Aged Lymphatic Vessels and Mast Cells in Perilymphatic Tissues
Abstract
:1. Introduction
2. Aging-Induced Alterations of Lymphatic Muscle Cell Investiture and Their Potential Consequences for Lymphatic Vessel Function
3. Aging-Induced Alterations of the Lymphatic Vessel Ultrastructure, Proteome Composition and Concomitant Increase in the Permeability of Aged Lymphatic Vessels
4. Aging-Associated Alterations in Lymphatic Contractility and Lymph Flow
5. Aging Alters the Functional Status of Activated Mast Cells in Perilymphatic Tissues
6. Aging Alters the Mast Cell-Directed Recruitment of Major Histocompatibility Complex (MHC) Class II Positive Cells and Eosinophils towards Mesenteric Lymphatic Vessels
7. Aging-Associated Oxidative Stress in Perilymphatic Tissues
8. Aging Compromises the Mast Cell/Histamine/NF-κB-Mediated Reactions of Perilymphatic Mesenteric Tissues to Acute Inflammation
9. Conclusions
Acknowledgments
Conflicts of Interest
Abbreviations
MLVs | Mesenteric lymphatic vessels |
TD | Thoracic duct |
MCs | Mast cells |
NO | Nitric oxide |
NOS | Nitric oxide synthase |
MHC | Major histocompatibility complex |
NF-κB | Nuclear factor-κB |
SOD | Superoxide dismutase |
References
- Zawieja, D. Lymphatic biology and the microcirculation: Past, present and future. Microcirculation 2005, 12, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Gashev, A.A. Lymphatic vessels: Pressure-and flow-dependent regulatory reactions. Ann. N. Y. Acad. Sci. 2008, 1131, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Gashev, A.A. Basic mechanisms controlling lymph transport in the mesenteric lymphatic net. Ann. N. Y. Acad. Sci. 2010, 1207 (Suppl. S1), E16–E20. [Google Scholar] [CrossRef] [PubMed]
- Gashev, A.A.; Zawieja, D.C. Hydrodynamic regulation of lymphatic transport and the impact of aging. Pathophysiology 2010, 17, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Scallan, J.P.; Huxley, V.H. In vivo determination of collecting lymphatic vessel permeability to albumin: A role for lymphatics in exchange. J. Physiol. 2010, 588, 243–254. [Google Scholar] [CrossRef] [PubMed]
- Gashev, A.A.; Chatterjee, V. Aged lymphatic contractility: Recent answers and new questions. Lymphat. Res. Biol. 2013, 11, 2–13. [Google Scholar] [CrossRef] [PubMed]
- Cromer, W.E.; Zawieja, S.; Stagg, H.; Hunter, F.; Tharakan, B.; Meininger, C.J.; Childs, E.W.; Zawieja, D.C. Increased lymphatic permeability during shock and burn trauma alters antigen presenting cell recruitment to mesenteric lymph vessels. FASEB J. 2014, 26, 677.11. [Google Scholar]
- Hunter, M.C.; Teijeira, A.; Halin, C. T cell trafficking through lymphatic vessels. Front Immun. 2016, 7, 613. [Google Scholar] [CrossRef] [PubMed]
- Orlov, R.S.; Borisov, A.V.; Borisova, R.P. Lymphatic Vessels. Structure and Mechanisms of Contractile Activity; Nauka: Leningrad, USSR, 1983; p. 253. (In Russian) [Google Scholar]
- Bulekbaeva, L.E. The volume rate of lymph flow in dogs in postnatal ontogeny. Zh Evol Biokhim Fiziol 1988, 24, 599–600. (In Russian) [Google Scholar] [PubMed]
- Hollander, D.; Dadufalza, V. Influence of aging on vitamin a transport into the lymphatic circulation. Exp. Gerontol. 1990, 25, 61–65. [Google Scholar] [CrossRef]
- Chevalier, S.; Ferland, G.; Tuchweber, B. Lymphatic absorption of retinol in young, mature, and old rats: Influence of dietary restriction. FASEB J. 1996, 10, 1085–1090. [Google Scholar] [PubMed]
- Bridenbaugh, E.A.; Nizamutdinova, I.T.; Jupiter, D.; Nagai, T.; Thangaswamy, S.; Chatterjee, V.; Gashev, A.A. Lymphatic muscle cells in rat mesenteric lymphatic vessels of various ages. Lymphat. Res. Biol. 2013, 11, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Bohlen, H.G.; Gasheva, O.Y.; Zawieja, D.C. Nitric oxide formation by lymphatic bulb and valves is a major regulatory component of lymphatic pumping. Am. J. Physiol. Heart Circ. Physiol. 2011, 301, H1897–H1906. [Google Scholar] [CrossRef] [PubMed]
