen-Fixing Organisms with Emphasis on Rhizobia. In Biological Nitrogen Fixation, 1st ed.; de Bruijn, F.J., Ed.; Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; pp. 21–37. [Google Scholar]
- Roche, P.; Maillet, F.; Plazanet, C.; Debellé, F.; Ferro, M.; Truchet, G.; Promé, J.-C.; Dénarié, J. The common nodABC genes of Rhizobium meliloti are host-range determinants. Proc. Natl. Acad. Sci. USA 1996, 93, 15305–15310. [Google Scholar] [CrossRef] [PubMed]
- Masson-Boivin, C.; Giraud, E.; Perret, X.; Batut, J. Establishing nitrogen-fixing symbiosis with legumes: How many rhizobium recipes? Trends Microbiol. 2009, 17, 10. [Google Scholar] [CrossRef] [PubMed]
- Vinuesa, P.; Silva, C.; Lorite, M.J.; Izaguirre-Mayoral, M.L.; Bedmar, E.J.; Martínez-Romero, E. Molecular systematics of rhizobia based on maximum likelihood and Bayesian phylogenies inferred from rrs, atpD, recA and nifH sequences, and their use in the classification of Sesbania microsymbionts from Venezuelan wetlands. Syst. Appl. Microbiol. 2005, 28, 702–716. [Google Scholar] [CrossRef] [PubMed]
- Cummings, S.P.; Gyaneshwar, P.; Vinuesa, P.; Farruggia, F.T.; Andrews, M.; Humphry, D.; Elliott, G.N.; Nelson, A.; Orr, C.; Pettitt, D.; et al. Nodulation of Sesbania species by Rhizobium (Agrobacterium) strain IRBG74 and other rhizobia. Environ. Microbiol. 2009, 11, 2510–2525. [Google Scholar] [CrossRef] [PubMed]
- Remigi, P.; Zhu, J.; Young, J.P.W.; Masson-Boivin, C. Symbiosis within symbiosis: Evolving nitrogen-fixing legume symbionts. Trends Microbiol. 2016, 24, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Giraud, E.; Moulin, L.; Vallenet, D.; Barbe, V.; Cytryn, E.; Avarre, J.C.; Jaubert, M.; Simon, D.; Cartieaux, F.; Prin, Y.; et al. Legumes symbioses: Absence of Nod genes in photosynthetic bradyrhizobia. Science 2007, 316, 1307–1312. [Google Scholar] [CrossRef] [PubMed]
- Miché, L.; Moulin, L.; Chaintreuil, C.; Contreras-Jimenez, J.L.; Munive-Hernández, J.-A.; del Villegas-Hernandez, M.C.; Crozier, F.; Béna, G. Diversity analyses of Aeschynomene symbionts in tropical Africa and central America reveal that nod-independent stem nodulation is not restricted to photosynthetic bradyrhizobia. Symbiosis 2010, 12, 2152–2164. [Google Scholar]
- Benata, H.; Mohammed, O.; Noureddine, B.; Abdelbasset, B.; Abdelmoumen, H.; Muresu, R.; Squartini, A.; El Idrissi, M.M. Diversity of bacteria that nodulate Prosopis juliflora in the eastern area of Morocco. Syst. Appl. Microbiol. 2008, 31, 378–386. [Google Scholar] [CrossRef]
- Hassen, A.I.; Bopape, F.L.; Habig, J.; Lamprecht, S.C. Nodulation of rooibos (Aspalathus linearis Burm. f.), an indigenous South African legume, by members of both the α-proteobacteria and β-proteobacteria. Biol. Fertil. Soils 2012, 48, 295–303. [Google Scholar] [CrossRef]
- Shiraishi, A.; Matsushita, N.; Hougetsu, T. Nodulation in black locust by the γ-proteobacteria Pseudomonas sp. and the β-proteobacteria Burkholderia sp. Syst. Appl. Microbiol. 2010, 33, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Lv, C.; Zhao, Y.; Huang, R. A novel strain D5 isolated from Acacia confusa. PLoS ONE 2012, 7, e49236. [Google Scholar] [CrossRef] [PubMed]
- Ampomah, O.Y.; Huss-Danell, K. Genetic diversity of root nodule bacteria nodulating Lotus corniculatus and Anthyllis vulneraria in Sweden. Syst. Appl. Microbiol. 2011, 34, 267–275. [Google Scholar] [CrossRef]
- Manassila, M.; Nuntagij, A.; Kotepong, S.; Boonkerd, N.; Teaumroong, N. Characterization and monitoring of selected rhizobial strains isolated from tree legumes in Thailand. Afr. J. Biotechnol. 2007, 6, 1393–1402. [Google Scholar]
- Le Roux, C.; Tentchev, D.; Prin, Y.; Goh, D.; Japarudin, Y.; Perrineau, M.-M.; Duponnois, R.; Domergue, O.; de Lajudie, P.; Galiana, A. Bradyrhizobia nodulating the Acacia mangium × A. auriculiformis interspecific hybrid are specific and differ from those associated with both parental species. Appl. Environ. Microbiol. 2009, 75, 7752–7759. [Google Scholar] [CrossRef] [PubMed]
- Helene, L.C.F.; Delamuta, J.R.M.; Ribeiro, R.A.; Ormeño-Orrillo, E.; Rogel, M.A.; Martínez-Romero, E.; Hungria, M. Bradyrhizobium viridifuturi sp. nov., encompassing nitrogen-fixing symbionts of legumes used for green manure and environmental services. Int. J. Syst. Evol. Microbiol. 2015, 65, 4441–4448. [Google Scholar] [CrossRef] [PubMed]
- Sinsuwongwat, S.; Nuntagij, A.; Shutsrirung, A.; Nomura, M.; Tajima, S. Characterization of local rhizobia in Thailand and distribution of malic enzymes. Soil Sci. Plant Nutr. 2002, 48, 719–727. [Google Scholar] [CrossRef]
- Ngom, A.; Nakagawa, Y.; Sawada, H.; Tsukahara, J.; Wakabayashi, S.; Uchiumi, T.; Nuntagij, A.; Kotepong, S.; Suzuki, A.; Higashi, S.; et al. A novel symbiotic nitrogen-fixing member of the Ochrobactrum clade isolated from root nodules of Acacia mangium. J. Gen. Appl. Microbiol. 2004, 50, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Lortet, G.; Méar, N.; Lorquin, J.; Dreyfus, B.; de Lajudie, P.; Rosenberg, C.; Boivin, C. Nod factor thin-layer chromatography profiling as a tool to characterize symbiotic specificity of rhizobial strains: Application to Sinorhizobium saheli, S. teranga, and Rhizobium sp. strains isolated from Acacia and Sesbania. Mol. Plant Microbe Interact. 1996, 9, 736–747. [Google Scholar] [CrossRef]
- Räsänen, L.A.; Sprent, J.I.; Lindström, K. Symbiotic properties of sinorhizobia isolated from Acacia and Prosopis nodules in Sudan and Senegal. Plant Soil 2001, 235, 193–210. [Google Scholar] [CrossRef]
- Lu, J.K.; Dou, Y.J.; Zhu, Y.J.; Wang, S.K.; Sui, X.H.; Kang, L.H. Bradyrhizobium ganzhouense sp. nov., an effective symbiotic bacterium isolated from Acacia melanoxylon R. Br. nodules. Int. J. Syst. Evol. Microbiol. 2014, 64, 1900–1905. [Google Scholar] [CrossRef] [PubMed]
- Marsudi, N.D.S.; Glenn, A.R.; Dilworth, M.J. Identification and characterization of fast- and slow-growing root nodule bacteria from South-Western Australian soils able to nodulate Acacia saligna. Soil Biol. Biochem. 1999, 31, 1229–1238. [Google Scholar] [CrossRef]
- Khbaya, B.; Neyra, M.; Normand, P.; Zerhari, K.; Filali-Maltouf, A. Genetic diversity and phylogeny of rhizobia that nodulate Acacia spp. in Morocco assessed by analysis of rRNA genes. Appl. Environ. Microbiol. 1998, 64, 4912–4917. [Google Scholar] [PubMed]
- Lloret, L.; Ormeño-Orillo, E.; Rincón, R.; Martinez-Romero, J.; Rogel-Hernández, M.A.; Martinez-Romero, E. Ensifer mexicanus sp. nov. a new species nodulating Acacia angustissima (Mill.) Kuntze in Mexico. Syst. Appl. Microbiol. 2007, 30, 280–290. [Google Scholar] [CrossRef] [PubMed]
- Rincón-Rosales, R.; Lloret, L.; Ponce, E.; Martínez-Romero, E. Rhizobia with different symbiotic efficiencies nodulate Acaciella angustissima in Mexico, including Sinorhizobium chiapanecum sp. nov. which has common symbiotic genes with Sinorhizobium mexicanum. FEMS Microbiol. Ecol. 2009, 67, 103–117. [Google Scholar] [CrossRef] [PubMed]
- Bala, A.; Giller, K.E. Symbiotic specificity of tropical tree rhizobia for host legumes. New Phytol. 2001, 149, 495–507. [Google Scholar] [CrossRef]
- Rincón-Rosales, R.; Villalobos-Escobedo, J.M.; Rogel, M.A.; Martinez, J.; Ormeño-Orrillo, E.; Martínez-Romero, E. Rhizobium calliandrae sp. nov., Rhizobium mayense sp. nov. and Rhizobium jaguaris sp. nov., rhizobial species nodulating the medicinal legume Calliandra grandiflora. Int. J. Syst. Evol. Microbiol. 2013, 63, 3423–3429. [Google Scholar] [CrossRef] [PubMed]
- Odee, D.W.; Haukka, K.; McInroy, S.G.; Sprent, J.I.; Sutherland, J.M.; Young, J.P.W. Genetic and symbiotic characterization of rhizobia isolated from tree and herbaceous legumes grown in soils from ecologically diverse sites in Kenya. Soil Biol. Biochem. 2002, 34, 801–811. [Google Scholar] [CrossRef]
- Leblanc, H.A.; McGraw, R.L.; Nygren, P.; Le Roux, C. Neotropical legume tree Inga edulis forms N2-fixing symbiosis with fast-growing Bradyrhizobium strains. Plant Soil 2005, 275, 123–133. [Google Scholar] [CrossRef]
- Da Silva, K.; de Meyer, S.E.; Rouws, L.F.M.; Farias, E.N.C.; dos Santos, M.A.O.; O’Hara, G.; Ardley, J.K.; Willems, A.; Pitard, R.M.; Zilli, J.E. Bradyrhizobium ingae sp. nov., isolated from effective nodules of Inga laurina grown in Cerrado soil. Int. J. Syst. Evol. Microbiol. 2014, 64, 3395–3401. [Google Scholar] [CrossRef] [PubMed]
- Toledo, I.; Lloret, L.; Martinez-Romero, E. Sinorhizobium americanus sp. nov., a new Sinorhizobium species nodulating native Acacia spp. in Mexico. Syst. Appl. Microbiol. 2003, 26, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Fall, D.; Diouf, D.; Ourarhi, M.; Faye, A.; Abdelmounen, H.; Neyra, M.; Sylla, S.N.; Missbah el Idrissi, M. Phenotypic and genotypic characteristics of Acacia Senegal (L.) Willd. root-nodulating bacteria isolated from soils in the dryland part of Senegal. Lett. Appl. Microbiol. 2008, 47, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Bournaud, C.; de Faria, S.M.; dos Santos, J.M.F.; Tisseyre, P.; Silva, M.; Chaintreuil, C.; Gross, E.; James, E.K.; Prin, Y.; Moulin, L. Burkholderia species are the most common and preferred nodulating symbionts of the Piptadenia group (Tribe Mimoseae). PLoS ONE 2013, 8, e63478. [Google Scholar] [CrossRef] [PubMed]
- Beyhaut, E.; Tlusty, B.; van Berkum, P.; Graham, P.H. Rhizobium giardinii is the microsymbiont of Illinois bundleflower (Desmanthus illinoensis (Michx.) Mcmillan) in Midwestern prairies. Can. J. Microbiol. 2006, 52, 903–907. [Google Scholar] [CrossRef] [PubMed]
- Fornasero, L.V.; del Papa, M.F.; López, J.L.; Albicoro, F.J.; Zabala, J.M.; Toniutti, M.A.; Pensiero, J.F.; Lagares, A. Phenotypic, molecular and symbiotic characterization of the rhizobial symbionts of Desmanthus paspalaceus (Lindm.) Burkart that grow in the province of Santa Fe, Argentina. PLoS ONE 2014, 9, e104636. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.T.; Martínez-Romero, J.; Martínez-Romero, E. Genetic diversity of rhizobia from Leucaena leucocephala nodules in Mexican soils. Mol. Ecol. 1999, 8, 711–724. [Google Scholar] [CrossRef]
- Xu, K.W.; Penttinen, P.; Chen, Y.X.; Chen, Q.; Zhang, X. Symbiotic efficiency and phylogeny of the rhizobia isolated from Leucaena leucocephala in arid-hot river valley area in Panxi, Sichuan, China. Appl. Microbiol. Biotchnol. 2013, 97, 783–793. [Google Scholar] [CrossRef] [PubMed]
- López-López, A.; Rogel-Hernández, M.A.; Barois, I.; Ortis Ceballos, A.I.; Martínez, J.; Ormeño-Orrillo, E.; Martínez-Romero, E. Rhizobium grahamii sp. nov., from nodules of Dalea leporina, Leucaena leucocephala and Clitoria ternatea, and Rhizobium mesoamericanum sp. nov., from nodules of Phaseolus vulgaris, siratro, cowpea and Mimosa pudica. Int. J. Syst. Evol. Microbiol. 2012, 62, 2264–2271. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-M.; Moulin, L.; Bontemps, C.; Vandamme, P.; Béna, G.; Boivin-Masson, C. Legume symbiotic nitrogen fixation by β-proteobacteria is widespread in nature. J. Bacteriol. 2003, 185, 7266–7272. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-M.; de Faria, S.M.; Straliotto, R.; Pitard, R.M.; Simões-Araùjo, J.L.; Chou, J.-H.; Chou, Y.-J.; Barrios, E.; Prescott, A.R.; Elliott, G.N.; et al. Proof that Burkholderia strains form effective symbioses with legumes: A study of novel Mimosa-nodulating strains from South America. Appl. Environ. Microbiol. 2005, 71, 7461–7471. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-M.; James, E.K.; Chou, J.-H.; Sheu, S.-Y.; Yang, S.-Z.; Sprent, J.I. β-Rhizobia from Mimosa pigra, a newly discovered invasive plant in Taiwan. New Phytol. 2005, 168, 661–675. [Google Scholar] [CrossRef] [PubMed]
- Barrett, C.F.; Parker, M.A. Prevalence of Burkholderia sp. nodule symbionts on four mimosoid legumes from Barro Colorado Island, Panama. Syst. Appl. Microbiol. 2005, 28, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Barrett, C.F.; Parker, M.A. Coexistence of Burkholderia, Cupriavidus, and Rhizobium sp. nodule bacteria on two Mimosa spp. in Costa Rica. Appl. Environ. Microbiol. 2006, 72, 1198–1206. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Y.; Wang, E.T.; Li, Y.; Chen, W.X. Diverse bacteria isolated from root nodules of Trifolium, Crotalaria and Mimosa grown in the subtropical regions of China. Arch. Microbiol. 2007, 188, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Parker, M.A.; Wurtz, A.K.; Paynter, Q. Nodule symbiosis of invasive Mimosa pigra in Australia and in ancestral habitats: A comparative analysis. Biol. Invasions 2007, 9, 127–138. [Google Scholar] [CrossRef]
- Elliott, G.N.; Chou, J.-H.; Chen, W.-M.; Bloemberg, G.V.; Bontemps, C.; Martínez-Romero, E.; Velázquez, E.; Young, J.P.W.; Sprent, J.I.; James, E.K. Burkholderia spp. are the most competitive symbionts of Mimosa, particularly under N-limited conditions. Environ. Microbiol. 2009, 11, 762–778. [Google Scholar] [CrossRef] [PubMed]
