Fucaceae: A Source of Bioactive Phlorotannins
Abstract
:1. Introduction
2. Phlorotannins from Fucaceae
3. Biological Activities
3.1. Antioxidant Activity
3.2. Antidiabetic Activity
3.3. Anti-Inflammatory Activity
3.4. Antitumor Activity
3.5. Other Biological Activities
4. Bioavailability
5. Concluding Remarks
Acknowledgments
Conflicts of Interest
Abbreviations
AGEs | Advanced Glycated End-Products |
BSA | Bovine Serum Albumin |
CAT | Catalase |
COX-2 | Cyclooxygenase-2 |
DP | Degree of Polymerization |
DPPH● | 1,1-Diphenyl-2-Picrylhydrazyl Radical |
FRAP | Ferric Reducing Antioxidant Power |
GAE | Gallic Acid Equivalents |
GSH | Glutathione |
GSH-px | Glutathione Peroxidase |
GSH-red | Glutathione Reductase |
GSH-tr | Glutathione Transferase |
HPLC | High Performance Liquid Chromatography |
IL | Interleukin |
iNOS | Inducible Nitric Oxide Synthase |
LPS | Lipopolysaccharide |
MIC | Minimum Inhibitory Concentration |
MS | Mass Spectrometry |
NF-κB | Nuclear Factor-κB |
NMR | Nuclear Magnetic Spectroscopy |
Nrf2 | Nuclear Factor (Erythroid-Derived 2)-Like 2 |
ORAC | Oxygen Radical Absorbance Capacity |
PE | Phloroglucinol Equivalents |
PMA | Phorbol-12-Myristate-13-Acetate |
PON-1 | Paraoxonase-1 |
RNS | Reactive Nitrogen Species |
ROS | Reactive Oxygen Species |
SOD | Superoxide Dismutase |
SPE | Solid Phase Extraction |
t-BHP | tert-Butyl Hydroperoxide |
TBARS | Thiobarbituric Acid Reactive Substances |
TE | Trolox Equivalents |
TLR | Toll-Like Receptor |
TNF-α | Tumor Necrosis Factor-α |
TPC | Total Phenolic Content |
UV | Ultraviolet |
UPLC | Ultra-Performance Liquid Chromatography |
References
- Guiry, M.D. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Available online: http://www.algaebase.org (accessed on 31 March 2017).
- GBIF Secretariat. GBIF Backbone Taxonomy—Fucaceae. Available online: http://www.gbif.org/species/9641 (accessed on 3 April 2017).
- Kucera, H.; Saunders, G.W. Assigning morphological variants of Fucus (Fucales, Phaeophyceae) in Canadian waters to recognized species using DNA barcoding. Botany 2008, 86, 1065–1079. [Google Scholar] [CrossRef]
- GBIF Secretariat. GBIF Backbone Taxonomy—Fucus L. Available online: http://www.gbif.org/species/7832266 (accessed on 3 April 2017).
- Jueterbock, A.; Tyberghein, L.; Verbruggen, H.; Coyer, J.A.; Olsen, J.L.; Hoarau, G. Climate change impact on seaweed meadow distribution in the North Atlantic rocky intertidal. Ecol. Evol. 2013, 3, 1356–1373. [Google Scholar] [CrossRef] [PubMed]
- Torn, K.; Krause-Jensen, D.; Martin, G. Present and past depth distribution of bladderwrack (Fucus vesiculosus) in the Baltic Sea. Aquat. Bot. 2006, 84, 53–62. [Google Scholar] [CrossRef]
- Malm, T.; Kautsky, L.; Engkvist, R. Reproduction, recruitment and geographical distribution of Fucus serratus L. in the Baltic Sea. Bot. Mar. 2001, 44, 101–108. [Google Scholar] [CrossRef]
- GBIF Secretariat. GBIF Backbone Taxonomy—Pelvetia Decaisne & Thuret. Available online: http://www.gbif.org/species/3196494 (accessed on 3 April 2017).
- GBIF Secretariat. GBIF Backbone Taxonomy—Ascophyllum Stackhouse. Available online: http://www.gbif.org/species/3196523 (accessed on 3 April 2017).
- Lee, Y.K.; Yoon, H.S.; Motomura, T.; Kim, Y.J.; Boo, S.M. Phylogenetic relationships between Pelvetia and Pelvetiopsis (Fucaceae, Phaeophyta) inferred from sequences of the RuBisCo spacer region. Eur. J. Phycol. 1999, 34, 205–211. [Google Scholar] [CrossRef]
- Lewis, J.R. The Ecology of Rocky Shores; English Universities Press: London, UK, 1964. [Google Scholar]
- GBIF Secretariat. GBIF Backbone Taxonomy—Silvetia E. Serrão, T.O. Cho, S.M. Boo & S.H. Brawley. Available online: http://www.gbif.org/species/3196480 (accessed on 3 April 2017).
- GBIF Secretariat. GBIF Backbone Taxonomy—Pelvetiopsis N.L. Gardener. Available online: http://www.gbif.org/species/3196508 (accessed on 3 April 2017).