- Davis, M.J.; Rahbar, E.; Gashev, A.A.; Zawieja, D.C.; Moore, J.E., Jr. Determinants of valve gating in collecting lymphatic vessels from rat mesentery. Am. J. Physiol. Heart Circ. Physiol. 2011, 301, H48–H60. [Google Scholar] [CrossRef] [PubMed]
- Gashev, A.A. The mechanism of the formation of a reverse fluid filling in the lymphangions. Fiziol Zh SSSR Im I M Sechenova 1991, 77, 63–69. (In Russian) [Google Scholar] [PubMed]
- Zolla, V.; Nizamutdinova, I.T.; Scharf, B.; Clement, C.C.; Maejima, D.; Akl, T.; Nagai, T.; Luciani, P.; Leroux, J.C.; Halin, C.; et al. Aging-related anatomical and biochemical changes in lymphatic collectors impair lymph transport, fluid homeostasis, and pathogen clearance. Aging Cell 2015, 14, 582–594. [Google Scholar] [CrossRef] [PubMed]
- Gasheva, O.Y.; Knippa, K.; Nepiushchikh, Z.V.; Muthuchamy, M.; Gashev, A.A. Age-related alterations of active pumping mechanisms in rat thoracic duct. Microcirculation 2007, 14, 827–839. [Google Scholar] [CrossRef] [PubMed]
- Gashev, A.A.; Davis, M.J.; Delp, M.D.; Zawieja, D.C. Regional variations of contractile activity in isolated rat lymphatics. Microcirculation 2004, 11, 477–492. [Google Scholar] [CrossRef] [PubMed]
- Nagai, T.; Bridenbaugh, E.A.; Gashev, A.A. Aging-associated alterations in contractility of rat mesenteric lymphatic vessels. Microcirculation 2011, 18, 463–473. [Google Scholar] [CrossRef] [PubMed]
- Nizamutdinova, I.T.; Maejima, D.; Nagai, T.; Meininger, C.J.; Gashev, A.A. Histamine as an endothelium-derived relaxing factor in aged mesenteric lymphatic vessels. Lymphat. Res. Biol. 2017, in press. [Google Scholar] [CrossRef] [PubMed]
- Nizamutdinova, I.T.; Maejima, D.; Nagai, T.; Bridenbaugh, E.; Thangaswamy, S.; Chatterjee, V.; Meininger, C.J.; Gashev, A.A. Involvement of histamine in endothelium-dependent relaxation of mesenteric lymphatic vessels. Microcirculation 2014, 21, 640–648. [Google Scholar] [CrossRef] [PubMed]
- Akl, T.J.; Nagai, T.; Cote, G.L.; Gashev, A.A. Mesenteric lymph flow in adult and aged rats. Am. J. Physiol. Heart Circ. Physiol. 2011, 301, H1828–H1840. [Google Scholar] [CrossRef] [PubMed]
- Nizamutdinova, I.T.; Dusio, G.F.; Gasheva, O.Y.; Skoog, H.; Tobin, R.; Peddaboina, C.; Meininger, C.J.; Zawieja, D.C.; Newell-Rogers, M.K.; Gashev, A.A. Mast cells and histamine are triggering the NF-κB-mediated reactions of adult and aged perilymphatic mesenteric tissues to acute inflammation. Aging 2016, 8, 3065–3090. [Google Scholar] [CrossRef] [PubMed]
- Karaman, S.; Buschle, D.; Luciani, P.; Leroux, J.C.; Detmar, M.; Proulx, S.T. Decline of lymphatic vessel density and function in murine skin during aging. Angiogenesis 2015, 18, 489–498. [Google Scholar] [CrossRef] [PubMed]
- Abraham, S.N.; St John, A.L. Mast cell-orchestrated immunity to pathogens. Nat. Rev. Immunol. 2010, 10, 440–452. [Google Scholar] [CrossRef] [PubMed]
- Amin, K. The role of mast cells in allergic inflammation. Respir. Med. 2012, 106, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Hong, G.U.; Kim, N.G.; Kim, T.J.; Ro, J.Y. Cd1d expressed in mast cell surface enhances ige production in B cells by up-regulating CD40l expression and mediator release in allergic asthma in mice. Cell. Signal. 2014, 26, 1105–1117. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, V.; Gashev, A.A. Aging-associated shifts in functional status of mast cells located by adult and aged mesenteric lymphatic vessels. Am. J. Physiol. Heart Circ. Physiol. 2012, 303, H693–H702. [Google Scholar] [CrossRef] [PubMed]