- Bontemps, C.; Elliott, G.N.; Simon, M.F.; dos Reis, F.B., Jr.; Gross, E.; Lawton, R.C.; Neto, N.E.; Loureiro, M.deF.; de Faria, S.M.; Sprent, J.I.; et al. Burkholderia species are ancient symbionts of legumes. Mol. Ecol. 2010, 19, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Bontemps, C.; Rogel, M.A.; Wiechmann, A.; Mussabekova, A.; Moody, S.; Simon, M.F.; Moulin, L.; Elliott, G.N.; Lacercat-Didier, L.; Dasilva, C.; et al. Endemic Mimosa species from Mexico prefer α-proteobacterial rhizobial symbionts. New Phytol. 2016, 209, 319–333. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Y.; Wu, W.; Wang, E.T.; Zhang, B.; Macdermott, J.; Chen, W.X. Phylogenetic relationships and diversity of β-rhizobia associated with Mimosa species grown in Sishuangbanna, China. Int. J. Syst. Evol. Microbiol. 2011, 61, 334–342. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Y.; Wei, S.; Wang, F.; James, E.K.; Guo, X.Y.; Zagar, C.; Xia, L.G.; Dong, X.; Wang, Y.P. Burkholderia and Cupriavidus spp. are the preferred symbionts of Mimosa spp. in Southern China. FEMS Microbiol. Ecol. 2012, 80, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Gehlot, H.S.; Tak, N.; Kaushik, M.; Mitra, S.; Chen, W.-M.; Poweleit, N.; Panwar, D.; Poonar, N.; Parihar, R.; Tak, A.; et al. An invasive Mimosa in India does not adopt the symbionts of its native relatives. Ann. Bot. 2013, 112, 179–196. [Google Scholar] [CrossRef] [PubMed]
- Andam, C.P.; Mondo, S.J.; Parker, M.A. Monophyly of nodA and nifH genes across Texan and Costa Rican populations of Cupriavidus nodule symbionts. Appl. Environ. Microbiol. 2007, 73, 4686–4690. [Google Scholar] [CrossRef] [PubMed]
- Platero, R.; James, E.K.; Rios, C.; Iriarte, A.; Sandes, L.; Zabaleta, M.; Battistoni, F.; Fabiano, E. Novel Cupriavidus strains isolated from root nodules of native Uruguayan Mimosa species. Appl. Environ. Microbiol. 2016, 82, 3150–3164. [Google Scholar] [CrossRef] [PubMed]
- De Lajudie, P.; Laurent-Fulele, E.; Willems, A.; Torck, U.; Coopman, R.; Collins, M.D.; Kersters, K.; Dreyfus, B.; Gillis, M. Allorhizobium undicola gen. nov., sp. nov., nitrogen-fixing bacteria that efficiently nodulate Neptunia natans in Senegal. Int. J. Syst. Bacteriol. 1998, 48, 1277–1290. [Google Scholar] [CrossRef] [PubMed]
- Rivas, R.; Velázquez, E.; Willems, A.; Vizcaíno, N.; Subba-Rao, N.S.; Mateos, P.F.; Gillis, M.; Dazzo, F.B.; Martínez-Molina, E. A new species of Devosia that forms a unique nitrogen-fixing root-nodule symbiosis with the aquatic legume Neptunia natans (L.f.) Druce. Appl. Environ. Microbiol. 2002, 68, 5217–5222. [Google Scholar] [CrossRef] [PubMed]
- Taulé, C.; Zabaleta, M.; Mareque, C.; Platero, R.; Sanjurjo, L.; Sicardi, M.; Frioni, L.; Battistoni, F.; Fabiano, E. New β-proteobacterial Rhizobium strains able to efficiently nodulate Parapiptadenia rigida (Benth.) Brenan. Appl. Environ. Microbiol. 2012, 78, 1692–1700. [Google Scholar] [CrossRef] [PubMed]
- Diaz, L.C.; González, P.; Rubio, E.; Melchiorre, M. Diversity and stress tolerance in rhizobia from Parque Chaqueño region of Argentina nodulating Prosopis alba. Biol. Fertil. Soils 2013, 49, 1153–1165. [Google Scholar] [CrossRef]
- Iglesias, O.; Rivas, R.; García-Fraile, P.; Abril, A.; Mateos, P.F.; Martinez-Molina, E.; Velázquez, E. Genetic characterization of fast-growing rhizobia able to nodulate Prosopis alba in North Spain. FEMS Microbiol. Lett. 2007, 277, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Velázquez, E.; Igual, J.M.; Willems, A.; Fernández, M.P.; Muñoz, E.; Mateos, P.F.; Abril, A.; Toro, N.; Normand, P.; Cervantes, E.; et al. Mesorhizobium chacoense sp. nov., a novel species that nodulates Prosopis alba in the Chaco Arido region (Argentina). Int. J. Syst. Evol. Microbiol. 2001, 51, 1011–1021. [Google Scholar]
- Nick, G.; de Lajudie, P.; Eardly, B.D.; Suomalainen, S.; Paulin, L.; Zhang, X.; Gillis, M.; Lindström, K. Sinorhizobium arboris sp. nov. and Sinorhizobium kostiense sp. nov., isolated from leguminous trees in Sudan and Kenya. Int. J. Syst. Bacterial. 1999, 49, 1359–1368. [Google Scholar] [CrossRef] [PubMed]
- Gehlot, H.S.; Panwar, D.; Tak, N.; Tak, A.; Sankhla, I.S.; Poonar, N.; Parihar, R.; Shekhawat, N.S.; Kumar, M.; Tiwari, R.; et al. Nodulation of legumes from the Thar desert of India and molecular characterization of their rhizobia. Plant Soil 2012, 357, 227–243. [Google Scholar] [CrossRef]
- Fterich, A.; Mahdhi, M.; Caviedes, M.A.; Pajuelo, E.; Rivas, R.; Rodriguez-Llorente, I.D.; Mars, M. Characterization of root-nodulating bacteria associated to Prosopis farcta growing in the arid regions of Tunisia. Arch. Microbiol. 2011, 193, 385–397. [Google Scholar] [CrossRef] [PubMed]
- Degefu, T.; Wolde-meskel, E.; Frostegård, Å. Multilocus sequence analyses reveal several unnamed Mesorhizobium genospecies nodulating Acacia species and Sesbania sesban trees in Southern regions of Ethiopia. Syst. Appl. Microbiol. 2011, 34, 216–226. [Google Scholar] [CrossRef] [PubMed]
- Degefu, T.; Wolde-meskel, E.; Frostegård, Å. Phylogenetic multilocus sequence analysis identifies seven novel Ensifer genospecies isolated from a less-well-explored biogeographical region in East Africa. Int. J. Syst. Evol. Microbiol. 2012, 62, 2286–2295. [Google Scholar] [CrossRef]
- Sankhla, I.S.; Tak, N.; Meghwal, R.R.; Choudhary, S.; Tak, A.; Rathi, S.; Sprent, J.I.; James, E.K.; Gehlot, H.S. Molecular characterization of nitrogen fixing microsymbionts from root nodules of Vachellia (Acacia) jacquemontii, a native legume from the Thar Desert of India. Plant Soil 2017, 410, 21–40. [Google Scholar] [CrossRef]
- Cordero, I.; Ruiz-Díez, B.; de la Peña, T.C.; Balaguer, L.; Lucas, M.M.; Rincón, A.; Pueyo, J.J. Rhizobial diversity, symbiotic effectiveness and structure of nodules of Vachellia macracantha. Soil Biol. Biochem. 2016, 96, 39–54. [Google Scholar] [CrossRef]
- Ba, S.; Willems, A.; de Lajudie, P.; Roche, P.; Jeder, H.; Quatrini, P.; Neyra, M.; Ferro, M.; Promé, J.-C.; Gillis, M.; et al. Symbiotic and taxonomic diversity of rhizobia isolated from Acacia tortilis sp. subsp. raddiana in Africa. Syst. Appl. Microbiol. 2002, 25, 130–145. [Google Scholar] [CrossRef] [PubMed]
- Nour, S.M.; Fernandez, M.P.; Normand, P.; Cleyet-Marel, J.-C. Rhizobium ciceri sp. nov., consisting of strains that nodulate chickpeas (Cicer arietinum L.). Int. J. Syst. Bacteriol. 1994, 44, 511–522. [Google Scholar] [CrossRef] [PubMed]
- Aouani, M.E.; Mhamdi, R.; Jebara, M.; Amarger, N. Characterization of rhizobia nodulating chickpea in Tunisia. Agronomie 2001, 21, 577–581. [Google Scholar] [CrossRef]
- Maâtallah, J.; Berraho, E.B.; Muñoz, S.; Sanjuan, J.; Lluch, C. Phenotypic and molecular characterization of chickpea rhizobia isolated from different areas of Morocco. J. Appl. Microbiol. 2002, 93, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Rivas, R.; Laranjo, M.; Mateos, P.F.; Oliveira, S.; Martinez-Molina, E.; Velázquez, E. Strains of Mesorhizobium amorphae and Mesorhizobium tianshanense, carrying symbiotic genes of common chickpea endosymbiotic species, constitute a novel biovar (ciceri) capable of nodulating Cicer arietinum. Lett. Appl. Microbiol. 2007, 44, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Ben Romdhane, S.; Trabelsi, M.; Aouani, M.E.; de Lajudie, P.; Mhamdi, R. The diversity of rhizobia nodulating chickpea (Cicer arietinum) under water deficiency as a source of more efficient inoculants. Soil Biol. Biochem. 2009, 41, 2568–2572. [Google Scholar] [CrossRef]
- Zhang, J.J.; Lou, K.; Jin, X.; Mao, P.H.; Wang, E.T.; Tian, C.F.; Sui, X.H.; Chen, W.F.; Chen, W.X. Distinctive Mesorhizobium populations associated with Cicer arietinum L. in alkaline soils of Xinjiang, China. Plant Soil. 2012, 353, 123–134. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, X.; Guo, C.; de Lajudie, P.; Singh, R.P.; Wang, E.; Chen, W. Mesorhizobium muleiense and Mesorhizobium gsp. Nov. are symbionts of Cicer arietinum L. in alkaline soils of Gansu, Northwest China. Plant Soil 2017, 410, 103–112. [Google Scholar] [CrossRef]
- Zahran, H.H.; Chahboune, R.; Moreno, S.; Bedmar, E.J.; Abdel-Fattah, M.; Yasser, M.M.; Mahmoud, A.M. Identification of rhizobial strains nodulating Egyptian grain legumes. Int. Microbiol. 2013, 16, 157–163. [Google Scholar] [PubMed]
- Armas-Carpote, N.; Pérez-Yépez, J.; Martínez-Hidalgo, P.; Garzón-Machado, V.; del Arco-Aguilar, M.; Velázquez, E.; Léon-Barrios, M. Core and symbiotic genes reveal nine Mesorhizobium genospecies and three symbiotic lineages among the rhizobia nodulating Cicer canariense in its natural habitat (La Palma, Canary Islands). Syst. Appl. Microbiol. 2014, 37, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Mutch, L.A.; Young, J.P.W. Diversity and specificity of Rhizobium leguminosarum biovar viciae on wild and cultivated legumes. Mol. Ecol. 2004, 13, 2435–2444. [Google Scholar] [CrossRef] [PubMed]
- Aoki, S.; Kondo, T.; Prévost, D.; Nakata, S.; Kajita, T.; Itó, M. Genotypic and phenotypic diversity of rhizobia isolated from Lathyrus japonicus indigenous to Japan. Syst. Appl. Microbiol. 2010, 33, 383–397. [Google Scholar] [CrossRef] [PubMed]
- Han, T.X.; Wang, E.T.; Wu, L.J.; Chen, W.F.; Gu, J.G.; Gu, C.T.; Tian, C.F.; Chen, W.X. Rhizobium multihospitium sp. nov., isolated from multiple legume species native of Xinjiang, China. Int. J. Syst. Evol. Microbiol. 2008, 58, 1693–1699. [Google Scholar] [CrossRef] [PubMed]
- Rashid, M.H.; Schäfer, H.; Gonzalez, J.; Wink, M. Genetic diversity of rhizobia nodulating lentil (Lens culinaris) in Bangladesh. Syst. Appl. Microbiol. 2012, 35, 98–109. [Google Scholar] [CrossRef] [PubMed]
- Riah, N.; Béna, G.; Djekoun, A.; Heulin, K.; de Lajudie, P.; Laguerre, G. Genotypic and symbiotic diversity of Rhizobium populations associated with cultivated lentil and pea in sub-humid and semi-arid regions of Eastern Algeria. Syst. Appl. Microbiol. 2014, 37, 368–375. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.J.; Zheng, W.T.; Everall, I.; Young, J.P.W.; Zhang, X.X.; Tian, C.F.; Sui, X.H.; Wang, E.T.; Chen, W.X. Rhizobium anhuiense sp. nov., isolated from effective nodules of Vicia faba and Pisum sativum. Int. J. Syst. Evol. Microbiol. 2015, 65, 2960–2967. [Google Scholar] [CrossRef] [PubMed]
- Kan, F.L.; Chen, Z.Y.; Wang, E.T.; Tian, C.F.; Sui, X.H.; Chen, W.X. Characterization of symbiotic and endophytic bacteria isolated from root nodules of herbaceous legumes grown in Qinghai-Tibet plateau and in other zones of China. Arch. Microbiol. 2007, 188, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Ampomah, O.Y.; Huss-Danell, K. Genetic diversity of rhizobia nodulating native Vicia spp. in Sweden. Syst. Appl. Microbiol. 2016, 39, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Santillana, N.; Ramírez-Bahena, M.H.; García-Fraile, P.; Velázquez, E.; Zúñiga, D. Phylogenetic diversity based on rrs, atpD, recA genes and 16S–23S intergenic sequence analyses of rhizobial strains isolated from Vicia faba and Pisum sativum in Peru. Arch. Microbiol. 2008, 189, 239–247. [Google Scholar] [CrossRef]
- Saïdi, S.; Chebil, S.; Gtari, M.; Mhamdi, R. Characterization of root-nodule bacteria isolated from Vicia faba and selection of plant growth promoting isolates. World J. Microbiol. Biotechnol. 2013, 29, 1099–1106. [Google Scholar] [CrossRef] [PubMed]
- Youseif, S.H.; Abd El-Megeed, F.H.; Ageez, A.; Cocking, E.C. Saleh, S.A. Phylogenetic multilocus sequence analysis of native rhizobia nodulating faba bean (Vicia faba L.) in Egypt. Syst. Appl. Microbiol. 2014, 37, 560–569. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.W.; Zou, L.; Penttinen, P.; Wang, K.; Heng, N.N.; Zhang, X.P.; Chen, Q.; Zhao, K.; Chen, Y.X. Symbiotic effectiveness and phylogeny of rhizobia isolated from faba bean (Vicia faba L.) in Sichuan hilly areas, China. Syst. Appl. Microbiol. 2015, 38, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Lei, X.; Wang, E.T.; Chen, W.F.; Sui, X.H.; Chen, W.X. Diverse bacteria isolated from root nodules of wild Vicia species grown in temperate region of China. Arch. Microbiol. 2008, 190, 657–671. [Google Scholar] [CrossRef] [PubMed]
- Tian, C.F.; Wang, E.T.; Wu, L.J.; Han, T.X.; Chen, W.F.; Gu, C.T.; Gu, J.G.; Chen, W.X. Rhizobium fabae sp. nov., a bacterium that nodulates Vicia faba. Int. J. Syst. Evol. Microbiol. 2008, 58, 2871–2875. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Martínez, E.R.; Valverde, Á.; Ramírez-Bahena, M.H.; García-Fraile, P.; Tejedor, C.; Mateos, P.F.; Santillana, N.; Zúñiga, D.; Peix, A.; Velázquez, E. The analysis of core and symbiotic genes of rhizobia nodulating Vicia from different continents reveals their common phylogenetic origin and suggests the distribution of Rhizobium leguminosarium strains together with Vicia seeds. Arch. Microbiol. 2009, 191, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Rejili, M.; Mahdhi, M.; Fterich, A.; Dhaoui, S.; Guefrachi, I.; Abdeddayem, R.; Mars, M. Symbiotic nitrogen fixation of wild legumes in Tunisia: Soil fertility dynamics, field nodulation and nodules effectiveness. Agric. Ecosyst. Environ. 2012, 157, 60–69. [Google Scholar] [CrossRef]
- Radeva, G.; Jurgens, G.; Niemi, M.; Nick, G.; Suominen, L.; Lindström, K. Description of two biovars in the Rhizobium galegae species: Biovar orientalis and biovar officinalis. System. Appl. Microbiol. 2001, 24, 192–205. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.Y.Y.; Ridgway, H.J.; James, T.K.; Premaratne, M.; Andrews, M. Characterisation of rhizobia nodulating Galega officinalis (goat’s rue) and Hedysarum coronarium (sulla). NZ Plant Prot. 2012, 65, 192–196. [Google Scholar]