- Serrão, E.A.; Alice, L.A.; Brawley, S.H. Evolution of the Fucaceae (Phaeophyceae) inferred from nrDNA-ITS. J. Phycol. 1999, 35, 382–394. [Google Scholar] [CrossRef]
- Pereira, L. Edible Seaweeds of the World; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Patarra, R.F.; Paiva, L.; Neto, A.I.; Lima, E.; Baptista, J. Nutritional value of selected macroalgae. J. Appl. Phycol. 2011, 23, 205–208. [Google Scholar] [CrossRef]
- Stansbury, J.; Saunders, P.; Winston, D. Promoting healthy thyroid function with iodine, bladderwrack, guggul and iris. J. Restor. Med. 2012, 1, 83–90. [Google Scholar] [CrossRef]
- Guiry, M.D.; Morrison, L. The sustainable harvesting of Ascophyllum nodosum (Fucaceae, Phaeophyceae) in Ireland, with notes on the collection and use of some other brown algae. J. Appl. Phycol. 2013, 25, 1823–1830. [Google Scholar] [CrossRef]
- Guiry, M.D.; Garbary, D.J. Geographical and taxonomic guide to European seaweeds of economic importance. In Seaweed Resources in Europe: Uses and Potential; Guiry, M.D., Blunden, G., Eds.; John Wiley & Sons: Chichester, UK, 1991. [Google Scholar]
- Bixler, H.J.; Porse, H. A decade of change in the seaweed hydrocolloids industry. J. Appl. Phycol. 2011, 23, 321–335. [Google Scholar] [CrossRef]
- Colapietra, M.; Alexander, A. Effect of foliar fertilization on yield and quality of table grapes. Acta Hortic. 2006, 721, 213–218. [Google Scholar] [CrossRef]
- Bozorgi, H.; Bidarigh, S.; Bakhshi, D. Marine brown alga extract (Ascophyllum nodosum) under foliar spraying of methanol and iron fertilizers on flower tube length of saffron (Crocus sativus L.) in North of Iran. Int. J. Agric. Crop Sci. 2012, 4, 1512–1518. [Google Scholar]
- Sharma, S.H.S.; Lyons, G.; McRoberts, C.; McCall, D.; Carmichael, E.; Andrews, F.; Swan, R.; McCormack, R.; Mellon, R. Biostimulant activity of brown seaweed species from Strangford Lough: Compositional analyses of polysaccharides and bioassay of extracts using mung bean (Vigno mungo L.) and pak choi (Brassica rapa chinensis L.). J. Appl. Phycol. 2012, 24, 1081–1091. [Google Scholar] [CrossRef]
- Shah, M.T.; Zodape, S.T.; Chaudhary, D.R.; Eswaran, K.; Chikara, J. Seaweed sap as an alternative liquid fertilizer for yield and quality improvement of wheat. J. Plant Nutr. 2013, 36, 192–200. [Google Scholar] [CrossRef]
- Anderson, M.J.; Blanton, J.R.; Gleghorn, J.; Kim, S.W.; Johnson, J.W. Ascophyllum nodosum supplementation strategies that improve overall carcass merit of implanted english crossbred cattle. Asian-Australas. J. Anim. Sci. 2006, 19, 1514–1518. [Google Scholar] [CrossRef]
- Evans, F.D.; Critchley, A.T. Seaweeds for animal production use. J. Appl. Phycol. 2014, 26, 891–899. [Google Scholar] [CrossRef]
- Turner, J.L.; Dritz, S.S.; Higgins, J.J.; Minton, J.E. Effects of Ascophyllum nodosum extract on growth performance and immune function of young pigs challenged with Salmonella typhimurium. J. Anim. Sci. 2002, 80, 1947–1953. [Google Scholar] [CrossRef] [PubMed]
- Hankins, S.D.; Hockey, H.P. The effect of a liquid seaweed extract from Ascophyllum nodosum (Fucales, Phaeophyta) on the two-spotted red spider mite Tetranychus urticae. Hydrobiologia 1990, 204, 555–559. [Google Scholar] [CrossRef]
- Jayaraman, J.; Norrie, J.; Punja, Z.K. Commercial extract from the brown seaweed Ascophyllum nodosum reduces fungal diseases in greenhouse cucumber. J. Appl. Phycol. 2011, 23, 353–361. [Google Scholar] [CrossRef]
- Radwan, M.A.; Farrag, S.A.A.; Abu-Elamayem, M.M.; Ahmed, N.S. Biological control of the root-knot nematode, Meloidogyne incognita on tomato using bioproducts of microbial origin. Appl. Soil Ecol. 2012, 56, 58–62. [Google Scholar] [CrossRef]
- Sultana, V.; Baloch, G.N.; Ara, J.; Ehteshamul-Haque, S.; Tariq, R.M.; Athar, M. Seaweeds as an alternative to chemical pesticides for the management of root diseases of sunflower and tomato. J. Appl. Bot. Food Qual. 2011, 84, 162–168. [Google Scholar]
- Küpper, F.C.; Feiters, M.C.; Olofsson, B.; Kaiho, T.; Yanagida, S.; Zimmermann, M.B.; Carpenter, L.J.; Luther, G.W.; Lu, Z.; Jonsson, M.; et al. Commemorating two centuries of iodine research: An interdisciplinary overview of current research. Angew. Chem. Int. Ed. Engl. 2011, 50, 11598–11620. [Google Scholar] [CrossRef] [PubMed]
- Moro, C.O.; Basile, G. Obesity and medicinal plants. Fitoterapia 2000, 71, S73–S82. [Google Scholar] [CrossRef]
- Balch, P.A.; Bell, S. Prescription for Herbal Healing, 2nd ed.; Penguin Group Inc.: London, UK, 2012. [Google Scholar]
- Pereira, L. A review of the nutrient composition of selected edible seaweeds. In Seaweed: Ecology, Nutrient Composition and Medicinal Uses; Pomin, V.H., Ed.; Nova Science Publishers, Inc.: New York, USA, 2011; pp. 15–47. [Google Scholar]
- Ale, M.T.; Mikkelsen, J.D.; Meyer, A.S. Important determinants for fucoidan bioactivity: A critical review of structure-function relations and extraction methods for fucose-containing sulfated polysaccharides from brown seaweeds. Mar. Drugs 2011, 9, 2106–2130. [Google Scholar] [CrossRef] [PubMed]
- Laekeman, G. Assessment Report on Fucus vesiculosus L., Thallus; EMA/HMPC/313675/2012; European Medicines Agency: London, UK, 2014. [Google Scholar]
- Dutot, M.; Fagon, R.; Hemon, M.; Rat, P. Antioxidant, anti-inflammatory, and anti-senescence activities of a phlorotannin-rich natural extract from brown seaweed Ascophyllum nodosum. Appl. Biochem. Biotechnol. 2012, 167, 2234–2240. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, A.M.; O’Callaghan, Y.C.; O’Grady, M.N.; Queguineur, B.; Hanniffy, D.; Troy, D.J.; Kerry, J.P.; O’Brien, N.M. Assessment of the ability of seaweed extracts to protect against hydrogen peroxide and tert-butyl hydroperoxide induced cellular damage in Caco-2 cells. Food Chem. 2012, 134, 1137–1140. [Google Scholar] [CrossRef] [PubMed]
- Colliec, S.; Boisson-vidal, C.; Jozefonvicz, J. A low molecular weight fucoidan fraction from the brown seaweed Pelvetia canaliculata. Phytochemistry 1994, 35, 697–700. [Google Scholar] [CrossRef]
- Cumashi, A.; Ushakova, N.A.; Preobrazhenskaya, M.E.; D’Incecco, A.; Piccoli, A.; Totani, L.; Tinari, N.; Morozevich, G.E.; Berman, A.E.; Bilan, M.I.; et al. A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology 2007, 17, 541–552. [Google Scholar] [CrossRef] [PubMed]
- Bahar, B.; O’Doherty, J.V.; Hayes, M.; Sweeney, T. Extracts of brown seaweeds can attenuate the bacterial lipopolysaccharide-induced pro-inflammatory response in the porcine colon ex vivo. J. Anim. Sci. 2012, 90, 46–48. [Google Scholar] [CrossRef] [PubMed]
- Nakayasu, S.; Soegima, R.; Yamaguchi, K.; Oda, T. Biological activities of fucose-containing polysaccharide ascophyllan isolated from the brown alga Ascophyllum nodosum. Biosci. Biotechnol. Biochem. 2009, 73, 961–964. [Google Scholar] [CrossRef] [PubMed]
- Abu, R.; Jiang, Z.; Ueno, M.; Isaka, S.; Nakazono, S.; Okimura, T.; Cho, K.; Yamaguchi, K.; Kim, D.; Oda, T. Anti-metastatic effects of the sulfated polysaccharide ascophyllan isolated from Ascophyllum nodosum on B16 melanoma. Biochem. Biophys. Res. Commun. 2015, 458, 727–732. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Tiller, C.; Shen, J.; Wang, C.; Girouard, G.S.; Dennis, D.; Barrow, C.J.; Miao, M.; Ewart, H.S. Antidiabetic properties of polysaccharide- and polyphenolic-enriched fractions from the brown seaweed Ascophyllum nodosum. Can. J. Physiol. Pharmacol. 2007, 85, 1116–1123. [Google Scholar] [CrossRef] [PubMed]
- Apostolidis, E.; Lee, C.M. In vitro potential of Ascophyllum nodosum phenolic antioxidant-mediated α-glucosidase and α-amylase inhibition. J. Food Sci. 2010, 75, H97–H102. [Google Scholar] [CrossRef] [PubMed]
- Lordan, S.; Smyth, T.J.; Soler-Vila, A.; Stanton, C.; Paul Ross, R. The α-amylase and α-glucosidase inhibitory effects of Irish seaweed extracts. Food Chem. 2013, 141, 2170–2176. [Google Scholar] [CrossRef] [PubMed]
- Bedoux, G.; Hardouin, K.; Burlot, A.S.; Bourgougnon, N. Bioactive components from seaweeds: Cosmetic applications and future development. In Advances in Botanical Research; Bourgougnon, N., Ed.; Academic Press: London, UK, 2014; Volume 71, pp. 345–378. [Google Scholar]
- European Commission. CosIng Database. Available online: https://ec.europa.eu/growth/sectors/cosmetics/cosing (accessed on 5 April 2017).