- Grutzkau, A.; Kruger-Krasagakes, S.; Baumeister, H.; Schwarz, C.; Kogel, H.; Welker, P.; Lippert, U.; Henz, B.M.; Moller, A. Synthesis, storage, and release of vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) by human mast cells: Implications for the biological significance of VEGF206. Mol. Biol. Cell 1998, 9, 875–884. [Google Scholar] [CrossRef] [PubMed]
- Boesiger, J.; Tsai, M.; Maurer, M.; Yamaguchi, M.; Brown, L.F.; Claffey, K.P.; Dvorak, H.F.; Galli, S.J. Mast cells can secrete vascular permeability factor/vascular endothelial cell growth factor and exhibit enhanced release after immunoglobulin E-dependent upregulation of Fcε receptor i expression. J. Exp. Med. 1998, 188, 1135–1145. [Google Scholar] [CrossRef] [PubMed]
- Malaviya, R.; Abraham, S.N. Mast cell modulation of immune responses to bacteria. Immunol. Rev. 2001, 179, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Malaviya, R.; Georges, A. Regulation of mast cell-mediated innate immunity during early response to bacterial infection. Clin. Rev. Allergy Immunol. 2002, 22, 189–204. [Google Scholar] [CrossRef]
- Galli, S.J.; Nakae, S.; Tsai, M. Mast cells in the development of adaptive immune responses. Nat. Immunol. 2005, 6, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Detoraki, A.; Staiano, R.I.; Granata, F.; Giannattasio, G.; Prevete, N.; de Paulis, A.; Ribatti, D.; Genovese, A.; Triggiani, M.; Marone, G. Vascular endothelial growth factors synthesized by human lung mast cells exert angiogenic effects. J. Allergy Clin. Immunol. 2009, 123, 1142.e5–1149.e5. [Google Scholar] [CrossRef] [PubMed]
- Lundequist, A.; Pejler, G. Biological implications of preformed mast cell mediators. Cell. Mol. Life Sci. 2011, 68, 965–975. [Google Scholar] [CrossRef] [PubMed]
- Harvima, I.T.; Nilsson, G. Mast cells as regulators of skin inflammation and immunity. Acta Derm Vener. 2011, 91, 644–650. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, L.B. Mediators of human mast cells and human mast cell subsets. Ann Allergy 1987, 58, 226–235. [Google Scholar] [PubMed]
- Theoharides, T.C.; Kempuraj, D.; Tagen, M.; Conti, P.; Kalogeromitros, D. Differential release of mast cell mediators and the pathogenesis of inflammation. Immunol. Rev. 2007, 217, 65–78. [Google Scholar] [CrossRef] [PubMed]
- Ohhashi, T.; Kawai, Y.; Azuma, T. The response of lymphatic smooth muscles to vasoactive substances. Pflug. Arch. 1978, 375, 183–188. [Google Scholar] [CrossRef]
- Johnston, M.G.; Kanalec, A.; Gordon, J.L. Effects of arachidonic acid and its cyclo-oxygenase and lipoxygenase products on lymphatic vessel contractility in vitro. Prostaglandins 1983, 25, 85–98. [Google Scholar] [CrossRef]
- Unthank, J.L.; Hogan, R.D. The effect of vasoactive agents on the contractions of the initial lymphatics of the bat's wing. Blood Vessel. 1987, 24, 31–44. [Google Scholar]
- Dobbins, D.E.; Buehn, M.J.; Dabney, J.M. Constriction of perfused lymphatics by acetylcholine, bradykinin and histamine. Microcirc. Endo Lymphat. 1990, 6, 409–425. [Google Scholar]
- Fox, J.L.R.; von der Weid, P.-Y. Effects of histamine on the contractile and electrical activity in isolated lymphatic vessels of the guinea-pig mesentery. Br. J. Pharm. 2002, 136, 1210–1218. [Google Scholar] [CrossRef] [PubMed]
- Plaku, K.J.; von der Weid, P.Y. Mast cell degranulation alters lymphatic contractile activity through action of histamine. Microcirculation 2006, 13, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Petunov, S.G.; Egorova, A.A.; Orlov, R.S.; Nikitina, E.R. Effect of histamine on spontaneous contractions of mesenteric lymphatic vessels and lymph nodes of white rats: Endothelium-dependent responses. Dokl. Biol. Sci. 2010, 432, 176–180. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, V.; Gashev, A.A. Mast cell-directed recruitment of mhc class ii positive cells and eosinophils towards mesenteric lymphatic vessels in adulthood and elderly. Lymphat. Res. Biol. 2014, 12, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Beckman, K.B.; Ames, B.N. The free radical theory of aging matures. Physiol. Rev. 1998, 78, 547–581. [Google Scholar] [PubMed]