- Chen, W.; Sun, L.; Lu, J.; Bi, L.; Wang, E.; Wei, G. Diverse nodule bacteria were associated with Astragalus species in arid region of northwestern China. J. Basic Microbiol. 2015, 55, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Wei, G.H.; Zhang, Z.X.; Chen, C.; Chen, W.M.; Ju, W.T. Phenotypic and genetic diversity of rhizobia isolated from nodules of the legume genera Astragalus, Lespedeza and Hedysarum in northwestern China. Microbial. Res. 2008, 163, 651–662. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.T.; Wang, E.T.; Zhang, Y.M.; Chen, W.F.; Sui, X.H.; Chen, W.X.; Liu, H.C.; Zhang, X.X. Mesorhizobium silamurunense sp. nov., isolated from root nodules of Astragalus species. Int. J. Syst. Evol. Microbiol. 2012, 62, 2180–2186. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Ji, Z.J.; Jiao, Y.S.; Wang, E.T.; Chen, W.F.; Guo, B.L.; Chen, W.X. Genetic diversity and distribution of rhizobia associated with the medicinal legumes Astragalus spp. and Hedysarum polybotrys in agricultural soils. Syst. Appl. Microbiol. 2016, 39, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Nandasena, K.G.; O’Hara, G.W.; Tiwari, R.P.; Yates, R.J.; Howieson, J.G. Phylogenetic relationships of three bacterial strains isolated from the pasture legume Biserrula pelecinus L. Int. J. Syst. Evol. Microbiol. 2001, 51, 1983–1986. [Google Scholar] [CrossRef] [PubMed]
- Nandasena, K.G.; O’Hara, G.W.; Tiwari, R.P.; Willems, A.; Howieson, J.G. Mesorhizobium australicum sp. nov. and Mesorhizobium opportunistum sp. nov., isolated from Biserrula pelecinus L. in Australia. Int. J. Syst. Evol. Microbiol. 2009, 59, 2140–2147. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.W.; Weir, B.S.; Carter, N.; Heenan, P.B.; Ridgway, H.J.; James, E.K.; Sprent, J.I.; Young, J.P.Y.; Andrews, M. Rhizobia with 16S rRNA and nifH similar to Mesorhizobium huakuii but novel recA, gln11, nodA and nodC genes are symbionts of New Zealand Carmichaelinae. PLoS ONE 2012, 7, e47677. [Google Scholar] [CrossRef] [PubMed]
- Ourarhi, M.; Abdelmoumen, H.; Guerrouj, K.; Benata, H.; Muresu, R.; Squartini, A.; El Idrissi, M.M. Colutea arborescens is nodulated by diverse rhizobia in Eastern Morocco. Arch. Microbiol. 2011, 193, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Díez, B.; Fajardo, S.; Puertas-Mejía, M.A.; del Felipe, M.R.; Fernández-Pascual, M. Stress tolerance, genetic analysis and symbiotic properties of root-nodulating bacteria isolated from Mediterranean leguminous shrubs in Central Spain. Arch. Microbiol. 2009, 191, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Sinkko, H.; Montonen, L.; Wei, G.; Lindström, K.; Räsänen, L.A. Biogeography of symbiotic and other endophytic bacteria isolated from medicinal Glycyrrhiza species in China. FEMS Microbiol. Ecol. 2012, 79, 46–68. [Google Scholar] [CrossRef] [PubMed]
- Wei, G.H.; Yang, X.-Y.; Zhang, Z.-X.; Yang, Y.-Z.; Lindström, K. Strain Mesorhizobium sp. CCNWGX035: A stress-tolerant isolate from Glycyrrhiza glabra displaying a wide host range of nodulation. Pedosphere 2008, 18, 102–112. [Google Scholar] [CrossRef]
- Tan, Z.Y.; Wang, E.T.; Peng, G.X.; Zhu, M.E.; Martínez-Romero, E.; Chen, W.X. Characterization of bacteria isolated from wild legumes in the north-western regions of China. Int. J. Syst. Bacteriol. 1999, 49, 1457–1469. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Wang, E.; Wang, S.; Li, Y.; Chen, X.; Li, Y. Characteristics of Rhizobium tianshanense sp. nov., a moderately and slowly growing root nodule bacterium isolated from an arid saline environment in Xinjiang, People’s Republic of China. Int. J. Syst. Bacteriol. 1995, 45, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.Y.; Kan, F.L.; Peng, G.X.; Wang, E.T.; Reinhold-Hurek, B.; Chen, W.X. Rhizobium yanglingense sp. nov., isolated from arid and semi-arid regions in China. Int. J. Syst. Evol. Microbiol. 2001, 51, 909–914. [Google Scholar] [CrossRef] [PubMed]
- Gerding, M.; O’Hara, G.W.; Bräu, L.; Nandasena, K.; Howieson, J.G. Diverse Mesorhizobium spp. with unique nodA nodulating the South African legume species of the genus Lessertia. Plant Soil 2012, 358, 385–401. [Google Scholar] [CrossRef]
- Lemaire, B.; Dlodlo, O.; Chimphango, S.; Stirton, C.; Schrire, B.; Boatwright, J.S.; Honnay, O.; Smets, E.; Sprent, J.; James, E.K.; et al. Symbiotic diversity, specificity and distribution of rhizobia in native legumes of the Core Cape Subregion (South Africa). FEMS Microbiol. Ecol. 2015, 91, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.W.; Heenan, P.; Ridgway, H.; Andrews, M. The New Zealand alpine endemic Montigena novae-zelandiae (Fabaceae) shares rhizobial symbionts with Carmichaelia and Clianthus. N. Z. J. Bot. 2013, 51, 297–307. [Google Scholar] [CrossRef]
- Han, T.X.; Han, L.L.; Wu, L.J.; Chen, W.F.; Sui, X.H.; Gu, J.G.; Wang, E.T.; Chen, W.X. Mesorhizobium gobiense sp. nov. and Mesorhizobium tarimense sp. nov., isolated from wild legumes growing in desert soils of Xinjiang, China. Int. J. Syst. Evol. Microbiol. 2008, 58, 2610–2618. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.S.; Zhao, L.F.; Kong, Z.Y.; Yang, W.Q.; Lindström, K.; Wang, E.T.; Wei, G.H. Diversity of endophytic bacteria within nodules of the Sphaerophysa salsula in different regions of Loess Plateau in China. FEMS Microbiol. Ecol. 2011, 76, 463–475. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Shi, J.F.; Zhao, P.; Chen, W.M.; Qin, W.; Tang, M.; Wei, G.H. Rhizobium sphaerophysae sp. nov., a novel species isolated from root nodules of Sphaerophysa salsula in China. Antonie van Leeuwenhoek 2011, 99, 845–854. [Google Scholar] [CrossRef] [PubMed]
- Yates, R.J.; Howieson, J.G.; Nandasena, K.G.; O’Hara, G.W. Root-nodule bacteria of indigenous legumes in the north-west of Westen Australia and their interaction with exotic legumes. Soil Biol. Biochem. 2004, 36, 1319–1329. [Google Scholar] [CrossRef]
- Wei, G.; Chen, W.; Young, J.P.W.; Bontemps, C. A new clade of Mesorhizobium nodulating Alhagi sparsifolia. Syst. Appl. Microbiol. 2009, 32, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.L.; Chen, W.F.; Wang, E.T.; Guan, S.H.; Yan, X.R.; Chen, W.X. Genetic diversity and biogeography of rhizobia associated with Caragana species in three ecological regions of China. Syst. Appl. Microbiol. 2009, 32, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Guan, S.H.; Chen, W.F.; Wang, E.T.; Lu, Y.L.; Yan, X.R.; Zhang, X.X.; Chen, W.X. Mesorhizobium caraganae sp. nov., a novel rhizobial species nodulated with Caragana spp. in China. Int. J. Syst. Evol. Microbiol. 2008, 58, 2646–2653. [Google Scholar] [CrossRef] [PubMed]
- Squartini, A.; Struffi, P.; Döring, H.; Selenska-Pobell, S.; Tola, E.; Giacomini, A.; Vendramin, E.; Velázquez, E.; Mateos, P.F.; Martinez-Molina, E.; et al. Rhizobium sullae sp. nov. (formerly “Rhizobium hedysari”), the root-nodule microsymbiont of Hedysarum coronarium L. Int. J. Syst. Evol. Microbiol. 2002, 52, 1267–1276. [Google Scholar] [CrossRef] [PubMed]
- Baimiev, A.K.; Baimiev, A.K.; Gubaidullin, I.I.; Kulikova, O.L.; Chemeris, A.V. Bacteria closely related to Phyllobacterium trifolii according to their 16S rRNA gene are discovered in the nodules of Hungarian sainfoin. Genetika 2007, 43, 587–590. [Google Scholar] [CrossRef]
- El Batanony, N.H.; Castellano-Hinojosa, A.; Correa-Galeote, D.; Bedmar, E.J. The diversity of rhizobia nodulating the Medicago, Melilotus and Trigonella inoculation group in Egypt is marked by the dominance of two genetic types. Symbiosis 2015, 67, 3–10. [Google Scholar] [CrossRef]
- Del Villegas, M.C.; Rome, S.; Mauré, L.; Domergue, O.; Gardan, L.; Bailly, X.; Cleyet-Marel, J.-C.; Brunel, B. Nitrogen-fixing sinorhizobia with Medicago laciniata constitute a novel biovar (bv. medicaginis) of S. meliloti. Syst. Appl. Microbiol. 2006, 29, 526–538. [Google Scholar] [CrossRef] [PubMed]
- Badri, Y.; Zribi, K.; Badri, M.; Huguet, T.; van Berkum, P.; Aouani, M.E. Comparison of rhizobia that nodulate Medicago laciniata and Medicago truncatula present in a single Tunisian arid soil. Can. J. Microbiol. 2007, 53, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Mnasri, B.; Badri, Y.; Saïdi, S.; de Lajudie, P.; Mhamdi, R. Symbiotic diversity of Ensifer meliloti strains recovered from various legume species in Tunisia. Syst. Appl. Microbiol. 2009, 32, 583–592. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Man, C.X.; Wang, E.T.; Chen, W.X. Diversity of rhizobia and interactions among the host legumes and rhizobial genotypes in an agricultural-forestry ecosystem. Plant Soil 2009, 314, 169–182. [Google Scholar] [CrossRef]
- Rome, S.; Fernandez, M.P.; Brunel, B.; Normand, P.; Cleyet-Marel, J.-C. Sinorhizobium medicae sp. nov., isolated from annual Medicago spp. Int. J. Syst. Bacteriol. 1996, 46, 972–980. [Google Scholar] [CrossRef] [PubMed]
- Gubry-Rangin, C.; Béna, G.; Cleyet-Merel, J.-C.; Brunel, B. Definition and evolution of a new symbiovar, sv. rigiduloides, among Ensifer meliloti efficiently nodulating Medicago species. Syst. Appl. Microbiol. 2013, 36, 490–496. [Google Scholar] [CrossRef] [PubMed]
- Van Berkum, P.; Beyene, D.; Bao, G.; Campbell, T.A.; Eardly, B.D. Rhizobium mongolense sp. nov. is one of three rhizobial genotypes identified which nodulate and form nitrogen-fixing symbioses with Medicago ruthenica (L. Ledebour). Int. J. Syst. Bacteriol. 1998, 48, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Yan, A.M.; Wang, E.T.; Kan, F.L.; Tan, Z.Y.; Sui, X.H.; Reinhold-Hurek, B.; Chen, W.X. Sinorhizobium meliloti associated with Medicago sativa and Melilotus spp. in arid saline soils in Xinjiang, China. Int. J. Syst. Evol. Microbiol. 2000, 50, 1887–1891. [Google Scholar] [CrossRef] [PubMed]
- Bromfield, E.S.P.; Tambong, J.T.; Cloutier, S.; Prévost, D.; Laguerre, G.; van Berkum, P.; Tran Thi, T.V.; Assabgui, R.; Barran, L.R. Ensifer, Phyllobacterium and Rhizobium species occupy nodules of Medicago sativa (alfalfa) and Melilotus alba (sweet clover) grown at a Canadian site without a history of cultivation. Microbiology 2010, 156, 505–520. [Google Scholar] [CrossRef] [PubMed]
- Merabet, C.; Martens, M.; Mahdi, M.; Zakhia, F.; Sy, A.; Le Roux, C.; Domergue, O.; Coopman, R.; Bekki, A.; Mars, M.; et al. Multilocus sequence analysis of root nodule isolates from Lotus arabicus (Senegal), Lotus creticus, Argyrolobium uniflorum and Medicago sativa (Tunisia) and description of Ensifer numidicus sp. nov. and Ensifer garamanticus sp. nov. Int. J. Syst. Evol. Microbiol. 2010, 60, 664–674. [Google Scholar] [CrossRef] [PubMed]
- Djedidi, S.; Yokoyama, T.; Tomooka, N.; Ohkama-Ohtsu, N.; Risal, C.P.; Abdelly, C.; Sekimoto, H. Phenotypic and genetic characterization of rhizobia associated with alfalfa in the Hokkaido and Ishigaki regions of Japan. Syst. Appl. Microbiol. 2011, 34, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Valverde, A.; Velázquez, E.; Fernández-Santos, F.; Vizcaíno, N.; Rivas, R.; Mateos, P.F.; Martínez-Molina, E.; Igual, J.M.; Willems, A. Phyllobacterium trifolii sp. nov., nodulating Trifolium and Lupinus in Spanish soils. Int. J. System. Evol. Microbiol. 2005, 55, 1985–1989. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.J.; Jing, X.Y.; de Lajudie, P.; Ma, C.; He, P.X.; Singh, R.P.; Chen, W.F.; Wang, E.T. Association of white clover (Trifolium repens L.) with rhizobia of sv. trifolii belonging to three genomic species in alkaline soils in North and East China. Plant Soil 2016, 407, 417–427. [Google Scholar] [CrossRef]
- Ogasawara, M.; Suzuki, T.; Mutoh, I.; Annapurna, K.; Arora, N.K.; Nishimura, Y.; Maheshwari, D.K. Sinorhizobium indiaense sp. nov. and Sinorhizobium abri sp. nov. isolated from tropical legumes, Sesbania rostrata and Abrus precatorius, respectively. Symbiosis 2003, 34, 53–68. [Google Scholar]
- Wang, E.T.; van Berkum, P.; Sui, X.H.; Beyene, D.; Chen, W.X.; Martínez-Romero, E. Diversity of rhizobia associated with Amorpha fruticosa isolated from Chinese soils and description of Mesorhizobium amorphae sp. nov. Int. J. Syst. Bacteriol. 1999, 49, 51–65. [Google Scholar] [CrossRef] [PubMed]
- Tlusty, B.; van Berkum, P.; Graham, P.H. Characteristics of the rhizobia associated with Dalea spp. in the Ordway, Kellogg-Weaver Dunes, and Hayden prairies. Can. J. Microbiol. 2005, 51, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Sy, A.; Giraud, E.; Jourand, P.; Garcia, N.; Willems, A.; de Lajudie, P.; Prin, Y.; Neyra, M.; Gillis, M.; Boivin-Masson, C.; et al. Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J. Bacteriol. 2001, 183, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Howieson, J.G.; de Meyer, S.E.; Vivas-Marfisi, A.; Ratnayake, S.; Ardley, J.K.; Yates, R.J. Novel Burkholderia bacteria isolated from Lebeckia ambigua—A perennial suffrutescent legume of the fynbos. Soil Biol. Biochem. 2013, 60, 55–64. [Google Scholar] [CrossRef]
- Ardley, J.K.; Parker, M.A.; de Meyer, S.E.; Trengove, R.D.; O’Hara, G.W.; Reeve, W.G.; Yates, R.J.; Dilworth, M.J.; Willems, A.; Howieson, J.G. Microvirga lupini sp. nov., Microvirga lotononidis sp. nov. and Microvirga zambiensis sp. nov. are α proteobacterial root-nodule bacteria that specifically nodulate and fix nitrogen with geographically and taxonomically separate legume hosts. Int. J. Syst. Evol. Microbiol. 2012, 62, 2579–2588. [Google Scholar] [CrossRef] [PubMed]
- Cardinale, M.; Lanza, A.; Bonnì, M.L.; Marsala, S.; Puglia, A.M.; Quatrini, P. Diversity of rhizobia nodulating wild shrubs of Sicily and some neighbouring islands. Arch. Microbiol. 2008, 190, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Echeverría, S.; Pérez-Fernández, M.A.; Vlaar, S.; Finnan, T. Analysis of the legume-rhizobia symbiosis in shrubs from central western Spain. J. Appl. Microbiol. 2003, 95, 1367–1374. [Google Scholar] [CrossRef] [PubMed]