- Lee, S.H.; Jeon, Y.J. Anti-diabetic effects of brown algae derived phlorotannins, marine polyphenols through diverse mechanisms. Fitoterapia 2013, 86, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Isaza Martínez, J.H.; Torres Castañeda, H.G.; Martinez, J.H.I.; Castaneda, H.G.T. Preparation and chromatographic analysis of phlorotannins. J. Chromatogr. Sci. 2013, 51, 825–838. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-X.; Wijesekara, I.; Li, Y.; Kim, S.-K. Phlorotannins as bioactive agents from brown algae. Process Biochem. 2011, 46, 2219–2224. [Google Scholar] [CrossRef]
- Pal Singh, I.; Bharate, S.B. Phloroglucinol compounds of natural origin. Nat. Prod. Rep. 2006, 23, 558–591. [Google Scholar] [CrossRef] [PubMed]
- Koivikko, R.; Loponen, J.; Honkanen, T.; Jormalainen, V. Contents of soluble, cell-wall-bound and exuded phlorotannins in the brown alga Fucus vesiculosus, with implications on their ecological functions. J. Chem. Ecol. 2005, 31, 195–212. [Google Scholar] [CrossRef] [PubMed]
- Wikström, S.A.; Pavia, H. Chemical settlement inhibition versus post-settlement mortality as an explanation for differential fouling of two congeneric seaweeds. Oecologia 2004, 138, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Targett, N.M.; Arnold, T.M. Predicting the effects of brown algal phlorotannins on marine herbivores in tropical and temperate oceans. J. Phycol. 1998, 34, 195–205. [Google Scholar] [CrossRef]
- Pavia, H.; Cervin, G.; Lindgren, A.; Aberg, P. Effects of UV-B radiation and simulated herbivory on phlorotannins in the brown alga Ascophyllum nodosum. Mar. Ecol. Prog. Ser. 1997, 157, 139–146. [Google Scholar] [CrossRef]
- Connan, S.; Stengel, D.B. Impacts of ambient salinity and copper on brown algae: 2. Interactive effects on phenolic pool and assessment of metal binding capacity of phlorotannin. Aquat. Toxicol. 2011, 104, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Gómez, I.; Huovinen, P. Induction of phlorotannins during UV exposure mitigates inhibition of photosynthesis and DNA damage in the kelp Lessonia nigrescens. Photochem. Photobiol. 2010, 86, 1056–1063. [Google Scholar] [CrossRef] [PubMed]
- Holdt, S.L.; Kraan, S. Bioactive compounds in seaweed: Functional food applications and legislation. J. Appl. Phycol. 2011, 23, 543–597. [Google Scholar] [CrossRef]
- Sabeena Farvin, K.H.; Jacobsen, C. Phenolic compounds and antioxidant activities of selected species of seaweeds from Danish coast. Food Chem. 2013, 138, 1670–1681. [Google Scholar] [CrossRef] [PubMed]
- Yoshie-Stark, Y.; Hsieh, Y.; Suzuki, T. Distribution of flavonoids and related compounds from seaweeds in Japan. Tokyo Univ. Fish. 2003, 89, 1–6. [Google Scholar]
- Kim, S.K.; Himaya, S.W.A. Medicinal effects of phlorotannins from marine brown algae. In Advances in Food and Nutrition Research; Kim, S., Ed.; Academic Press: San Diego, CA, USA, 2011; Volume 64, pp. 97–109. [Google Scholar]
- Koivikko, R.; Loponen, J.; Pihlaja, K.; Jormalainen, V. High-performance liquid chromatographic analysis of phlorotannins from the brown alga Fucus vesiculosus. Phytochem. Anal. 2007, 18, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Jormalainen, V.; Honkanen, T. Variation in natural selection for growth and phlorotannins in the brown alga Fucus vesiculosus. J. Evol. Biol. 2004, 17, 807–820. [Google Scholar] [CrossRef] [PubMed]
- Connan, S.; Goulard, F.; Stiger, V.; Deslandes, E.; Gall, E.A. Interspecific and temporal variation in phlorotannin levels in an assemblage of brown algae. Bot. Mar. 2004, 47, 410–416. [Google Scholar] [CrossRef]
- Pavia, H.; Toth, G.B. Influence of light and nitrogen on the phlorotannin content of the brown seaweeds Ascophyllum nodosum and Fucus vesiculosus. Hydrobiology 2000, 440, 299–305. [Google Scholar] [CrossRef]
- Ragan, M.A.; Jensen, A. Quantitative studies on brown algal phenols. II. Seasonal variation in polyphenol content of Ascophyllum nodosum (L.) Le Jol. and Fucus vesiculosus (L.). J. Exp. Mar. Biol. Ecol. 1978, 34, 245–258. [Google Scholar] [CrossRef]
- Stiger, V.; Deslandes, E.; Payri, C.E. Phenolic contents of two brown algae, Turbinaria ornata and Sargassum mangarevense on Tahiti (French Polynesia): Interspecific, ontogenic and spatio-temporal variations. Bot. Mar. 2004, 47, 402–409. [Google Scholar] [CrossRef]
- Peckol, P.; Krane, J.M.; Yates, J.L. Interactive effects of inducible defense and resource availability on phlorotannins in the North Atlantic brown alga Fucus vesiculosus. Mar. Ecol. Prog. Ser. 1996, 138, 209–217. [Google Scholar] [CrossRef]
- Parys, S.; Kehraus, S.; Pete, R.; Küpper, F.C.; Glombitza, K.-W.; König, G.M. Seasonal variation of polyphenolics in Ascophyllum nodosum (Phaeophyceae). Eur. J. Phycol. 2009, 44, 331–338. [Google Scholar] [CrossRef]
- Kamiya, M.; Nishio, T.; Yokoyama, A.; Yatsuya, K.; Nishigaki, T.; Yoshikawa, S.; Ohki, K. Seasonal variation of phlorotannin in sargassacean species from the coast of the Sea of Japan. Phycol. Res. 2010, 58, 53–61. [Google Scholar] [CrossRef]
- Pavia, H.; Brock, E. Extrinsic factors influencing phlorotannin production in the brown alga. Mar. Ecol. Prog. Ser. 2000, 193, 285–294. [Google Scholar] [CrossRef]