- Mayhan, W.G. Superoxide dismutase partially restores impaired dilatation of the basilar artery during diabetes mellitus. Brain Res. 1997, 760, 204–209. [Google Scholar] [CrossRef]
- Didion, S.P.; Hathaway, C.A.; Faraci, F.M. Superoxide levels and function of cerebral blood vessels after inhibition of CuZn-SOD. Am. J. Physiol. Heart Circ. Physiol. 2001, 281, H1697–H1703. [Google Scholar] [PubMed]
- Didion, S.P.; Ryan, M.J.; Didion, L.A.; Fegan, P.E.; Sigmund, C.D.; Faraci, F.M. Increased superoxide and vascular dysfunction in CuZnSOD-deficient mice. Circ. Res. 2002, 91, 938–944. [Google Scholar] [CrossRef] [PubMed]
- Didion, S.P.; Ryan, M.J.; Baumbach, G.L.; Sigmund, C.D.; Faraci, F.M. Superoxide contributes to vascular dysfunction in mice that express human renin and angiotensinogen. Am. J. Physiol. Heart Circ. Physiol. 2002, 283, H1569–H1576. [Google Scholar] [CrossRef] [PubMed]
- Zawieja, D.C.; Greiner, S.T.; Davis, K.L.; Hinds, W.M.; Granger, H.J. Reactive oxygen metabolites inhibit spontaneous lymphatic contractions. Am. J. Physiol. 1991, 260, H1935–H1943. [Google Scholar] [PubMed]
- Thangaswamy, S.; Bridenbaugh, E.A.; Gashev, A.A. Evidence of increased oxidative stress in aged mesenteric lymphatic vessels. Lymphat. Res. Biol. 2012, 10, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Beer, D.J.; Rocklin, R.E. Histamine modulation of lymphocyte biology: Membrane receptors, signal transduction, and functions. Crit. Rev. Immunol. 1987, 7, 55–91. [Google Scholar] [PubMed]
- Jutel, M.; Akdis, M.; Akdis, C.A. Histamine, histamine receptors and their role in immune pathology. Clin. Exp. Allergy 2009, 39, 1786–1800. [Google Scholar] [CrossRef] [PubMed]
- Jutel, M.; Watanabe, T.; Akdis, M.; Blaser, K.; Akdis, C.A. Immune regulation by histamine. Curr. Opin. Immunol. 2002, 14, 735–740. [Google Scholar] [CrossRef]
- O'Mahony, L.; Akdis, M.; Akdis, C.A. Regulation of the immune response and inflammation by histamine and histamine receptors. J. Allergy Clin. Immunol. 2011, 128, 1153–1162. [Google Scholar] [CrossRef] [PubMed]
- Ciz, M.; Lojek, A. Modulation of neutrophil oxidative burst via histamine receptors. Br. J. Pharmacol. 2013, 170, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Brigham, K.L.; Owen, P.J. Increased sheep lung vascular permeability caused by histamine. Circ. Res. 1975, 37, 647–657. [Google Scholar] [CrossRef] [PubMed]
- Dobbins, D.E.; Soika, C.Y.; Buehn, M.J.; Dabney, J.M. Aminophylline attenuates the edemogenic actions of histamine in the canine forelimb. Microcirc. Endothel. Lymphat. 1988, 4, 231–248. [Google Scholar]
- Sato, M.; Sasaki, N.; Ato, M.; Hirakawa, S.; Sato, K. Microcirculation-on-a-chip: A microfluidic platform for assaying blood- and lymphatic-vessel permeability. PLoS ONE 2015, 10, e0137301. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, S.; Zawieja, S.D.; Wang, W.; Lee, Y.; Wang, Y.J.; von der Weid, P.Y.; Zawieja, D.C.; Muthuchamy, M. Lipopolysaccharide modulates neutrophil recruitment and macrophage polarization on lymphatic vessels and impairs lymphatic function in rat mesentery. Am. J. Physiol. Heart Circ. Physiol. 2015, 309, H2042–H2057. [Google Scholar] [CrossRef] [PubMed]