- Vinuesa, P.; Rademaker, J.L.W.; de Bruijn, F.J.; Werner, D. Genotypic characterization of Bradyrhizobium strains nodulating endemic woody legumes of the Canary Islands by PCR-restriction fragment length polymorphism analysis of genes encoding 16S rRNA (16S rDNA) and 16S–23S rDNA intergenic spacers, repetitive extragenic palindromic PCR genomic fingerprinting, and partial 16S rDNA sequencing. Appl. Environ. Microbiol. 1998, 64, 2096–2104. [Google Scholar] [PubMed]
- Vinuesa, P.; Léon-Barrios, M.; Silva, C.; Willems, A.; Jarabo-Lorenzo, A.; Pérez-Galdona, R.; Werner, D.; Martínez-Romero, E. Bradyrhizobium canariense sp. nov., an acid-tolerant endosymbiont that nodulates endemic genistoid legumes (Papilionoideae: Genisteae) from the Canary Islands, along with Bradyrhizobium japonicum bv. genistearum, Bradyrhizobium genospecies alpha and Bradyrhizobium genospecies beta. Int. J. Syst. Evol. Microbiol. 2005, 55, 569–575. [Google Scholar] [PubMed]
- Jarabo-Lorenzo, A.; Velázquez, E.; Pérez-Galdona, R.; Vega-Hernández, M.C.; Martínez-Molina, E.; Mateos, P.F.; Vinuesa, P.; Martínez-Romero, E.; Léon-Barrios, M. Restriction fragment length polymorphism analysis of 16S rDNA and low molecular weight RNA profiling of rhizobial isolates from shrubby legumes endemic to the Canary Islands. System. Appl. Microbiol. 2000, 23, 418–425. [Google Scholar] [CrossRef]
- Jarabo-Lorenzo, A.; Pérez-Galdona, R.; Donate-Correa, J.; Rivas, R.; Velázquez, E.; Hernández, M.; Temprano, F.; Martínez-Molina, E.; Ruiz-Argüeso, T.; Léon-Barrios, M. Genetic diversity of Bradyrhizobial populations from diverse geographic origins that nodulate Lupinus spp. and Ornithopus spp. System. Appl. Microbiol. 2003, 26, 611–623. [Google Scholar] [CrossRef] [PubMed]
- Kalita, M.; Malek, W.; Kaznowski, A. Analysis of genetic relationship of Sarothamnus scoparius microsymbionts and Bradyrhizobium sp. by hybridization in microdilution wells. J. Biosci. Bioeng. 2004, 97, 158–161. [Google Scholar] [CrossRef]
- Horn, K.; Parker, I.M.; Malek, W.; Rodríguez-Echeverria, S.; Matthew, A.P. Disparate origins of Bradyrhizobium symbionts for invasive populations of Cytisus scoparius (Leguminosae) in North America. FEMS Microbiol. Ecol. 2014, 89, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Chahboune, R.; Barrijal, S.; Moreno, S.; Bedmar, E.J. Characterization of Bradyrhizobium species isolated from root nodules of Cytisus villosus grown in Morocco. Syst. Appl. Microbiol. 2011, 34, 440–445. [Google Scholar] [CrossRef] [PubMed]
- Cobo-Díaz, J.F.; Martínez-Hidalgo, P.; Fernández-González, A.J.; Martínez-Molina, E.; Toro, N.; Velázquez, E.; Fernández-López, M. The endemic Genista versicolor from sierra nevada national park in Spain is nodulated by putative new Bradyrhizobium species and a novel symbiovar (sierranevadense). Syst. Appl. Microbiol. 2014, 37, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Stroschein, M.R.D.; Eltz, F.L.F.; Antoniolli, Z.I.; Lupatini, M.; Vargas, L.K.; Giongo, A.; Pontelli, M.P. Symbiotic efficiency and genetic characteristics of Bradyrhizobium sp. strain UFSM LA 1.3 isolated from Lupinus albescens (H. et Arn). Sci. Agric. 2010, 67, 702–706. [Google Scholar] [CrossRef]
- Granada, C.E.; Beneduzi, A.; Lisboa, B.B.; Turchetto-Zolet, A.C.; Vargas, L.K.; Passaglia, L.M.P. Multilocus sequence analysis reveals taxonomic differences among Bradyrhizobium sp. symbionts of Lupinus albescens plants growing in arenized and non-arenized areas. Syst. Appl. Microbiol. 2015, 38, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Velázquez, E.; Valverde, A.; Rivas, R.; Gomis, V.; Peix, A.; Gantois, I.; Igual, J.M.; León-Barrios, M.; Willems, A.; Mateos, P.F.; et al. Strains nodulating Lupinus albus on different contintents belong to several new chromosomal and symbiotic lineages within Bradyrhizobium. Antonie van Leeuwenhoek 2010, 97, 363–376. [Google Scholar] [CrossRef] [PubMed]
- Stępkowski, T.; Żak, M.; Moulin, L.; Króliczak, J.; Golińska, B.; Narożna, D.; Safronova, V.I.; Mądrzak, C.J. Bradyrhizobium canariense and Bradyrhizobium japonicum are the two dominant rhizobium species in root nodules of lupin and serradella plants growing in Europe. Syst. Appl. Microbiol. 2011, 34, 368–375. [Google Scholar] [CrossRef] [PubMed]
- Trujillo, M.E.; Willems, A.; Abril, A.; Planchuelo, A.-M.; Rivas, R.; Ludeña, D.; Mateos, P.F.; Martínez-Molina, E.; Velázquez, E. Nodulation of Lupinus albus by strains of Ochrobactrum lupini sp. nov. Appl. Environ. Microbiol. 2005, 71, 1318–1327. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Cañizares, C.; Rey, L.; Durán, D.; Temprano, F.; Sánchez-Jiménez, P.; Navarro, A.; Polajnar, M.; Imperial, J.; Ruiz-Argüeso, T. Endosymbiotic bacteria nodulating a new endemic lupine Lupinus mariae-josephi from alkaline soils in Eastern Spain represent a new lineage within the Bradyrhizobium genus. Syst. Appl. Microbiol. 2011, 34, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Durán, D.; Rey, L.; Sánchez-Cañizares, C.; Navarro, A.; Imperial, J.; Ruiz-Argueso, T. Genetic diversity of indigenous rhizobial symbionts of the Lupinus mariae-josephae endemism form alkaline-limed soils within its area of distribution in Eastern Spain. Syst. Appl. Microbiol. 2013, 36, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Bourebaba, Y.; Durán, D.; Boulila, F.; Ahnia, H.; Boulila, A.; Temprano, F.; Palacios, J.M.; Imperial, J.; Ruiz-Argüeso, T.; Rey, L. Diversity of Bradyrhizobium strains nodulating Lupinus micranthus on both sides of the Western Mediterranean: Algeria and Spain. Syst. Appl. Microbiol. 2016, 39, 266–274. [Google Scholar] [CrossRef] [PubMed]
- Ryan-Salter, T.P.; Black, A.D.; Andrews, M.; Moot, D.J. Identification and effectiveness of rhizobial strains that nodulate Lupinus polyphyllus. Proc. NZ Grassland Assoc. 2014, 76, 61–66. [Google Scholar]
- Guerrouj, K.; Ruíz-Díez, B.; Chahboune, R.; Ramírez-Bahena, M.-H.; Abdelmoumen, H.; Quiñones, M.A.; El Idrissi, M.M.; Velázquez, E.; Fernández-Pascual, M.; Bedmar, E.J.; Peix, A. Definition of a novel symbiovar (sv. retamae) within Bradyrhizobium retamae sp. nov., nodulating Retama sphaerocarpa and Retama monosperma. Syst. Appl. Microbiol. 2013, 36, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Farida, B.; Géraldine, D.; Abdelghani, B.; Djellali, B.; Said, B.; Gisèle, L. Retama species growing in different ecological-climatic areas of northeastern Algeria have a narrow range of rhizobia that form a novel phylogenetic clade within the Bradyrhizobium genus. Syst. Appl. Microbiol. 2009, 32, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Echeverría, S.; Moreno, S.; Bedmar, E.J. Genetic diversity of root nodulating bacteria associated with Retama sphaerocarpa in sites with different soil and environmental conditions. Syst. Appl. Microbiol. 2014, 37, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Quatrini, P.; Scaglione, G.; Cardinale, M.; Caradonna, F.; Puglia, A.M. Bradyrhizobium sp. nodulating the Mediterranean shrub Spanish broom (Spartium junceum L.). J. Appl. Microbiol. 2002, 92, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.Y.Y. Characterisation of Rhizobia and Studies on N2 Fixation of Common Weed Legumes in New Zealand. Ph.D. Thesis, Lincoln University, Lincoln, New Zealand, 2014. [Google Scholar]
- Beukes, C.W.; Venter, S.N.; Law, I.J.; Phalane, F.L.; Steenkamp, E.T. South African papilionoid legumes are nodulated by diverse Burkholderia with unique nodulation and nitrogen-fixation loci. PLoS ONE 2013, 8, e68406. [Google Scholar] [CrossRef] [PubMed]
- Doignon-Bourcier, F.; Sy, A.; Willems, A.; Torck, U.; Dreyfus, B.; Gillis, M.; de Lajudie, P. Diversity of bradyrhizobia from 27 tropical Leguminosae species native of Senegal. System. Appl. Microbiol. 1999, 22, 647–661. [Google Scholar] [CrossRef]
- Lemaire, B.; Chimphango, S.B.M.; Stirton, C.; Rafudeen, S.; Honnay, O.; Smets, E.; Chen, W.-M.; Sprent, J.; James, E.K.; Muasya, A.M. Biogeographical patterns of legume-nodulating Burkholderia spp.: From African fynbos to continental scales. Appl. Environ. Microbiol. 2016, 82, 5099–5115. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Kong, Z.; Chen, W.; Wei, G. Genetic diversity and symbiotic evolution of rhizobia from root nodules of Coronilla varia. Syst. Appl. Microbiol. 2013, 36, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Stępkowski, T.; Moulin, L.; Krzyżańska, A.; McInnes, A.; Law, I.J.; Howieson, J. European origin of Bradyrhizobium populations infecting lupins and serradella in soils of Western Australia and South Africa. Appl. Environ. Microbiol. 2005, 71, 7041–7052. [Google Scholar] [CrossRef] [PubMed]
- Kesari, V.; Ramesh, A.M.; Rangan, L. Rhizobium pongamiae sp. nov. from root nodules of Pongamia pinnata. Biomed. Res. Int. 2013, 2013, 165198. [Google Scholar] [CrossRef] [PubMed]
- Lemaire, B.; van Cauwenberghe, J.; Verstraete, B.; Chimphango, S.; Stirton, C.; Honnay, O.; Smets, E.; Sprent, J.; James, E.K.; Muasya, A.M. Characterization of the papilionoid-Burkholderia interaction in the Fynbos biome: The diversity and distribution of β-rhizobia nodulating Podalyria calyptrata (Fabaceae, Podalyrieae). Syst. Appl. Microbiol. 2016, 39, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, A.; Zaspel, I. Phylogenetic diversity of rhizobial strains nodulating Robinia pseudoacacia L. Microbiology 2000, 146, 2997–3005. [Google Scholar] [CrossRef] [PubMed]
- Mierzwa, B.; Wdowiak-Wróbel, S.; Malek, W. Phenotypic, genomic and phylogenetic characteristics of rhizobia isolated from root nodules of Robinia pseudoacacia (black locust) growing in Poland and Japan. Arch. Microbiol. 2009, 191, 697–710. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-M.; Lee, T.-M. Genetic and phenotypic diversity of rhizobial isolates from sugarcane-Sesbania cannabina-rotation fields. Biol. Fertil. Soils 2001, 34, 14–20. [Google Scholar] [CrossRef]
- Wang, Y.C.; Wang, F.; Hou, B.C.; Wang, E.T.; Chen, W.F.; Sui, X.H.; Chen, W.X.; Li, Y.; Zhang, Y.B. Proposal of Ensifer psoraleae sp. nov., Ensifer sesbaniae sp. nov., Ensifer morelense comb. nov. and Ensifer americanum comb. nov. Syst. Appl. Microbiol. 2013, 36, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, X.; Liu, Y.; Wang, E.T.; Ren, C.; Liu, W.; Xu, H.; Wu, H.; Jiang, N.; Li, Y.; Zhang, X.; Xie, Z. Genetic diversity and community structure of rhizobia nodulating Sesbania cannabina in saline-alkaline soils. Syst. Appl. Microbiol. 2016, 39, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.T.; van Berkum, P.; Beyene, D.; Sui, X.H.; Dorado, O.; Chen, W.X.; Martínez-Romero, E. Rhizobium huautlense sp. nov., a symbiont of Sesbania herbacea that has a close phylogenetic relationship with Rhizobium galegae. Int. J. Syst. Bacteriol. 1998, 48, 687–699. [Google Scholar] [CrossRef] [PubMed]
- Blanco, A.R.; Csukasi, F.; Abreu, C.; Sicardi, M. Characterization of rhizobia from Sesbania species native to seasonally wetland areas in Uruguay. Biol. Fertil. Soils 2008, 44, 925–932. [Google Scholar] [CrossRef]
- Dreyfus, B.; Garcia, J.L.; Gillis, M. Characterisation of Azorhizobium caulinodans gen. nov., sp. nov., a stem nodulating nitrogen-fixing bacterium isolated from Sesbania rostrata. Int. J. Syst. Bacteriol. 1988, 38, 89–98. [Google Scholar] [CrossRef]
- De Moreira, F.M.S.; Cruz, L.; de Faria, S.M.; Marsh, T.; Martínez-Romero, E.; de Pedrosa, F.O.; Pitard, R.M.; Young, J.P.W. Azorhizobium doebereinerae sp. nov. microsymbiont of Sesbania virgata (Caz.) Pers. Syst. Appl. Microbiol. 2006, 29, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Deng, Z.; Yang, W.; Cao, Y.; Wang, E.; Wei, G. Diverse rhizobia associated with Sophora alopecuroides grown in different regions of Loess Plateau in China. Syst. Appl. Microbiol. 2010, 33, 468–477. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.S.; Liu, Y.H.; Yan, H.; Wang, E.T.; Tian, C.F.; Chen, W.X.; Guo, B.L.; Chen, W.F. Rhizobial diversity and nodulation characteristics of the extremely promiscuous legume Sophora flavescens. Mol. Plant Microbe Interact. 2015, 28, 1338–1352. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.S.; Yan, H.; Ji, Z.J.; Liu, Y.H.; Sui, X.H.; Zhang, X.X.; Wang, E.T.; Chen, W.X.; Chen, W.F. Phyllobacterium sophorae sp. nov., a symbiotic bacterium isolated from root nodules of Sophora flavescens. Int. J. Syst. Evol. Microbiol. 2015, 65, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.W.; Heenan, P.B.; de Meyer, S.E.; Willems, A.; Andrews, M. Diverse novel mesorhizobia nodulate New Zealand native Sophora species. Syst. Appl. Microbiol. 2015, 38, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Wang, X.; Huo, H.; Yuan, G.; Sun, Y.; Zhang, D.; Cao, Y.; Xu, L.; Wei, G. Phylogenetic diversity of Ammopiptanthus rhizobia and distribution of rhizobia associated with Ammopiptanthus mongolicus in diverse regions of Northwest China. Microb. Ecol. 2016, 72, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Donate-Correa, J.; Léon-Barrios, M.; Hernández, M.; Pérez-Galdona, R.; del Arco-Aguilar, M. Different Mesorhizobium species sharing the same symbiotic genes nodulate the shrub legume Anagyris latifolia. Syst. Appl. Microbiol. 2007, 30, 615–623. [Google Scholar] [CrossRef] [PubMed]
- Ampomah, O.Y.; Huss-Danell, K. Nodulation of Thermopsis lupinoides by a Mesorhizobium huakuii strain with a unique nodA gene in Kamtchatka, Russia. Appl. Environ. Microbiol. 2011, 77, 5513–5516. [Google Scholar] [CrossRef] [PubMed]