- Roleda, M.Y.; Wiencke, C.; Lüder, U.H. Impact of ultraviolet radiation on cell structure, UV-absorbing compounds, photosynthesis, DNA damage, and germination in zoospores of Arctic Saccorhiza dermatodea. J. Exp. Bot. 2006, 57, 3847–3856. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, A. Studies on phenol content and heavy metal uptake in fucoids. In Eleventh International Seaweed Symposium; Bird, C.J., Ragan, M.A., Eds.; Springer: Dordrecht, The Netherlands, 1984; pp. 498–504. [Google Scholar]
- Stern, J.L.; Hagerman, A.E.; Steinberg, P.D.; Winter, F.C.; Estes, J.A. A new assay for quantifying brown algal phlorotannins and comparisons to previous methods. J. Chem. Ecol. 1996, 22, 1273–1293. [Google Scholar] [CrossRef] [PubMed]
- Parys, S.; Rosenbaum, A.; Kehraus, S.; Reher, G.; Glombitza, K.W.; König, G.M. Evaluation of quantitative methods for the determination of polyphenols in algal extracts. J. Nat. Prod. 2007, 70, 1865–1870. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Fu, X.; Duan, D.; Liu, X.; Xu, J.; Gao, X. Extraction and identification of phlorotannins from the brown alga, Sargassum fusiforme Setchell, Harvey. Mar. Drugs 2017, 15, 49. [Google Scholar] [CrossRef] [PubMed]
- Tierney, M.S.; Soler-Vila, A.; Rai, D.K.; Croft, A.K.; Brunton, N.P.; Smyth, T.J. UPLC-MS profiling of low molecular weight phlorotannin polymers in Ascophyllum nodosum, Pelvetia canaliculata and Fucus spiralis. Metabolomics 2014, 10, 524–535. [Google Scholar] [CrossRef]
- Steevensz, A.J.; MacKinnon, S.L.; Hankinson, R.; Craft, C.; Connan, S.; Stengel, D.B.; Melanson, J.E. Profiling phlorotannins in brown macroalgae by liquid chromatography-high resolution mass spectrometry. Phytochem. Anal. 2012, 23, 547–553. [Google Scholar] [CrossRef] [PubMed]
- Glombitza, K.W.; Rauwald, H.W.; Eckhardt, G. Fucole, polyhydroxyoligophenyle aus Fucus vesiculosus. Phytochemistry 1975, 14, 1403–1405. [Google Scholar] [CrossRef]
- Craige, J.S.; McInnes, A.G.; Ragan, M.A.; Walter, J.A. Chemical constituents of the physodes of brown algae. Characterization by 1H and 13C nuclear magnetic resonance spectroscopy of oligomers of phloroglucinol from Fucus vesiculosus (L.). Can. J. Chem. 1977, 55, 1575–1582. [Google Scholar] [CrossRef]
- Glombitza, K.; Rauwald, H.; Eckhardt, G. Fucophloretholes, Polyhydroxyoligophenyl ethers from Fucus vesiculosus. Planta Med. 1977, 32, 33–45. [Google Scholar] [CrossRef]
- Parys, S.; Kehraus, S.; Krick, A.; Glombitza, K.W.; Carmeli, S.; Klimo, K.; Gerhäuser, C.; König, G.M. In vitro chemopreventive potential of fucophlorethols from the brown alga Fucus vesiculosus L. by anti-oxidant activity and inhibition of selected cytochrome P450 enzymes. Phytochemistry 2010, 71, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Corona, G.; Ji, Y.; Anegboonlap, P.; Hotchkiss, S.; Gill, C.; Yaqoob, P.; Spencer, J.P.E.; Rowland, I. Gastrointestinal modifications and bioavailability of brown seaweed phlorotannins and effects on inflammatory markers. Br. J. Nutr. 2016, 15, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Heffernan, N.; Brunton, N.P.; FitzGerald, R.J.; Smyth, T.J. Profiling of the molecular weight and structural isomer abundance of macroalgae-derived phlorotannins. Mar. Drugs 2015, 13, 509–528. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Jónsdóttir, R.; Ólafsdóttir, G. Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food Chem. 2009, 116, 240–248. [Google Scholar] [CrossRef]
- O’Sullivan, A.M.; O’Callaghan, Y.C.; O’Grady, M.N.; Queguineur, B.; Hanniffy, D.; Troy, D.J.; Kerry, J.P.; O’Brien, N.M. In vitro and cellular antioxidant activities of seaweed extracts prepared from five brown seaweeds harvested in spring from the west coast of Ireland. Food Chem. 2011, 126, 1064–1070. [Google Scholar] [CrossRef]
- Breton, F.; Cérantola, S.; Gall, E.A. Distribution and radical scavenging activity of phenols in Ascophyllum nodosum (Phaeophyceae). J. Exp. Mar. Biol. Ecol. 2011, 399, 167–172. [Google Scholar] [CrossRef]
- Blanc, N.; Hauchard, D.; Audibert, L.; Ar Gall, E. Radical-scavenging capacity of phenol fractions in the brown seaweed Ascophyllum nodosum: An electrochemical approach. Talanta 2011, 84, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Jónsdóttir, R.; Liu, H.; Gu, L.; Kristinsson, H.G.; Raghavan, S.; Ólafsdóttir, G. Antioxidant capacities of phlorotannins extracted from the brown algae Fucus vesiculosus. J. Agric. Food Chem. 2012, 60, 5874–5883. [Google Scholar] [CrossRef] [PubMed]
- Cérantola, S.; Breton, F.; Gall, E.A.; Deslandes, E. Co-occurrence and antioxidant activities of fucol and fucophlorethol classes of polymeric phenols in Fucus spiralis. Bot. Mar. 2006, 49, 347–351. [Google Scholar] [CrossRef]
- Honold, P.J.; Jacobsen, C.; Jónsdóttir, R.; Kristinsson, H.G.; Hermund, D.B. Potential seaweed-based food ingredients to inhibit lipid oxidation in fish-oil-enriched mayonnaise. Eur. Food Res. Technol. 2016, 242, 571–584. [Google Scholar] [CrossRef]
- Wang, T.; Jónsdóttir, R.; Kristinsson, H.G.; Thorkelsson, G.; Jacobsen, C.; Hamaguchi, P.Y.; Ólafsdóttir, G. Inhibition of haemoglobin-mediated lipid oxidation in washed cod muscle and cod protein isolates by Fucus vesiculosus extract and fractions. Food Chem. 2010, 123, 321–330. [Google Scholar] [CrossRef]