- Harding, C.V.; Geuze, H.J. Class II MHC molecules are present in macrophage lysosomes and phagolysosomes that function in the phagocytic processing of listeria monocytogenes for presentation to t cells. J. Cell Biol. 1992, 119, 531–542. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.H.; Lee, K.H.; Lee, C.T.; Kim, Y.W.; Han, S.K.; Shim, Y.S.; Yoo, C.G. Aggregation of β2 integrins activates human neutrophils through the IκB/NF-κB pathway. J. Leukoc. Biol. 2004, 75, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.E.; Koh, Y.J.; Jeon, B.H.; Jang, C.; Han, J.; Kataru, R.P.; Schwendener, R.A.; Kim, J.M.; Koh, G.Y. Role of CD11b+ macrophages in intraperitoneal lipopolysaccharide-induced aberrant lymphangiogenesis and lymphatic function in the diaphragm. Am. J. Pathol. 2009, 175, 1733–1745. [Google Scholar] [CrossRef] [PubMed]
- Dieu, M.C.; Vanbervliet, B.; Vicari, A.; Bridon, J.M.; Oldham, E.; Ait-Yahia, S.; Briere, F.; Zlotnik, A.; Lebecque, S.; Caux, C. Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J. Exp. Med. 1998, 188, 373–386. [Google Scholar] [CrossRef] [PubMed]
- Forster, R.; Schubel, A.; Breitfeld, D.; Kremmer, E.; Renner-Muller, I.; Wolf, E.; Lipp, M. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 1999, 99, 23–33. [Google Scholar] [CrossRef]
- Ohl, L.; Mohaupt, M.; Czeloth, N.; Hintzen, G.; Kiafard, Z.; Zwirner, J.; Blankenstein, T.; Henning, G.; Forster, R. CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions. Immunity 2004, 21, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Russo, E.; Teijeira, A.; Vaahtomeri, K.; Willrodt, A.H.; Bloch, J.S.; Nitschke, M.; Santambrogio, L.; Kerjaschki, D.; Sixt, M.; Halin, C. Intralymphatic CCl21 promotes tissue egress of dendritic cells through afferent lymphatic vessels. Cell Rep. 2016, 14, 1723–1734. [Google Scholar] [CrossRef] [PubMed]
- Chabot, V.; Martin, L.; Meley, D.; Sensebe, L.; Baron, C.; Lebranchu, Y.; Dehaut, F.; Velge-Roussel, F. Unexpected impairment of TNF-α-induced maturation of human dendritic cells in vitro by IL-4. J. Transl. Med. 2016, 14, 93. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Sanchez, N.; Riol-Blanco, L.; de la Rosa, G.; Puig-Kroger, A.; Garcia-Bordas, J.; Martin, D.; Longo, N.; Cuadrado, A.; Cabanas, C.; Corbi, A.L.; et al. Chemokine receptor CCR7 induces intracellular signaling that inhibits apoptosis of mature dendritic cells. Blood 2004, 104, 619–625. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A.; Tay, J.; Ton, S.; Agrawal, S.; Gupta, S. Increased reactivity of dendritic cells from aged subjects to self-antigen, the human DNA. J. Immunol. 2009, 182, 1138–1145. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, S.; Scallan, J.P.; Kim, K.W.; Werth, K.; Johnson, M.W.; Saunders, B.T.; Wang, P.L.; Kuan, E.L.; Straub, A.C.; Ouhachi, M.; et al. CCR7 and IRF4-dependent dendritic cells regulate lymphatic collecting vessel permeability. J. Clin. Invest. 2016, 126, 1581–1591. [Google Scholar] [CrossRef] [PubMed]
- Grumont, R.J.; Gerondakis, S. Rel induces interferon regulatory factor 4 (IRF-4) expression in lymphocytes: Modulation of interferon-regulated gene expression by rel/nuclear factor κB. J. Exp. Med. 2000, 191, 1281–1292. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pal, S.; Meininger, C.J.; Gashev, A.A. Aged Lymphatic Vessels and Mast Cells in Perilymphatic Tissues. Int. J. Mol. Sci. 2017, 18, 965. https://doi.org/10.3390/ijms18050965
Pal S, Meininger CJ, Gashev AA. Aged Lymphatic Vessels and Mast Cells in Perilymphatic Tissues. International Journal of Molecular Sciences. 2017; 18(5):965. https://doi.org/10.3390/ijms18050965
Chicago/Turabian StylePal, Sarit, Cynthia J. Meininger, and Anatoliy A. Gashev. 2017. "Aged Lymphatic Vessels and Mast Cells in Perilymphatic Tissues" International Journal of Molecular Sciences 18, no. 5: 965. https://doi.org/10.3390/ijms18050965