- Bianco, L.; Angelini, J.; Fabra, A.; Malpassi, R. Diversity and symbiotic effectiveness of indigenous rhizobia-nodulating Adesmia bicolor in soils of Central Argentina. Curr. Microbiol. 2013, 66, 174–184. [Google Scholar] [CrossRef] [PubMed]
- Noisangiam, R.; Teamtisong, K.; Tittabutr, P.; Boonkerd, N.; Toshiki, U.; Minamisawa, K.; Teaumroong, N. Genetic diversity, symbiotic evolution, and proposed infection process of Bradyrhizobium strains isolated from root nodules of Aeschynomene americana L. in Thailand. Appl. Environ. Microbiol. 2012, 78, 6236–6250. [Google Scholar] [CrossRef] [PubMed]
- Van Berkum, P.; Eardly, B.D. The aquatic budding bacterium Blastobacter denitrificans is a nitrogen-fixing symbiont of Aeschynomene indica. Appl. Environ. Microbiol. 2002, 68, 1132–1136. [Google Scholar] [CrossRef] [PubMed]
- Montecchia, M.S.; Kerber, N.L.; Pucheu, N.L.; Perticari, A.; García, A.F. Analysis of genomic diversity among photosynthetic stem-nodulating rhizobial strains from Northeast Argentina. Syst. Appl. Microbiol. 2002, 25, 423–433. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.Y.; Gu, J.; Wang, E.T.; Ma, X.X.; Kang, S.T.; Huang, L.Z.; Cao, X.P.; Li, L.B.; Wu, Y.L. Wild peanut Arachis duranensis are nodulated by diverse and novel Bradyrhizobium species in acid soils. Syst. Appl. Microbiol. 2014, 37, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Urtz, B.E.; Elkan, G.H. Genetic diversity among Bradyrhizobium isolates that effectively nodulate peanut (Arachis hypogaea). Can. J. Microbiol. 1996, 42, 1121–1130. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.K.; Xie, F.L.; Zou, J.; Zhou, Q.; Zhou, J.C. Polyphasic characteristics of bradyrhizobia isolated from nodules of peanut (Arachis hypogaea) in China. Soil Biol. Biochem. 2005, 37, 141–153. [Google Scholar] [CrossRef]
- Taurian, T.; Ibañez, F.; Fabra, A.; Aguilar, O.M. Genetic diversity of rhizobia nodulating Arachis hypogaea L. in Central Argentinean soils. Plant Soil 2006, 282, 41–52. [Google Scholar] [CrossRef]
- El-Akhal, M.R.; Rincón, A.; Arenal, F.; Lucas, M.M.; El Mourabit, N.; Barrijal, S.; Pueyo, J.J. Genetic diversity and symbiotic efficiency of rhizobial isolates obtained from nodules of Arachis hypogaea in northwestern Morocco. Soil Biol. Biochem. 2008, 40, 2911–2914. [Google Scholar] [CrossRef]
- Steenkamp, E.T.; Stępkowski, T.; Przymusiak, A.; Botha, W.J.; Law, I.J. Cowpea and peanut in southern Africa are nodulated by diverse Bradyrhizobium strains harboring nodulation genes that belong to the large pantropical clade common in Africa. Mol. Phylogenet. Evol. 2008, 48, 1131–1144. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.L.; Wang, J.Y.; Wang, E.T.; Liu, H.C.; Sui, X.H.; Chen, W.X. Bradyrhizobium lablabi sp. nov., isolated from effective nodules of Lablab purpureus and Arachis hypogaea. Int. J. Syst. Evol. Microbiol. 2011, 61, 2496–2502. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, V.; Ibañez, F.; Tonelli, M.L.; Valetti, L.; Anzuay, M.S.; Fabra, A. Phenotypic and phylogenetic characterization of native peanut Bradyrhizobium isolates obtained from Córdoba, Argentina. Syst. Appl. Microbiol. 2011, 34, 446–452. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Chang, Y.L.; Zheng, W.T.; Zhang, D.; Zhang, X.X.; Sui, X.H.; Wang, E.T.; Hu, J.Q.; Zhang, L.Y.; Chen, W.X. Bradyrhizobium arachidis sp. nov., isolated from effective nodules of Arachis hypogaea grown in China. Syst. Appl. Microbiol. 2013, 36, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Grönemeyer, J.L.; Kulkarni, A.; Berkelmann, D.; Hurek, T.; Reinhold-Hurek, B. Rhizobia indigenous to the Okavango region in Sub-Saharan Africa: Diversity, adaptations, and host specificity. Appl. Environ. Microbiol. 2014, 80, 7244–7257. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.H.; Wang, R.; Zhang, X.X.; Young, J.P.W.; Wang, E.T.; Sui, X.H.; Chen, W.X. Bradyrhizobium guangdongense sp. nov. and Bradyrhizobium guangxiense sp. nov., isolated from effective nodules of peanut. Int. J. Syst. Evol. Microbiol. 2015, 65, 4655–4661. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Hu, M.; Ma, H.; Wang, Y.; Wang, E.T.; Zhou, Z.; Gu, J. Genetic diversity and distribution of bradyrhizobia nodulating peanut in acid-neutral soils in Guangdong Province. Syst. Appl. Microbiol. 2016, 39, 418–427. [Google Scholar] [CrossRef] [PubMed]
- Baraúna, A.C.; da Silva, K.; Pereira, G.M.D.; Kaminski, P.E.; Perin, L.; Zilli, J.E. Diversity and nitrogen fixation efficiency of rhizobia isolated from nodules of Centrolobium paraense. Pesq. Agropecu. Bras. 2014, 49, 296–305. [Google Scholar] [CrossRef]
- Zilli, J.E.; Baraúna, A.C.; da Silva, K.; de Meyer, S.E.; Farias, E.N.C.; Kaminski, P.E.; da Costa, I.B.; Ardley, J.K.; Willems, A.; Camacho, N.N.; et al. Bradyrhizobium neotropicale sp. nov., isolate from effective nodules of Centrolobium paraense. Int. J. Syst. Evol. Microbiol. 2014, 64, 3950–3957. [Google Scholar] [CrossRef] [PubMed]
- Rasolomampianina, R.; Bailly, X.; Fetiarison, R.; Rabevohitra, R.; Béna, G.; Ramaroson, L.; Raherimandimby, M.; Moulin, L.; de Lajudie, P.; Dreyfus, B.; et al. Nitrogen-fixing nodules from rose wood legume trees (Dalbergia spp.) endemic to Madagascar host seven different genera belonging to α- and β-proteobacteria. Mol. Ecol. 2005, 14, 4135–4146. [Google Scholar] [CrossRef] [PubMed]
- Le Roux, C.; Muller, F.; Bouvet, J.-M.; Dreyfus, B.; Béna, G.; Galiana, A.; Bâ, A.M. Genetic diversity patterns and functional traits of Bradyrhizobium strains associated with Pterocarpus officinalis Jacq. in Caribbean islands and Amazonian forest (French Guiana). Microb. Ecol. 2014, 68, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Gueye, F.; Moulin, L.; Sylla, S.; Ndoye, I.; Béna, G. Genetic diversity and distribution of Bradyrhizobium and Azorhizobium strains associated with the herb legume Zornia glochidiata sampled from across Senegal. Syst. Appl. Microbiol. 2009, 32, 387–399. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Wang, E.T.; Chen, W.X. Genetic diversity of rhizobia associated with Desmodium species grown in China. Lett. Appl. Microbiol. 2007, 44, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.W.; Zou, L.; Penttinen, P.; Zeng, X.; Liu, M.; Zhao, K.; Chen, C.; Chen, Y.X.; Zhang, X. Diversity and phylogeny of rhizobia associated with Desmodium spp. in Panxi, Sichuan, China. Syst. Appl. Microbiol. 2016, 39, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Delamuta, J.R.M.; Ribeiro, R.A.; Ormeño-Orrillo, E.; Parma, M.M.; Melo, I.S.; Martínez-Romero, E.; Hungria, M. Bradyrhizobium tropiciagri sp. nov. and Bradyrhizobium embrapense sp. nov., nitrogen-fixing symbionts of tropical forage legumes. Int. J. Syst. Evol. Microbiol. 2015, 65, 4424–4433. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-X.; Tan, Z.-Y.; Gao, J.-L.; Li, Y.; Wang, E.-T. Rhizobium hainanense sp. nov., isolated from tropical legumes. Int. J. Syst. Bacteriol. 1997, 47, 870–873. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.X.; Man, C.X.; Wang, E.T.; Chen, W.X. Diverse rhizobia that nodulate two species of Kummerowia in China. Arch. Microbiol. 2007, 188, 495–507. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.Y.; Kan, F.L.; Wang, E.T.; Wei, G.H.; Chen, W.X. Characterization of rhizobia that nodulate legume species of the genus Lespedeza and description of Bradyrhizobium yuanmingense sp. nov. Int. J. Syst. Evol. Microbiol. 2002, 52, 2219–2230. [Google Scholar] [CrossRef] [PubMed]
- Parker, M.A.; Doyle, J.L.; Doyle, J.J. Comparative phylogeography of Amphicarpaea legumes and their root-nodule symbionts in Japan and North America. J. Biogeogr. 2004, 31, 425–434. [Google Scholar] [CrossRef]
- Araujo, J.; Díaz-Alcántara, C.-A.; Velázquez, E.; Urbano, B.; González-Andrés, F. Bradyrhizobium yuanmingense related strains form nitrogen-fixing symbiosis with Cajanus cajan L. in Dominican Republic and are efficient biofertilizers to replace N fertilization. Sci. Hort. 2015, 192, 421–428. [Google Scholar] [CrossRef]
- Chen, W.-M.; Lee, T.-M.; Lan, C.-C.; Cheng, C.-P. Characterization of halotolerant rhizobia isolated from root nodules of Canavalia rosea from seaside areas. FEMS Microbiol. Ecol. 2000, 34, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.M.; Ge, C.; Cui, Z.; Li, J.; Fan, H. Bradyrhizobium liaoningense sp. nov., isolated from the root nodules of soybeans. Int. J. Syst. Bacteriol. 1995, 45, 706–711. [Google Scholar] [CrossRef] [PubMed]
- Barcellos, F.G.; Menna, P.; da Batista, J.S.S.; Hungria, M. Evidence of horizontal transfer of symbiotic genes from a Bradyrhizobium japonicum inoculant strain to indigenous diazotrophs Sinorhizobium (Ensifer) fredii and Bradyrhizobium elkanii in a Brazilian savannah soil. Appl. Environ. Microbiol. 2007, 73, 2635–2643. [Google Scholar] [CrossRef] [PubMed]
- Appunu, C.; Sasirekha, N.; Prabavathy, V.R.; Nair, S. A significant proportion of indigenous rhizobia from India associated with soybean (Glycine max L.) distinctly belong to Bradyrhizobium and Ensifer genera. Biol. Fertil. Soils 2009, 46, 57–63. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Li, Y., Jr.; Chen, W.F.; Wang, E.T.; Tian, C.F.; Li, Q.Q.; Zhang, Y.Z.; Sui, X.H.; Chen, W.X. Biodiversity and biogeography of rhizobia associated with soybean plants grown in the North China Plain. Appl. Environ. Microbiol. 2011, 77, 6331–6342. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, S.K.; Anand, A.; Dhar, B.; Vaishampayan, A. Genotypic characterization of phage-typed indigenous soybean Bradyrhizobia and their host range symbiotic effectiveness. Microb. Ecol. 2012, 63, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Bromfield, E.S.P.; Rodrigue, N.; Cloutier, S.; Tambong, J.T. Microevolution of symbiotic Bradyrhizobium populations associated with soybeans in east North America. Ecol. Evol. 2012, 2, 2943–2961. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Y.; Wang, R.; Zhang, Y.M.; Liu, H.C.; Chen, W.F.; Wang, E.T.; Sui, X.H.; Chen, W.X. Bradyrhizobium daqingense sp. nov., isolated from soybean nodules. Int. J. Syst. Evol. Microbiol. 2013, 63, 616–624. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, R.A.; Ormeño-Orrillo, E.; Dall’Agnol, R.F.; Graham, P.H.; Martinez-Romero, E.; Hungria, M. Novel Rhizobium lineages isolated from root nodules of the common bean (Phaseolus vulgaris L.) in Andean and Mesoamerican areas. Res. Microbiol. 2013, 164, 740–748. [Google Scholar] [CrossRef] [PubMed]
- Peng, G.X.; Tan, Z.Y.; Wang, E.T.; Reinhold-Hurek, B.; Chen, W.F.; Chen, W.X. Identification of isolates from soybean nodules in Xinjiang Region as Sinorhizobium xinjiangense and genetic differentiation of S. xinjiangense from Sinorhizobium fredii. Int. J. Syst. Evol. Microbiol. 2002, 52, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.Q.; Wang, E.T.; Chang, Y.L.; Zhang, Y.Z.; Zhang, Y.M.; Sui, X.H.; Chen, W.F.; Chen, W.X. Ensifer sojae sp. nov., isolated from root nodules of Glycine max grown in saline-alkaline soils. Int. J. Syst. Evol. Microbiol. 2011, 61, 1981–1988. [Google Scholar] [CrossRef] [PubMed]
- Alam, F.; Bhuiyan, M.A.H.; Alam, S.S.; Waghmode, T.R.; Kim, P.J. Effect of Rhizobium sp. BARIRGm901 inoculation on nodulation, nitrogen fixation and yield of soybean (Glycine max) genotypes in gray terrace soil. Biosci. Biotechnol. Biochem. 2015, 1660–1668. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.J.; Wang, H.Q.; Wang, E.T.; Chen, W.X.; Tian, C.F. Genetic diversity of nodulating and non-nodulating rhizobia associated with wild soybean (Glycine soja Sieb. & Zucc.) in different ecoregions of China. FEMS Microbiol. Ecol. 2011, 76, 439–450. [Google Scholar] [PubMed]
- Zhao, L.; Fan, M.; Zhang, D.; Yang, R.; Zhang, F.; Xu, L.; Wei, X.; Shen, Y.; Wei, G. Distribution and diversity of rhizobia associated with wild soybean (Glycine soja Sieb. & Zucc.) in Northwest China. Syst. Appl. Microbiol. 2014, 37, 449–456. [Google Scholar] [PubMed]
- Fuentes, J.B.; Abe, M.; Uchiumi, T.; Suzuki, A.; Higashi, S. Symbiotic root nodule bacteria isolated from yam bean (Pachyrhizus erosus). J. Gen. Appl. Microbiol. 2002, 48, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Navarro, D.N.; Camacho, M.; Leidi, E.O.; Rivas, R.; Velázquez, E. Phenotypic and genotypic characterization of rhizobia from diverse geographical origin that nodulate Pachyrhizus species. Syst. Appl. Microbiol. 2004, 27, 737–745. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Bahena, M.H.; Peix, A.; Rivas, R.; Camacho, M.; Rodríguez-Navarro, D.N.; Mateos, P.F.; Martínez-Molina, E.; Willems, A.; Velázquez, E. Bradyrhizobium pachyrhizi sp. nov. and Bradyrhizobium jicamae sp. nov., isolated from effective nodules of Pachyrhizus erosus. Int. J. Syst. Evol. Microbiol. 2009, 59, 1929–1934. [Google Scholar] [CrossRef] [PubMed]
- López-López, A.; Negrete-Yankelevich, S.; Rogel, M.A.; Ormeño-Orrillo, E.; Martínez, J.; Martínez-Romero, E. Native bradyrhizobia from Los Tuxtlas in Mexico are symbionts of Phaseolus lunatus (Lima bean). Syst. Appl. Microbiol. 2013, 36, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Durán, D.; Rey, L.; Mayo, J.; Zúñiga-Dávila, D.; Imperial, J.; Ruiz-Argüeso, T.; Martínez-Romero, E.; Ormeño-Orrillo, E. Bradyrhizobium paxllaeri sp. nov. and Bradyrhizobium icense sp. nov., nitrogen-fixing rhizobial symbionts of Lima bean (Phaseolus lunatus L.) in Peru. Int. J. Syst. Evol. Microbiol. 2014, 64, 2072–2078. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, M.; Zúñiga-Dávila, D. Phenotypic and molecular differences among rhizobia that nodulate Phaseolus lunatus in the Supe valley in Peru. Ann. Microbiol. 2015, 65, 1803–1808. [Google Scholar] [CrossRef]