- O’Sullivan, A.M.; O’Callaghan, Y.C.; O’Grady, M.N.; Waldron, D.S.; Smyth, T.J.; O’Brien, N.M.; Kerry, J.P. An examination of the potential of seaweed extracts as functional ingredients in milk. Int. J. Dairy Technol. 2014, 67, 182–193. [Google Scholar] [CrossRef]
- O’Sullivan, A.M.; O’Grady, M.N.; O’Callaghan, Y.C.; Smyth, T.J.; O’Brien, N.M.; Kerry, J.P. Seaweed extracts as potential functional ingredients in yogurt. Innov. Food Sci. Emerg. Technol. 2015, 37, 293–299. [Google Scholar] [CrossRef]
- Zaragozá, M.C.; López, D.; Sáiz, M.P.; Poquet, M.; Pérez, J.; Puig-Parellada, P.; Màrmol, F.; Simonetti, P.; Gardana, C.; Lerat, Y.; et al. Toxicity and antioxidant activity in vitro and in vivo of two Fucus vesiculosus extracts. J. Agric. Food Chem. 2008, 56, 7773–7780. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, A.M.; O’Callaghan, Y.C.; O’Grady, M.N.; Hayes, M.; Kerry, J.P.; O’Brien, N.M. The effect of solvents on the antioxidant activity in Caco-2 cells of Irish brown seaweed extracts prepared using accelerated solvent extraction (ASE®). J. Funct. Foods 2013, 5, 940–948. [Google Scholar] [CrossRef]
- Quéguineur, B.; Goya, L.; Ramos, S.; Martín, M.A.; Mateos, R.; Guiry, M.D.; Bravo, L. Effect of phlorotannin-rich extracts of Ascophyllum nodosum and Himanthalia elongata (Phaeophyceae) on cellular oxidative markers in human HepG2 cells. J. Appl. Phycol. 2013, 25, 1–11. [Google Scholar] [CrossRef]
- Aviram, M.; Hardak, E.; Vaya, J.; Mahmood, S.; Milo, S.; Hoffman, A.; Billicke, S.; Draganov, D.; Rosenblat, M. Human serum paraoxonases (PON1) Q and R selectively decrease lipid peroxides in human coronary and carotid atherosclerotic lesions: PON1 esterase and peroxidase-like activities. Circulation 2000, 101, 2510–2517. [Google Scholar] [CrossRef] [PubMed]
- Ahn, G.-N.; Kim, K.-N.; Cha, S.-H.; Song, C.-B.; Lee, J.; Heo, M.-S.; Yeo, I.-K.; Lee, N.-H.; Jee, Y.-H.; Kim, J.-S.; et al. Antioxidant activities of phlorotannins purified from Ecklonia cava on free radical scavenging using ESR and H2O2-mediated DNA damage. Eur. Food Res. Technol. 2007, 226, 71–79. [Google Scholar] [CrossRef]
- Kang, K.A.; Lee, K.H.; Chae, S.; Zhang, R.; Jung, M.S.; Ham, Y.M.; Baik, J.S.; Lee, N.H.; Hyun, J.W. Cytoprotective effect of phloroglucinol on oxidative stress induced cell damage via catalase activation. J. Cell. Biochem. 2006, 97, 609–620. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Lee, K.; Kang, K.A.; Lee, N.H.; Hyun, J.W. Phloroglucinol exerts protective effects against oxidative stress-induced cell damage in SH-SY5Y cells. J. Pharmacol. Sci. 2012, 119, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.M.; Kim, S.K. Effect of phloroglucinol on oxidative stress and inflammation. Food Chem. Toxicol. 2010, 48, 2925–2933. [Google Scholar] [CrossRef] [PubMed]
- Ryu, J.; Zhang, R.; Hong, B.H.; Yang, E.J.; Kang, K.A.; Choi, M.; Kim, K.C.; Noh, S.J.; Kim, H.S.; Lee, N.H.; et al. Phloroglucinol attenuates motor functional deficits in an animal model of Parkinson’s disease by enhancing Nrf2 activity. PLoS ONE 2013, 8, e71178. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.-C.; Cha, S.H.; Wijesinghe, W.A.; Kang, S.-M.; Lee, S.-H.; Kim, E.-A.; Song, C.B.; Jeon, Y.-J. Protective effect of marine algae phlorotannins against AAPH-induced oxidative stress in zebrafish embryo. Food Chem. 2013, 138, 950–955. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.C.; Piao, M.J.; Cho, S.J.; Lee, N.H.; Hyun, J.W. Phloroglucinol protects human keratinocytes from ultraviolet B radiation by attenuating oxidative stress. Photodermatol. Photoimmunol. Photomed. 2012, 28, 322–331. [Google Scholar] [CrossRef] [PubMed]
- Yang, E.-J.; Ahn, S.; Ryu, J.; Choi, M.-S.; Choi, S.; Chong, Y.H.; Hyun, J.-W.; Chang, M.-J.; Kim, H.-S. Phloroglucinol attenuates the cognitive deficits of the 5XFAD mouse model of Alzheimer’s Disease. PLoS ONE 2015, 10, e0135686. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Report on Diabetes; World Health Organization: Geneva, Switzerland, 2016; Volume 978. [Google Scholar]
- Thilagam, E.; Parimaladevi, B.; Kumarappan, C.; Mandal, S.C. α-Glucosidase and α-amylase inhibitory activity of Senna surattensis. J. Acupunct. Meridian Stud. 2013, 6, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Kongstad, K.T.; Wiese, S.; Jäger, A.K.; Staerk, D. Edible seaweed as future functional food: Identification of α-glucosidase inhibitors by combined use of high-resolution α-glucosidase inhibition profiling and HPLC-HRMS-SPE-NMR. Food Chem. 2016, 203, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Ohta, T.; Sasaki, S.; Oohori, T.; Yoshikawa, S. α-Glucosidase inhibitory activity of a 70% methanol extract from ezoishige (Pelvetia babingtonii de toni) and its effect on the elevation of blood glucose level in rats. Biosci. Biotechnol. Biochem. 2002, 66, 1552–1554. [Google Scholar] [CrossRef] [PubMed]
- Apostolidis, E.; Karayannakidis, P.D.; Kwon, Y.I.; Lee, C.M.; Seeram, N.P. Seasonal variation of phenolic antioxidant-mediated α-glucosidase inhibition of Ascophyllum nodosum. Plant Foods Hum. Nutr. 2011, 66, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Nwosu, F.; Morris, J.; Lund, V.A.; Stewart, D.; Ross, H.A.; McDougall, G.J. Anti-proliferative and potential anti-diabetic effects of phenolic-rich extracts from edible marine algae. Food Chem. 2011, 126, 1006–1012. [Google Scholar] [CrossRef]
- Kellogg, J.; Grace, M.H.; Lila, M.A. Phlorotannins from alaskan seaweed inhibit carbolytic enzyme activity. Mar. Drugs 2014, 12, 5277–5294. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Gu, L. Phlorotannins from brown algae (Fucus vesiculosus) inhibited the formation of advanced glycation endproducts by scavenging reactive carbonyls. J. Agric. Food Chem. 2012, 60, 1326–1334. [Google Scholar] [CrossRef] [PubMed]
- Kitts, D.D.; Popovich, D.G.; Hu, C. Characterizing the mechanism for ginsenoside-induced cytotoxicity in cultured leukemia (THP-1) cells. Can. J. Physiol. Pharmacol. 2007, 85, 1173–1183. [Google Scholar] [CrossRef] [PubMed]
- Pantidos, N.; Boath, A.; Lund, V.; Conner, S.; McDougall, G.J. Phenolic-rich extracts from the edible seaweed, Ascophyllum nodosum, inhibit α-amylase and α-glucosidase: Potential anti-hyperglycemic effects. J. Funct. Foods 2014, 10, 201–209. [Google Scholar] [CrossRef]
- Roy, M.C.; Anguenot, R.; Fillion, C.; Beaulieu, M.; Bérubé, J.; Richard, D. Effect of a commercially-available algal phlorotannins extract on digestive enzymes and carbohydrate absorption in vivo. Food Res. Int. 2011, 44, 3026–3029. [Google Scholar] [CrossRef]
- Paradis, M.E.; Couture, P.; Lamarche, B. A randomised crossover placebo-controlled trial investigating the effect of brown seaweed (Ascophyllum nodosum and Fucus vesiculosus) on postchallenge plasma glucose and insulin in men and women. Appl. Physiol. Nutr. Metab. 2011, 36, 913–919. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.P.; Bali, A.; Singh, N.; Jaggi, A.S. Advanced glycation end products and diabetic complications. Korean J. Physiol. Pharmacol. 2014, 18, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Park, M.H.; Han, J.S. Phloroglucinol protects INS-1 pancreatic β-cells against glucotoxicity-induced apoptosis. Phytother. Res. 2015, 29, 1700–1706. [Google Scholar] [CrossRef] [PubMed]
- Ashley, N.T.; Weil, Z.M.; Nelson, R.J. Inflammation: Mechanisms, costs, and natural variation. Annu. Rev. Ecol. Evol. Syst. 2012, 43, 385–406. [Google Scholar] [CrossRef]
- Catarino, M.D.; Alves-Silva, J.M.; Pereira, O.R.; Cardoso, S.M. Mediaterranean diet: A precious tool for fighting inflammatory diseases. In Polyphenols: Food Sources, Bioactive Properties and Antioxidant Effects; Cobb, D.T., Ed.; Nova Science Publishers: New York, NY, USA, 2014; pp. 87–112. [Google Scholar]
- Catarino, M.D.; Talhi, O.; Rabahi, A.; Silva, A.M.S.; Cardoso, S.M. The anti-inflammatory potential of flavonoids: Mechanistic aspects. In Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed.; Elsevier: Amsterdam, The Netherlands, 2016; Volume 48, pp. 65–99. [Google Scholar]
- Cillard, J.; Bonnaure-mallet, M. Silver-zeolite combined to polyphenol-rich extracts of Ascophyllum nodosum: Potential active role in prevention of periodontal diseases. PLoS ONE 2014, 9, e105475. [Google Scholar]
- Bahar, B.; O’Doherty, J.V.; Smyth, T.J.; Sweeney, T. A comparison of the effects of an Ascophyllum nodosum ethanol extract and its molecular weight fractions on the inflammatory immune gene expression in vitro and ex vivo. Innov. Food Sci. Emerg. Technol. 2016, 37, 276–285. [Google Scholar] [CrossRef]
- Bahar, B.; Doherty, J.V.O.; Smyth, T.J.; Ahmed, A.M.; Sweeney, T. A cold water extract of Fucus vesiculosus inhibits lipopolysaccharide (LPS) induced pro-inflammatory responses in the porcine colon ex vivo model. Innov. Food Sci. Emerg. Technol. 2016, 37, 229–236. [Google Scholar] [CrossRef]
- Liu, L.; Yuan, S.; Long, Y.; Guo, Z.; Sun, Y.; Li, Y.; Niu, Y.; Li, C.; Mei, Q. Immunomodulation of Rheum tanguticum polysaccharide (RTP) on the immunosuppressive effects of dexamethasone (DEX) on the treatment of colitis in rats induced by 2,4,6-trinitrobenzene sulfonic acid. Int. Immunopharmacol. 2009, 9, 1568–1577. [Google Scholar] [CrossRef] [PubMed]
- Bahar, B.; O’Doherty, J.V.; Vigors, S.; Sweeney, T. Activation of inflammatory immune gene cascades by lipopolysaccharide (LPS) in the porcine colonic tissue ex vivo model. Clin. Exp. Immunol. 2016, 186, 266–276. [Google Scholar] [CrossRef] [PubMed]
- Kellogg, J.; Esposito, D.; Grace, M.H.; Komarnytsky, S.; Lila, M.A. Alaskan seaweeds lower inflammation in RAW 264.7 macrophages and decrease lipid accumulation in 3T3-L1 adipocytes. J. Funct. Foods 2015, 15, 396–407. [Google Scholar] [CrossRef]
- Rakoff-Nahoum, S. Why cancer and inflammation? Yale J. Biol. Med. 2006, 79, 123–130. [Google Scholar] [PubMed]
- Geisen, U.; Zenthoefer, M.; Peipp, M.; Kerber, J.; Plenge, J.; Managò, A.; Fuhrmann, M.; Geyer, R.; Hennig, S.; Adam, D.; et al. Molecular mechanisms by which a Fucus vesiculosus extract mediates cell cycle inhibition and cell death in pancreatic cancer cells. Mar. Drugs 2015, 13, 4470–4491. [Google Scholar] [CrossRef] [PubMed]
- Zenthoefer, M.; Geisen, U.; Hofmann-peiker, K.; Fuhrmann, M.; Geyer, R.; Piker, L.; Kalthoff, H.; Fuhrmann, M.; Kerber, J.; Kirchhöfer, R.; et al. Isolation of polyphenols with anticancer activity from the Baltic Sea brown seaweed Fucus vesiculosus using bioassay-guided fractionation. J. Appl. Phycol. 2017, 148, 1–17. [Google Scholar] [CrossRef]