- Wang, L.; Cao, Y.; Wang, E.T.; Qiao, Y.J.; Jiao, S.; Liu, Z.S.; Zhao, L.; Wei, G.H. Biodiversity and biogeography of rhizobia associated with common bean (Phaseolus vulgaris L.) in Shaanxi Province. Syst. Appl. Microbiol. 2016, 39, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Talbi, C.; Delgado, M.J.; Girard, L.; Ramirez-Trujillo, A.; Caballero-Mellado, J.; Bedmar, E.J. Burkholderia phymatum strains capable of nodulating Phaseolus vulgaris are present in Moroccan soils. Appl. Environ. Microbiol. 2010, 76, 4587–4591. [Google Scholar] [CrossRef] [PubMed]
- Dall’Agnol, R.F.; Plotegher, F.; Souza, R.C.; Mendes, I.C.; dos Reis Junior, F.B.; Béna, G.; Moulin, L.; Hungria, M. Paraburkholderia nodosa is the main N2-fixing species trapped by promiscuous common bean (Phaseolus vulgaris L.) in the Brazilian “Cerradão”. FEMS Microbiol. Ecol. 2016, 92, fiw108. [Google Scholar] [CrossRef] [PubMed]
- Mhamdi, R.; Laguerre, G.; Aouani, M.E.; Mars, M.; Amarger, N. Different species and symbiotic genotypes of field rhizobia can nodulate Phaseolus vulgaris in Tunisian soils. FEMS Microbiol. Ecol. 2002, 41, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Mnasri, B.; Mrabet, M.; Laguerre, G.; Aouani, M.E.; Mhamdi, R. Salt-tolerant rhizobia isolated from a Tunisian oasis that are highly effective for symbiotic N2-fixation with Phaseolus vulgaris constitute a novel biovar (bv. mediterranense) of Sinorhizobium meliloti. Arch. Microbiol. 2007, 187, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Mnasri, B.; Saïdi, S.; Chihaoui, S.-A.; Mhamdi, R. Sinorhizobium americanum symbiovar mediterranense is a predominant symbiont that nodulates and fixes nitrogen with common bean (Phaseolus vulgaris L.) in a Northern Tunisian field. Syst. Appl. Microbiol. 2012, 35, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Romero, E.; Segovia, L.; Mercante, F.M.; Franco, A.A.; Graham, P.; Pardo, M.A. Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. Int. J. System. Bacteriol. 1991, 41, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Amarger, N.; Macheret, V.; Laguerre, G. Rhizobium gallicum sp. nov. and Rhizobium giardinii sp. nov., from Phaseolus vulgaris nodules. Int. J. Syst. Bacteriol. 1997, 47, 996–1006. [Google Scholar] [CrossRef] [PubMed]
- Mostasso, L.; Mostasso, F.L.; Dias, B.G.; Vargas, M.A.T.; Hungria, M. Selection of bean (Phaseolus vulgaris L.) rhizobial strains for the Brazilian Cerrados. Field Crops Res. 2002, 73, 121–132. [Google Scholar] [CrossRef]
- Valverde, A.; Igual, J.M.; Peix, A.; Cervantes, E.; Velázquez, E. Rhizobium lusitanum sp. nov. a bacterium that nodulates Phaseolus vulgaris. Int. J. System. Evol. Microbiol. 2006, 56, 2631–2637. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wang, E.T.; Wu, L.J.; Sui, X.H.; Li, Y., Jr.; Chen, W.X. Rhizobium vallis sp. nov., isolated from nodules of three leguminous species. Int. J. Syst. Evol. Microbiol. 2011, 61, 2582–2588. [Google Scholar] [CrossRef] [PubMed]
- De Ribeiro, P.R.A.; dos Santos, J.V.; da Costa, E.M.; Lebbe, L.; Assis, E.S.; Louzada, M.O.; Guimarães, A.A.; Willems, A.; de Moreira, F.M.S. Symbiotic efficiency and genetic diversity of soybean bradyrhizobia in Brazilian soils. Agric. Ecosyst. Environ. 2015, 212, 85–93. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, E.-T.; Zhao, L.; Chen, W.-M.; Wei, G.-H. Diversity and distribution of rhizobia nodulated with Phaseolus vulgaris in two ecoregions of China. Soil Biol. Biochem. 2014, 78, 128–137. [Google Scholar] [CrossRef]
- Sarr, P.S.; Araki, S.; Begoude, D.A.; Yemefack, M.; Manga, G.A.; Yamakawa, T.; Htwe, A.Z. Phylogeny and nitrogen fixation potential of Bradyrhizobium species isolated from the legume cover crop Pueraria phaseoloides (Roxb.) Benth. in Eastern Cameroon. Soil Sci. Plant Nutr. 2016, 62, 13–19. [Google Scholar] [CrossRef]
- Garau, G.; Yates, R.J.; Deiana, P.; Howieson, J.G. Novel strains of nodulating Burkholderia have a role in nitrogen fixation with papilionoid herbaceous legumes adapted to acid, infertile soils. Soil Biol. Biochem. 2009, 41, 125–134. [Google Scholar] [CrossRef]
- De Meyer, S.E.; Cnockaert, M.; Ardley, J.K.; Trengove, R.D.; Garau, G.; Howieson, J.G.; Vandamme, P. Burkholderia rhynchosiae sp. nov., isolated from Rhynchosia ferulifolia root nodules. Int. J. Syst. Evol. Microbiol. 2013, 63, 3944–3949. [Google Scholar] [CrossRef] [PubMed]
- Han, L.L.; Wang, E.T.; Lu, Y.L.; Zhang, Y.F.; Sui, X.H.; Chen, W.F.; Chen, W.X. Bradyrhizobium spp. and Sinorhizobium fredii are predominant in root nodules of Vigna angularis, a native legume crop in the subtropical region of China. J. Microbiol. 2009, 47, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.F.; Wang, E.T.; Tian, C.F.; Wang, F.Q.; Han, L.L.; Chen, W.F.; Chen, W.X. Bradyrhizobium elkanii, Bradyrhizobium yuanmingense and Bradyrhizobium japonicum are the main rhizobia associated with Vigna unguiculata and Vigna radiata in the subtropical region of China. FEMS Microbiol. Lett. 2008, 285, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Risal, C.P.; Djedidi, S.; Dhakal, D.; Ohkama-Ohtsu, N.; Sekimoto, H.; Yokoyama, T. Phylogenetic diversity and symbiotic functioning in mungbean (Vigna radiata L. Wilczek) bradyrhizobia from contrast agro-ecological regions of Nepal. Syst. Appl. Microbiol. 2012, 35, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Onyango, B.; Anyango, B.; Nyunja, R.; Koech, P.K.; Skilton, R.A.; Stomeo, F. Morphological, genetic and symbiotic characterization of root nodule bacteria isolated from Bambara groundnuts (Vigna subterranea L. Verdc) from soils of Lake Victoria basin, western Kenya. J. Appl. Biol. Biotechnol. 2015, 3, 1–10. [Google Scholar]
- Guimarães, A.A.; Jaramillo, P.M.D.; Nóbrega, R.S.A.; Florentino, L.A.; Silva, K.B.; de Moreira, F.M.S. Genetic and symbiotic diversity of nitrogen-fixing bacteria isolated from agricultural soils in the Western Amazon by using cowpea as the trap plant. Appl. Environ. Microbiol. 2012, 78, 6726–6733. [Google Scholar] [CrossRef] [PubMed]
- Bejarano, A.; Ramírez-Bahena, M.-H.; Velázquez, E.; Peix, A. Vigna unguiculata is nodulated in Spain by endosymbionts of Genisteae legumes and by a new symbiovar (vignae) of the genus Bradyrhizobium. Syst. Appl. Microbiol. 2014, 37, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.V.; de Meyer, S.E.; Simões-Araújo, J.L.; da Barbé, T.C.; Xavier, G.R.; O’Hara, G.; Ardley, J.K.; Rumjanek, N.G.; Willems, A.; Zilli, J.E. Bradyrhizobium manausense sp. nov., isolated from effective nodules of Vigna unguiculata grown in Brazilian Amazonian rainforest soils. Int. J. Syst. Evol. Microbiol. 2014, 64, 2358–2363. [Google Scholar] [CrossRef] [PubMed]
- Radl, V.; Simões-Araújo, J.L.; Leite, J.; Passos, S.R.; Martins, L.M.V.; Xavier, G.R.; Rumjanek, N.G.; Baldani, J.I.; Zilli, J.E. Microvirga vignae sp. nov., a root nodule symbiotic bacterium isolated from cowpea grown in semi-arid Brazil. Int. J. Syst. Evol. Microbiol. 2014, 64, 725–730. [Google Scholar] [CrossRef] [PubMed]
- Kanu, S.A.; Dakora, F.D. Symbiotic nitrogen contribution and biodiversity of root-nodule bacteria nodulating Psoralea species in the Cape Fynbos, South Africa. Soil Biol. Biochem. 2012, 54, 68–76. [Google Scholar] [CrossRef]
- Lorite, M.J.; Donate-Correa, J.; del Arco-Aguilar, M.; Galdona, R.P.; Sanjuán, J.; Léon-Barrios, M. Lotus endemic to the Canary Islands are nodulated by diverse and novel rhizobial species and symbiotypes. Syst. Appl. Microbiol. 2010, 33, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Jarvis, B.D.W.; van Berkum, P.; Chen, W.X.; Nour, S.M.; Fernandez, M.P.; Cleyet-Marel, J.C.; Gillis, M. Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. Int. J. Syst. Bacteriol. 1997, 47, 895–898. [Google Scholar] [CrossRef]
- Lorite, M.J.; Muñoz, S.; Olivares, J.; Soto, M.J.; Sanjuán, J. Characterization of strains unlike Mesorhizobium loti that nodulate Lotus spp. in saline soils of Granada, Spain. Appl. Environ. Microbiol. 2010, 76, 4019–4026. [Google Scholar] [CrossRef] [PubMed]
- Marcos-García, M.; Menéndez, E.; Cruz-González, X.; Velázquez, E.; Mateos, P.F.; Rivas, R. The high diversity of Lotus corniculatus endosymbionts in soils of northwest Spain. Symbiosis 2015, 67, 11–20. [Google Scholar] [CrossRef]
- Léon-Barrios, M.; Lorite, M.J.; Donate-Correa, J.; Sanjuán, J. Ensifer meliloti bv. lancerottense establishes nitrogen-fixing symbiosis with Lotus endemic to the Canary Islands and shows distinctive symbiotic genotypes and host range. Syst. Appl. Microbiol. 2009, 32, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Estrella, M.J.; Muñoz, S.; Soto, M.J.; Ruiz, O.; Sanjuán, J. Genetic diversity and host range of rhizobia nodulating Lotus tenuis in typical soils of the Salado River basin (Argentina). Appl. Environ. Microbiol. 2009, 75, 1088–1098. [Google Scholar] [CrossRef] [PubMed]
- Sannazzaro, A.I.; Bergottini, V.M.; Paz, R.C.; Castagno, L.N.; Menéndez, A.B.; Ruiz, O.A.; Pieckenstain, F.L.; Estrella, M.J. Comparative symbiotic performance of native rhizobia of the Flooding Pampa and strains currently used for inoculating Lotus tenuis in this region. Antonie van Leeuwenhoek 2011, 99, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Lorite, M.J.; Videira e Castro, I.; Muñoz, S.; Sanjuán, J. Phylogenetic relationship of Lotus uliginosus symbionts with bradyrhizobia nodulating genistoid legumes. FEMS Microbiol. Ecol. 2012, 79, 454–464. [Google Scholar] [CrossRef] [PubMed]
- Lindström, K. Rhizobium galegae, a new species of legume root nodule bacteria. Int. J. Syst. Bacteriol. 1989, 39, 365–367. [Google Scholar] [CrossRef]
- Franche, C.; Lindström, K.; Elmerich, C. Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil. 2009, 321, 35–59. [Google Scholar] [CrossRef]
- Wojciechowski, M.F.; Lavin, M.; Sanderson, M.J. A phylogeny of legumes (Leguminosae) based on analysis of the plastid MATK gene resolves many well-supported subclades within the family. Am. J. Bot. 2004, 91, 1846–1862. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, E.N.; Ruhlman, T.A.; Sabir, J.S.M.; Hajirah, N.H.; Alharbi, N.S.; Al-Malki, A.L.; Bailey, C.D.; Jansen, R.K. Plastid genome sequences of legumes reveal parallel inversions and multiple losses of rps16 in papilionoids. J. Syst. Evol. 2015, 53, 458–468. [Google Scholar] [CrossRef]
- Martínez-Romero, E. Diversity of Rhizobium-Phaseolus vulgaris symbiosis: Overview and perspectives. Plant Soil 2003, 252, 11–23. [Google Scholar] [CrossRef]
- Oren, A.; Garrity, G.M. List of new names and new combinations previously effectively, but not validly, published. Int. J. Syst. Evol. Microbiol. 2015, 65, 2017–2025. [Google Scholar] [CrossRef]
- Dobritsa, A.P.; Samadpour, M. Transfer of eleven Burkholderia species to the genus Paraburkholderia and proposal of Caballeronia gen. nov., a new genus to accommodate twelve species of Burkholderia and Paraburkholderia. Int. J. Syst. Evol. Microbiol. 2016, 66, 2836–2846. [Google Scholar] [CrossRef] [PubMed]
- Rogel, M.A.; Ormeño-Orrillo, E.; Martinez-Romero, E. Symbiovars in rhizobia reflect bacterial adaptation to legumes. Syst. Appl. Microbiol. 2011, 34, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Andrews, M.; Hodge, S.; Raven, J.A. Positive plant microbial interactions. Ann. Appl. Biol. 2010, 157, 317–321. [Google Scholar] [CrossRef]
- Fonseca, M.B.; Peix, A.; de Faria, S.M.; Mateos, P.F.; Rivera, L.P.; Simões-Araujo, J.L.; França, M.G.C.; dos Isaias, R.M.S.; Cruz, C.; Velázquez, E.; et al. Nodulation in Dimorphandra wilsonii Rizz. (Caesalpinioideae), a threatened species native to the Brazilian Cerrado. PLoS ONE 2012, 7, e49520. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Wang, R.; Lu, J.K.; Sui, X.H.; Wang, E.T.; Chen, W.X. Genetic diversity and evolution of Bradyrhizobium populations nodulating Erythrophleum fordii, an evergreen tree indigenous to the southern subtropical region of China. Appl. Environ. Microbiol. 2014, 80, 6184–6194. [Google Scholar] [CrossRef] [PubMed]
- Parker, M.A. Divergent Bradyrhizobium symbionts on Tachigali versicolor from Barro Colorado Island, Panama. Syst. Appl. Microbiol. 2000, 23, 585–590. [Google Scholar] [CrossRef]
- Diabate, M.; Munive, A.; de Faria, S.M.; Ba, A.; Dreyfus, B.; Galiana, A. Occurrence of nodulation in unexplored leguminous trees native to the West African tropical rainforest and inoculation response of native species useful in reforestation. New Phytol. 2005, 166, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Lafay, B.; Burdon, J.J. Molecular diversity of legume root-nodule bacteria in Kakadu National Park, Northern Territory, Australia. PLoS ONE 2007, 3, e277. [Google Scholar] [CrossRef] [PubMed]
- Michalk, D.L.; Zhi-Kai, H. Grassland improvement in subtropical Guangdong province, China. 1. Evaluation of pasture legumes. Trop. Grassl. 1994, 28, 129–138. [Google Scholar]
- Keller, K.R. Mutualistic rhizobia reduce plant diversity and alter community composition. Oecologia 2014, 176, 1101–1109. [Google Scholar] [CrossRef] [PubMed]
- Australian Centre for International Agricultural Research. Forages fact sheet. Available online: www.tropicalforages.info (accessed on 19 June 2016).
- Sullivan, J.T.; Ronson, C.W. Evolution of rhizobia by acquisition of a 500-kb symbiosis island that integrates into a phe-tRNA gene. Proc. Natl. Acad. Sci. USA 1998, 95, 5145–5149. [Google Scholar] [CrossRef] [PubMed]
- Saidi, S.; Ramírez-Bahena, M.H.; Santillana, N.; Zúñiga, D.; Álvarez-Martínez, E.R.; Peix, A.; Mhamdi, R.; Velázquez, E. Rhizobium laguerreae sp. nov. nodulates Vicia faba on several continents. Int. J. Syst. Evol. Microbiol. 2014, 64, 242–247. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.H.; Elliot, R.M.; Sullivan, J.T.; Ronson, C.W. Host-specific regulation of symbiotic nitrogen fixation in Rhizobium leguminosarum biovar trifolii. Microbiology 2007, 153, 3184–3195. [Google Scholar] [CrossRef] [PubMed]
- De Meyer, S.E.; Tan, H.W.; Heenan, P.B.; Andrews, M.; Willems, A. Mesorhizobium waimense sp. nov. isolated from Sophora longicarinata root nodules and Mesorhizobium cantuariense sp. nov. isolated from Sophora microphylla root nodules in New Zealand. Int. J. Syst. Evol. Microbiol. 2015, 65, 3419–3426. [Google Scholar] [CrossRef] [PubMed]
- De Meyer, S.E.; Tan, H.W.; Andrews, M.; Heenan, P.B.; Willems, A. Mesorhizobium calcicola sp. nov., Mesorhizobium waitakense sp. nov., Mesorhizobium sophorae sp. nov., Mesorhizobium newzealandense sp. nov. and Mesorhizobium kowhaii sp. nov. isolated from Sophora root nodules in New Zealand. Int. J. Syst. Evol. Microbiol. 2016, 66, 786–795. [Google Scholar] [CrossRef] [PubMed]
- Perret, X.; Staehelin, C.; Broughton, W.J. Molecular basis of symbiotic promiscuity. Microbiol. Mol. Bio. Rev. 2000, 64, 180–201. [Google Scholar] [CrossRef]
- Davis, E.O.; Evans, I.J.; Johnston, A.W. Identification of nodX, a gene that allows Rhizobium leguminosarum biovar viciae strain TOM to nodulate Afghanistan peas. Mol. Gen. Genet. 1988, 212, 531–535. [Google Scholar] [CrossRef] [PubMed]
- Firmin, J.L.; Wilson, K.E.; Carlson, R.W.; Davies, A.E.; Downie, J.A. Resistance to nodulation of cv. Afghanistan peas is overcome by nodX, which mediates an O-acetylation of the Rhizobium leguminosarum lipo-oligosaccharide nodulation factor. Mol. Microbiol. 1993, 10, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Geurts, R.; Heidstra, R.; Hadri, A.E.; Downie, J.A.; Franssen, H.; van Kammen, A.; Bisseling, T. Sym2 of pea is involved in a nodulation factor-perception mechanism that controls the infection process in the epidermis. Plant Physiol. 1997, 115, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Ehinger, M.; Mohr, T.J.; Starcevich, J.B.; Sachs, J.L.; Porter, S.S.; Simms, E.L. Specialisation-generalisation trade off in a Bradyrhizobium symbiosis with wild legume hosts. BMC Ecol. 2014, 14, 8. [Google Scholar] [CrossRef] [PubMed]
Mimosoideae Tribes and Genera | Rhizobia-Field |
---|---|
Ingeae | |
Acacia auriculiformis | Bradyrhizobium [40,41,42] |
Acacia mangium | Bradyrhizobium [40,41,43,44], Ochrobactrum [44], Rhizobium [44] |
Acacia mangium × A. auriculiformis | Bradyrhizobium [43] |
Acacia mearnsii | Ensifer [45,46] |
Acacia melanoxylon | Bradyrhizobium [47] |
Acacia saligna | Bradyrhizobium [42,48], Ensifer [49], Rhizobium [48] |
Acaciella angustissima | Ensifer [50,51] |
Calliandra calothyrsis | Ensifer [52], Rhizobium [52] |
Calliandra grandiflora | Ensifer [53], Mesorhizobium [53], Rhizobium [53] |
Faidherbia albida | Bradyrhizobium [54] |
Inga edulis | Bradyrhizobium [55] |
Inga laurina | Bradyrhizobium [56] |
Mariosousa acatlensis | Ensifer [57] |
Senegalia laeta | Ensifer [45] |
Senegalia macilenta | Ensifer [57], |
Senegalia senegal | Ensifer [45,46], Rhizobium [45,58], Mesorhizobium [58] |
Mimoseae | |
Anadenanthera peregrina | Burkholderia [59] |
Desmanthus illinoensis | Rhizobium [60] |
Desmanthus paspalaceus | Mesorhizobium [61], Rhizobium [61] |
Desmanthus virgatus | Rhizobium [43] |
Leucaena leucocephala | Ensifer [52,62,63], Mesorhizobium [52,62,63], Rhizobium [52,62,64] |
Microlobius foetidus | Bradyrhizobium [59], Rhizobium [59] |
~50 Mimosa spp. | Burkholderia [65,66,67,68,69,70,71,72,73,74,75,76,77] |
Mimosa affinis | Rhizobium [72] |
Mimosa albida, M. biuncifera, M.borealis, M. dysocarpa, M. polyantha, M. tricephala, Mimosa sp. | Ensifer [74], Rhizobium [74] |
Mimosa asperata | Cupriavidus [78] |
Mimosa benthamii, M. goldmanii, M. monancistra, M. robusta, M. tequilana | Rhizobium [74] |
Mimosa borealis, M. lacerata, M. luisana, M. similis | Ensifer [74] |
Mimosa ceratonia | Rhizobium [72] |
Mimosa cruenta, M. magentea, M. ramulosa, M. reptans, M. schleidenii | Cupriavidus [79] |
Mimosa diplotricha | Burkholderia [74], Cupriavidus [65,75,76], Rhizobium [65,72] |
Mimosa hamata, M. himalayana | Ensifer [77] |
Mimosa invisa | Rhizobium [70] |
Mimosa pigra | Burkholderia [68], Cupriavidus [67,69] |
Mimosa polyantha | Rhizobium [74] |
Mimosa pudica | Bradyrhizobium [70], Burkholderia [74], Cupriavidus [65,69,72,75,76,77], Rhizobium [69,70] |
Mimosa skinneri | Burkholderia [74], Rhizobium [74] |
Mimosa strigillosa | Ensifer [78] |
Neptunia natans | Allorhizobium [80], Devosia [81] |
Parapiptadenia pterosperma | Burkholderia [59] |
Parapiptadenia rigida | Burkholderia [59], Cupriavidus [82], Rhizobium [59] |
Piptadenia adiantoides, P. flava | Rhizobium [59] |
Piptadenia gonoacantha, P. paniculata | Burkholderia [59], Rhizobium [59] |
Piptadenia stipulacea, P. trisperma, P. vividiflora | Burkholderia [59] |
Prosopis alba | Bradyrhizobium [83], Ensifer [83,84], Mesorhizobium [83,85], Rhizobium [84] |
Prosopis chilensis | Ensifer [46,86] |
Prosopis cineraria | Ensifer [87] |
Prosopis farcta | Ensifer [88], Mesorhizobium [88] |
Prosopis juliflora | Ensifer [35], Rhizobium [35] |
Pseudopiptadenia contorta | Burkholderia [59] |
Stryphnodendron sp. | Bradyrhizobium [59] |
Vachellia abyssinica | Mesorhizobium [89], Ensifer [90] |
Vachellia cochliacantha, V. farnesiana, V. pennatula | Ensifer [57] |
Vachellia gummifera | Ensifer [49] |
Vachellia horrida | Ensifer [45,49] |
Vachellia jacquemontii | Ensifer [87,91] |
Vachellia macracantha | Ensifer [92], Rhizobium [92] |
Vachellia nubica | Bradyrhizobium [54] |
Vachellia seyal | Rhizobium [45], Ensifer [90] |
Vachellia tortilis | Ensifer [45,49,90,93], Mesorhizobium [45,54,89,93], Rhizobium [93] |
Vachellia xanthophloea | Mesorhizobium [54] |
Xylia xylocarpa | Bradyrhizobium [40,43] |
Papilionoidieae Tribes and Genera | Rhizobia-Field |
---|---|
Cicereae | |
Cicer arietinum | Mesorhizobium [94,95,96,97,98,99,100,101] |
Cicer canariense | Mesorhizobium [102] |
Fabeae | |
Lathyrus aphaca, L. nissolia, L. pratensis | Rhizobium [103] |
Lathyrus japonicus | Rhizobium [104] |
Lathyrus odoratus | Rhizobium [105] |
Lens culinaris | Rhizobium [101,106,107] |
Pisum sativum | Rhizobium [101,103,107,108] |
Vicia amoena, V. bungei, V. villosa | Rhizobium [109] |
Vicia cracca | Rhizobium [103,109,110] |
Vicia hirsuta | Rhizobium [103,105,110] |
Vicia faba | Rhizobium [101,103,108,109,111,112,113,114] |
Vicia multicaulis, V. sylvatica, V. tetrasperma | Rhizobium [110] |
Vicia sativa | Rhizobium [103,109,115,116,117,118] |
Vicia sepium | Rhizobium [109,110] |
Galega | |
Galega officinalis | Neorhizobium [119,120] |
Galega orientalis | Neorhizobium [119] |
Galegeae | |
Astragalus adsurgense | Ensifer [121], Mesorhizobium [121], Rhizobium [122] |
Astragalus aksuensis, A. betetovii | Rhizobium [105] |
Astragalus complanatus | Ensifer [121], Mesorhizobium [121], Rhizobium [122] |
Astragalus chrysopterus | Rhizobium [122] |
Astragalus discolor, A. efoliolatus, A. kifonsanicus | Mesorhizobium [121] |
Astragalus melilotoides | Ensifer [121], Mesorhizobium [121] |
Astragalus membranaceus | Mesorhizobium [121,123,124] |
Astragalus mongholicus | Mesorhizobium [124] |
Astragalus polycladus | Rhizobium [121] |
Astragalus scaberrimus | Mesorhizobium [121], Rhizobium [122] |
Biserrula pelecinus | Mesorhizobium [125,126] |
Carmichaelia australis, C. monroi, | Mesorhizobium [127] |
Clianthus puniceus | Mesorhizobium [127] |
Colutea arborescens | Ensifer [128], Mesorhizobium [128,129], Rhizobium [128] |
Glycyrrhiza eurycarpa | Ensifer [130] |
Glycyrrhiza glabra | Mesorhizobium [130,131], Rhizobium [130] |
Glycyrrhiza inflata | Ensifer [130] |
Glycyrrhiza multiflora | Mesorhizobium [132] |
Glycyrrhiza pallidiflora | Mesorhizobium [133] |
Glycyrrhiza uralensis | Mesorhizobium [130,132], Rhizobium [130] |
Glycyrrhiza sp. | Mesorhizobium [130] |
Gueldenstaedtia multiflora | Mesorhizobium [132], Rhizobium [132,134] |
Lessertia annulans, L. capitata, L. diffusa, L. excisa, L. frutescens, L. herbacea, L. microphylla, L. pauciflora | Mesorhizobium [135] |
Lessertia sp. | Ensifer [136] |
Montigena novae-zelandiae | Mesorhizobium [137] |
Oxytropis glabra | Ensifer [109], Mesorhizobium [138], Rhizobium [105,109] |
Oxytropis kansuenses, O. myriophylla, O. psammocharis | Rhizobium [109] |
Oxytropis meinshausenii | Rhizobium [105] |
Oxytropis ochrocephala | Mesorhizobium [109], Rhizobium [109] |
Oxytropis sp. | Phyllobacterium [109] |
Sphaerophysa salsula | Ensifer [139], Mesorhizobium [139], Rhizobium [139,140] |
Swainsona leeana, S. pterostylis | Ensifer [141] |
Swainsona galegifolia | Mesorhizobium [137] |
Hedysareae | |
Alhagi sparsifolia | Mesorhizobium [142] |
Alhagi toum | Rhizobium [105] |
Caragana bicolor, C. erinacea | Mesorhizobium, Rhizobium [143] |
Caragana franchetiana | Mesorhizobium, [143] |
Caragana intermedia | Bradyrhizobium [143], Mesorhizobium [132,143], Rhizobium [143] |
Caragana jubata | Rhizobium [105] |
Caragana microphylla | Mesorhizobium [144] |
Halimodendron halodendron | Rhizobium [105] |
Hedysarum coronarium | Rhizobium [120,145] |
Hedysarum polybotrys | Rhizobium [122], Mesorhizobium [124] |
Hedysarum scoparium | Rhizobium [122] |
Hedysarum spinosissimum | Ensifer [118] |
Onobrychis viciifolia | Phyllobacterium [146] |
Trifolieae | |
Medicago archiducis-nicolai | Rhizobium [109] |
Medicago intertexta | Ensifer [147] |
Medicago laciniata | Ensifer [147,148,149,150], Neorhizobium [147] |
Medicago lupulina | Ensifer [109,151] |
Medicago orbicularis | Ensifer [152] |
Medicago polymorpha | Ensifer [147], Neorhizobium [147] |
Medicago rigiduloides | Ensifer [153] |
Medicago ruthenica | Rhizobium [154] |
Medicago sativa | Ensifer [109,150,155,156,157,158], Neorhizobium [147], Rhizobium [156] |
Medicago scutellata | Ensifer [150] |
Medicago truncatula | Ensifer [149,150,152] |
Melilotus alba | Ensifer [156], Rhizobium [156] |
Melilotus indicus, M. messanensis, M. siculus | Ensifer [147] |
Melilotus officinalis | Ensifer [109,151] |
Trigonella maritima | Ensifer [118,147] |
Trifolium | |
Trifolium fragiferum | Bradyrhizobium [70], Mesorhizobium [70], Rhizobium [70] |
Trifolium pratense | Phyllobacterium [159], |
Trifolium repens | Bradyrhizobium [70], Ensifer [70], Rhizobium [70,160] |
Papilionoideae Tribes (Genera) | Rhizobia-Field |
---|---|
Abreae | |
Abrus precatorius | Ensifer [161] |
Amorpheae | |
Amorpha fruticosa | Bradyrhizobium [162], Mesorhizobium [132,151,162] |
Dalea purpurea | Mesorhizobium [163], Rhizobium [163] |
Crotalarieae | |
Aspalathus callosa | Burkholderia [136] |
Aspalathus ciliaris, A. unifllora | Mesorhizobium [136] |
Aspalathus linearis | Bradyrhizobium [36], Burkholderia [36], Mesorhizobium [36], Rhizobium [36] |
Crotalaria comosa, C. hyssopifolia, C. lathyroides | Bradyrhizobium [164] |
Crotalaria pallida | Bradyrhizobium [70], Burkholderia [70], Rhizobium [70] |
Crotalaria perrotteti, C. podocarpa | Methylobacterium [164] |
Crotalaria sp. | Burkholderia [136] |
Lebeckia ambigua | Burkholderia [165] |
Listia angolensis | Microvirga [166] |
Listia bainesii, L. solitudinis, L. listii | Methylobacterium [16] |
Lotononis laxa, L. sparsifolia | Ensifer [17] |
Lotononis sp. | Bradyrhizobium, Mesorhizobium [17] |
Rafnia sp. | Burkholderia [136] |
Genisteae | |
Adenocarpus hispanicus | Phyllobacterium [129] |
Argyrolobium uniflorum | Ensifer [150,157] |
Argyrolobium sp. | Mesorhizobium [136] |
Cytisus aeolicus | Bradyrhizobium [167] |
Cytisus balansae, C. multiflorus, C. striatus | Bradyrhizobium [168] |
Cytisus laburnum, C. purgans | Bradyrhizobium [129] |
Cytisus proliferus | Bradyrhizobium [169,170,171,172] |
Cytisus scoparius | Bradyrhizobium [173,174] |
Cytisus villosus | Bradyrhizobium [175] |
Genista hystrix | Bradyrhizobium [168] |
Genista stenopetula | Bradyrhizobium [170] |
Genista versicolor | Bradyrhizobium [176] |
Lupinus albescens | Bradyrhizobium [177,178] |
Lupinus albus | Bradyrhizobium [172,179,180] |
Lupinus angustifolius | Bradyrhizobium [172,180] |
Lupinus honoratus | Ochrobactrum [181] |
Lupinus luteus | Bradyrhizobium [172,180] |
Lupinus mariae-josephae | Bradyrhizobium [182,183] |
Lupinus montanus | Bradyrhizobium [170] |
Lupinus micranthus | Bradyrhizobium [184] |
Lupinus polyphyllus | Bradyrhizobium [170,185] |
Lupinus texensis | Microvirga [166] |
Lupinus sp. | Bradyrhizobium [172] |
Retama monosperma | Bradyrhizobium [186] |
Retama raetam | Bradyrhizobium [187] |
Retama sphaerocarpa | Bradyrhizobium [168,186,187,188], Phyllobacterium [129] |
Spartium junceum | Bradyrhizobium [129,167,189], Phyllobacterium [129] |
Ulex europaeus | Bradyrhizobium [190] |
Hypocalypteae | |
Hypocalyptus coluteoides, H. oxalidifolius, H. sophoroides | Burkholderia [191] |
Indigofereae | |
Indigofera angustifolia | Burkholderia [136] |
Indigofera astragalina, I. hirsuta, I. senegalensis, I. tinctoria | Bradyrhizobium [192] |
Indigofera filifolia | Burkholderia [193] |
Loteae | |
Coronilla varia | Mesorhizobium [194], Rhizobium [132,134,194] |
Ornithopus compressus, O. sativus | Bradyrhizobium [195] |
Millettieae | |
Milletia leucantha | Bradyrhizobium [40] |
Millettia pinnata | Rhizobium [196] |
Tephrosia capensis | Bradyrhizobium [136] |
Tephrosia falciformis | Bradyrhizobium [87], Ensifer [87] |
Tephrosia purpurea | Bradyrhizobium [192], Ensifer [87], Rhizobium [87] |
Tephrosia villosa | Bradyrhizobium [87,192], Ensifer [87] |
Tephrosia wallichii | Ensifer [86] |
Podalyrieae | |
Cyclopia buxifolia, C. genistoides, C. glabra, C. intemedia, C. longifolia, C. maculata, C. meyeriana, C. pubescens, C. sessiflora, C. subternata | Burkholderia [191] |
Podalyria burchelli, P. sericea | Burkholderia [136] |
Podalyria calyptrata | Burkholderia [136,191,193,197] |
Podalyria pinnata | Burkholderia [193] |
Virgilia divaricata | Rhizobium [136] |
Virgilia oroboides | Burkholderia [136,191] |
Robineae | |
Gliricidia sepium | Ensifer [52], Rhizobium [52] |
Robinia pseudocacia | Mesorhizobium [198,199], Rhizobium [105,198] |
Sesbanieae | |
Sesbania aculeata, S. grandiflora, S. pachycarpa, Sesbania sp. | Ensifer [45] |
Sesbania cannabina | Ensifer [45,200,201,202], Neorhizobium [202], Rhizobium [200,202] |
Sesbania exasperata | Rhizobium [30] |
Sesbania herbacea | Rhizobium [203] |
Sesbania punicea | Azorhizobium [136,204], Mesorhizobium [30], Rhizobium [204] |
Sesbania rostrata | Azorhizobium [205,206], Bradyrhizobium [43], Ensifer [45,161], Rhizobium [43] |
Sesbania sericea | Mesorhizobium [30], Rhizobium [30] |
Sesbania sesban | Ensifer [45,52,90], Mesorhizobium [52,54,89], Rhizobium [52,54] |
Sesbania virgata | Azorhizobium [206], Rhizobium [204] |
Sophoreae | |
Sophora alopecuroides | Ensifer [207], Mesorhizobium [207], Phyllobacterium [207], Rhizobium [105,207] |
Sophora flavescens | Bradyrhizobium [208], Ensifer [208], Mesorhizobium [208], Phyllobacterium [209], Rhizobium [208] |
Sophora longicarinata, S. microphylla, S. prostrata, S. tetraptera | Mesorhizobium [210] |
Sophora viciifolia | Mesorhizobium [132] |
Thermopsideae | |
Ammopiptanthus nanus, A. mongolicus | Ensifer [211], Neorhizobium [211], Pararhizobium [211], Rhizobium [211] |
Anagyris latifolia | Mesorhizobium [212] |
Thermopsis lupinoides | Mesorhizobium [213] |
Papilionoideae Tribes and Genera | Rhizobia-Field |
---|---|
Dalbergieae | |
Adesmia bicolor | Rhizobium [214] |
Aeschynomene afraspera, A. ciliata, A. elaphroxylon, A. scabra, A. sensitiva, A. shimperi | Bradyrhizobium [34] |
Aeschynomene americana | Bradyrhizobium [34,215] |
Aeschynomene indica | Bradyrhizobium [34,216] |
Aeschynomene rudis | Bradyrhizobium [34,217] |
Arachis duranensis | Bradyrhizobium [218] |
Arachis hypogaea | Bradyrhizobium [43,219,220,221,222,223,224,225,226,227,228,229], Rhizobium [221,222] |
Centrolobium paraense | Bradyrhizobium [230,231] |
Dalbergia baroni, D. louveli, D. madagascariensis, D. maritima, D. monticola, D. purpurascens, Dalbergia sp. | Bradyrhizobium [232] |
Pterocarpus officinalis | Bradyrhizobium [233] |
Pterocarpus indicus | Bradyrhizobium [40,43] |
Zornia glochidiata | Bradyrhizobium [234] |
Desmodieae | |
Desmodium caudatum, D. fallax, D. triflorum | Bradyrhizobium [235] |
Desmodium elegans | Bradyrhizobium [235,236], Pararhizobium [236] |
Desmodium gangeticum | Bradyrhizobium [235,237] |
Desmodium heterocarpan | Bradyrhizobium [235,237] |
Desmodium microphyllum | Bradyrhizobium [235], Mesorhizobium [235], Rhizobium [235] |
Desmodium oldhami | Rhizobium [236] |
Desmodium racemosum | Bradyrhizobium [235], Ensifer [235], Rhizobium [235] |
Desmodium sequax | Bradyrhizobium [235], Ensifer [235], Mesorhizobium [236], Pararhizobium [236], Rhizobium [235,236] |
Desmodium sinuatum | Rhizobium [238] |
Kummerowia stipulacea | Bradyrhizobium [151,239], Rhizobium [239] |
Kummerowia striata | Bradyrhizobium [239], Ensifer [239], Rhizobium [239] |
Lespedeza bicolor | Bradyrhizobium [240], Ensifer [240], Mesorhizobium [151] Rhizobium [240] |
Lespedeza capitata, L. cuneata, L. juncea, L. procumbens, L. stipulacea, L. striata | Bradyrhizobium [240] |
Lespedeza cystobotrya | Ensifer [240], Rhizobium [122] |
Lespedeza daurica | Bradyrhizobium [240], Ensifer [240], Mesorhizobium [240] |
Lespedeza davidii | Rhizobium [122] |
Lespedeza inschanica, L. tomentosa | Ensifer [240] |
Phaseoleae | |
Amphicarpaea bracteata, A. edgeworthii | Bradyrhizobium [241] |
Amphicarpaea trisperma | Rhizobium [132] |
Bolusafra bituminosa | Burkholderia [136] |
Cajanus cajan | Bradyrhizobium [242] |
Canavalia rosea | Ensifer [243] |
Centrosema pascuorum | Bradyrhizobium [43] |
Centrosema pubescens | Bradyrhizobium [42] |
Dipogon lignosus | Burkholderia [15,193] |
Glycine max | Bradyrhizobium [43,151,244,245,246,247,248,249,250,251], Ensifer [245,246,247,252,253], Rhizobium [254] |
Glycine soja | Bradyrhizobium [151,255], Ensifer [255], Rhizobium [256] |
Lablab purpureus | Bradyrhizobium [224,226,227] |
Neonotonia wightii | Bradyrhizobium [237] |
Pachyrhizus erosus | Bradyrhizobium [257,258,259], Rhizobium [257] |
Pachyrhizus ferrugineus, P. tuberosus | Bradyrhizobium [258] |
Phaseolus lunatus | Bradyrhizobium [260,261,262], Rhizobium [262] |
Phaseolus vulgaris | Bradyrhizobium [260,263], Burkholderia [264,265], Ensifer [263,266,267,268], Pararhizobium [263], Rhizobium [64,101,151,227,263,266,267,268,269,270,271,272,273,274,275] |
Pueraria phaseoloides | Bradyrhizobium [276] |
Rhynchosia aurea | Ensifer [87] |
Rhynchosia ferulifolia | Burkholderia [277,278] |
Rhynchosia minima | Bradyrhizobium [192,277] |
Rhynchosia totta | Bradyrhizobium [277] |
Vigna angularis | Bradyrhizobium [279], Ensifer [279], Rhizobium [279] |
Vigna radiata | Bradyrhizobium [280,281], Ensifer [280], Rhizobium [280] |
Vigna sinensis | Bradyrhizobium [43] |
Vigna subterranea | Bradyrhizobium [227,282], Burkholderia [282], Rhizobium [282] |
Vigna unguiculata | Bradyrhizobium [223,227,280,283,284,285], Burkholderia [283], Microvirga [286], Rhizobium [280,283] |
Psoraleae | |
Otholobium bracteolatum, O. hirtum, O. virgatum, O. zeyhari, Otholobium sp. | Mesorhizobium [136] |
Psoralea asarina | Burkholderia [286] |
Psoralea corylifolia | Ensifer [201] |
Psoralea pinnata | Bradyrhizobium [193], Burkholderia [287], Mesorhizobium [136,193,287] |
Loteae | |
Lotus arabicus, L. arinagensis | Ensifer [157] |
Lotus bertheloti, L. callis-viridis, L. campylocladus, L. pyranthus | Mesorhizobium [288] |
Lotus corniculatus | Mesorhizobium [39,288,289,290,291] |
Lotus creticus | Ensifer [118,157], Mesorhizobium [118,157], Rhizobium [118,157] |
Lotus frondosus | Mesorhizobium [138], Rhizobium [105] |
Lotus halophyllus | Ensifer [118] |
Lotus kunkeli, L. lancerottensis, L. maculatus | Ensifer [292] |
Lotus sessilifolius | Ensifer [292], Mesorhizobium [288] |
Lotus tenuis | Mesorhizobium [291,293,294], Rhizobium [105,293] |
Lotus uliginosus | Bradyrhizobium [295] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrews, M.; Andrews, M.E. Specificity in Legume-Rhizobia Symbioses. Int. J. Mol. Sci. 2017, 18, 705. https://doi.org/10.3390/ijms18040705
Andrews M, Andrews ME. Specificity in Legume-Rhizobia Symbioses. International Journal of Molecular Sciences. 2017; 18(4):705. https://doi.org/10.3390/ijms18040705
Chicago/Turabian StyleAndrews, Mitchell, and Morag E. Andrews. 2017. "Specificity in Legume-Rhizobia Symbioses" International Journal of Molecular Sciences 18, no. 4: 705. https://doi.org/10.3390/ijms18040705
APA StyleAndrews, M., & Andrews, M. E. (2017). Specificity in Legume-Rhizobia Symbioses. International Journal of Molecular Sciences, 18(4), 705. https://doi.org/10.3390/ijms18040705