- Barreto, M.D.C.; Mendonça, E.A.; Gouveia, V.F.; Anjos, C.; Medeiros, J.S.; Seca, A.M.L.; Neto, A.I. Macroalgae from S. Miguel Island as a potential source of antiproliferative and antioxidant products. Arquipel. Life Mar. Sci. 2012, 29, 53–58. [Google Scholar]
- Ferreres, F.; Lopes, G.; Gil-Izquierdo, A.; Andrade, P.B.; Sousa, C.; Mouga, T.; Valentão, P. Phlorotannin extracts from fucales characterized by HPLC-DAD-ESI-MSn: Approaches to hyaluronidase inhibitory capacity and antioxidant properties. Mar. Drugs 2012, 10, 2766–2781. [Google Scholar] [CrossRef] [PubMed]
- Shibata, T.; Fujimoto, K.; Nagayama, K.; Yamaguchi, K.; Nakamura, T. Inhibitory activity of brown algal phlorotannins against hyaluronidase. Int. J. Food Sci. Technol. 2002, 37, 703–709. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin. 2016, 66, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Pérez, M.J.; Falqué, E.; Domínguez, H. Antimicrobial action of compounds from marine seaweed. Mar. Drugs 2016, 14, 52. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-S.; Kang, M.-S.; Hwang, H.-J.; Eom, S.-H.; Yang, J.-Y.; Lee, M.-S.; Lee, W.-J.; Jeon, Y.-J.; Choi, J.-S.; Kim, Y.-M. Synergistic effect between dieckol from Ecklonia stolonifera and β-lactams against methicillin-resistant Staphylococcus aureus. Biotechnol. Bioprocess Eng. 2008, 13, 758–764. [Google Scholar] [CrossRef]
- Sandsdalen, E.; Haug, T.; Stensvag, K.; Styrvold, O.B. The antibacterial effect of a polyhydroxylated fucophlorethol from the marine brown alga, Fucus vesiculosus. World J. Microbiol. Biotechnol. 2003, 19, 777–782. [Google Scholar] [CrossRef]
- Lopes, G.; Sousa, C.; Silva, L.R.; Pinto, E.; Andrade, P.B.; Bernardo, J.; Mouga, T.; Valentão, P. Can phlorotannins purified extracts constitute a novel pharmacological alternative for microbial infections with associated inflammatory conditions? PLoS ONE 2012, 7, e31145. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, J.T.; O’Connell, S.; Lyons, H.; Bradley, B.; Hall, M. Antioxidant, antimicrobial, and tyrosinase inhibition activities of acetone extract of Ascophyllum nodosum. Chem. Pap. 2010, 64, 434–442. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Z.; Bach, S.J.; McAllister, T.A. Sensitivity of Escherichia coli to seaweed (Ascophyllum nodosum) phlorotannins and terrestrial tannins. Asian-Australas. J. Anim. Sci. 2009, 22, 238–245. [Google Scholar] [CrossRef]
- Lopes, G.; Pinto, E.; Andrade, P.B.; Valentão, P. Antifungal activity of phlorotannins against dermatophytes and yeasts: Approaches to the mechanism of action and influence on Candida albicans virulence factor. PLoS ONE 2013, 8, e72203. [Google Scholar] [CrossRef] [PubMed]
- Béress, A.; Wassermann, O.; Tahhan, S.; Bruhn, T.; Béress, L.; Kraiselburd, E.N.; Gonzalez, L.V.; de Motta, G.E.; Chavez, P.I. A new procedure for the isolation of anti-HIV compounds (polysaccharides and polyphenols) from the marine alga Fucus vesiculosus. J. Nat. Prod. 1993, 56, 478–488. [Google Scholar]
- Guinea, M.; Franco, V.; Araujo-Bazán, L.; Rodríguez-Martín, I.; González, S. In vivo UVB-photoprotective activity of extracts from commercial marine macroalgae. Food Chem. Toxicol. 2012, 50, 1109–1117. [Google Scholar] [CrossRef] [PubMed]
- Paiva, L.; Lima, E.; Neto, A.I.; Baptista, J. Angiotensin I-converting enzyme (ACE) inhibitory activity of Fucus spiralis macroalgae and influence of the extracts storage temperature—A short report. J. Pharm. Biomed. Anal. 2016, 131, 503–507. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.A.; Hyun, S.K.; Kim, H.R.; Choi, J.S. Angiotensin-converting enzyme I inhibitory activity of phlorotannins from Ecklonia stolonifera. Fish. Sci. 2006, 72, 1292–1299. [Google Scholar] [CrossRef]
- Wijesekara, I.; Yoon, N.Y.; Kim, S.K. Phlorotannins from Ecklonia cava (Phaeophyceae): Biological activities and potential health benefits. BioFactors 2010, 36, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, S.; Pereira, O.; Seca, A.; Pinto, D.; Silva, A. Seaweeds as preventive agents for cardiovascular diseases: From nutrients to functional foods. Mar. Drugs 2015, 13, 6838–6865. [Google Scholar] [CrossRef] [PubMed]
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- Crozier, A.; Del Rio, D.; Clifford, M.N. Bioavailability of dietary flavonoids and phenolic compounds. Mol. Asp. Med. 2010, 31, 446–467. [Google Scholar] [CrossRef] [PubMed]
- D’Archivio, M.; Filesi, C.; Varì, R.; Scazzocchio, B.; Masella, R. Bioavailability of the polyphenols: Status and controversies. Int. J. Mol. Sci. 2010, 11, 1321–1342. [Google Scholar] [CrossRef] [PubMed]
- Bangoura, I.; Chowdhury, M.T.H.; Kang, J.Y.; Cho, J.Y.; Jun, J.C.; Hong, Y.K. Accumulation of phlorotannins in the abalone Haliotis discus hannai after feeding the brown seaweed Ecklonia cava. J. Appl. Phycol. 2013, 26, 967–972. [Google Scholar] [CrossRef]
- Bangoura, I.; Hong, Y.-K. Dietary intake and accumulation of phlorotannins in abalone after feeding the phaeophyte Ecklonia stolonifera. J. Life Sci. 2015, 25, 780–785. [Google Scholar] [CrossRef]
- Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Rémésy, C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 intervention studies. Am. J. Clin. Nutr. 2005, 81, 243S–255S. [Google Scholar]
- Bohn, T. Dietary factors affecting polyphenol bioavailability. Nutr. Rev. 2014, 72, 429–452. [Google Scholar] [CrossRef] [PubMed]
- Scalbert, A.; Williamson, G. Dietary intake and bioavailability of polyphenols. J. Med. Food 2000, 3, 121–125. [Google Scholar]
Extraction Method | Model | Treatment Conditions | Effect | References |
---|---|---|---|---|
F. vesiculosus | ||||
EtOH 80% → fractionation with n-Hex and EtOAc → subfractionation of EtOAc in Sephadex LH-20 | PMA-treated mononuclear cells from human blood | 10 μM PMA + 1.5 μg/mL of 6 different EtOAc sub-fractions | All sub-fractions (except the 4th) ↓ ROS levels below 65% | [91] |
MeOH 60% | Caco-2 cells | 100 μg/mL of extract for 24 h | ↑ GSH levels by 31.9% | [88] |
MeOH 60% | H2O2-induced Caco-2 cells | 24 h pre-treatment with 100 μg/mL of extract for 24 h + 200 μM H2O2 | Restored SOD levels from 64.9 to 89% and ↓ 9.5% of the DNA damage | [39,88] |
MeOH 60% | t-BHP-induced Caco-2 cells | 100 μg/mL of extract for 24 h + 200 μM t-BHP | ↓ apx. 12% DNA damage in t-BHP-induced cells | [98] |
Ext1: EtOH 35% Ext2: EtOH 70% | In vitro: PMA or LPS-induced Raw 264.7 cells In vivo: Sprague–Dawley rats | In vitro: 100 ng/mL PMA or LPS + different concentrations of extracts In vivo: oral treatment with 200 mg/kg/day during 4 weeks | In vitro: Ext2: ↓ of O2●− in PMA-induced cells (IC50 = 31 μg/mL), Ext1: ↓ of O2●− in both cell models (IC50 = 38 and 39 μg/mL, respectively); In vivo: Ext2: ↑ reducing power, PON-1 activity and O2•− scavenging activity in the blood plasma (29%, 33% and 25%, respectively) | [97] |
F. serratus | ||||
MeOH 60% | Caco-2 cells | 100 μg/mL of extract for 24 h | ↑ GSH levels by 37.4% | [88] |
MeOH 60% | t-BHP or H2O2-induced Caco-2 cells | 100 μg/mL of extract for 24 h + 1 mM t-BHP or 200 μM H2O2 | Restored SOD levels in both t-BHP and H2O2-induced cells from 73.9–108% and 64.9–89.5%, respectively, and ↓ 13.2% of the H2O2-induced DNA damage | [39,88] |
Ext1: H2O Ext2: EtOH 80% | t-BHP-induced Caco-2 cells | 100 μg/mL of extracts for 24 h + 1 mM t-BHP | Both extracts ↓ apx. 13% DNA damage in t-BHP-induced cells | [98] |
A. nodosum | ||||
Extract with 18% phlorotannins | t-BHP-induced ARPE-19 and WKD cells | 0.1–0.5% extract for 20 min + 500 μM t-BHP | ↓ ROS production close to the negative control on cells treated with 0.2% extract | [38] |
MeOH 60% → digestion with pepsin at 37 °C and pH 2 → digestion with pancreatin/bile extract at 37 °C pH 6.9 → dialysis with cutoff at 1 kDa | t-BHP-induced HepG-2 cells | 0.5–50 μg/mL of extract for 20 h + 400 μM t-BHP | ↓ ROS and lipid, restored GSH levels to apx. 75% and regulated the activity of GSH-px, GSH-red GSH-tr | [99] |
MeOH 60% | Caco-2 cells | 100 μg/mL of extract for 24 h | ↑ GSH levels by 35.5% | [88] |
MeOH 60% | H2O2-induced Caco-2 cells | 100 μg/mL of extract for 24 h + 200 μM H2O2 | Restored SOD levels from 64.9–89.5% | [88] |
Ext1: H2O Ext2: EtOH 60% Ext3: EtOH 80% | t-BHP or H2O2-induced Caco-2 cells | 100 μg/mL of extracts for 24 h + 1 mM t-BHP or 200 μM H2O2 | Ext1: ↓ 20% H2O2-induced DNA damage; Ext2: ↓ apx. 15% t-BHP -induced DNA damage, Ext3: ↓ apx. 13% DNA damage in both models | [98] |
P. canaliculata | ||||
MeOH 60% | Caco-2 cells | 100 μg/mL of extract for 24 h | ↑ GSH levels by 38.7% | [88] |
MeOH 60% | t-BHP or H2O2-induced Caco-2 cells | 100 μg/mL of extract for 24 h + 1 mM t-BHP or 200 μM H2O2 | Restored SOD levels from 73.9–97% and 64.9–97.4%, respectively | [39,88] |
Extraction Method | Model | Test Conditions | Effect | References |
---|---|---|---|---|
F. vesiculosus | ||||
Sequential extraction with CHCl3 → EtOH 96% → Ac 70% | Measurement of α-glucosidase activity | Crescent concentrations of extracts | EtOH and Ac extracts had the highest inhibitory activity (IC50 = 4.4 and 0.34 μg/mL, respectively) | [111] |
Ext1: H2O Ext2: EtOH | Measurement of α-glucosidase and α-amylase activities | 0.1–1000 μg/mL of extracts | ↓ enzymatic activity (α-glucosidase: IC50 = 0.32 and 0.49 μg/mL, respectively; α-amylase: IC50 = 59.1 and 63.5 μg/mL, respectively) | [47] |
Ac 70% → fractionation with DCM, EtOAc and But → subfractionation of EtOAc in Sephadex LH-20 (F1–F4) | BSA-methylglyoxal and BSA-glucose assay | Crescent concentrations of fractions or sub-fractions | Strong ↓ BSA glycation by subfractions, (EC50 apx. 0.16 mg/mL for F1–F4 in BSA-methylglyoxal and 0.05 mg/mL for F1 and F2 in BSA-glucose) | [116] |
F. distichus | ||||
EtOH 80% → Fractionation with n-hex, EtOAc, 1-But → subfractionation of EtOAc in Sephadex LH-20 | Measurement of α-glucosidase and α-amylase activities | 1.5–200 μg/mL of subfractions | Subfraction 22 showed ↑ inhibitory activity (IC50 = 0.89 and 13.98 μg/mL, respectively) | [115] |
A. nodosum | ||||
EtOH 50% at 80 °C → Fractionation with EtOAc and 1-But → purification in C18 column | Measurement of α-glucosidase activity | Crescent concentrations of fractions | Purified fraction showed ↑ inhibitory activity (IC50 = 24 μg/mL) | [117] |
Sequential extraction with CHCl3 → EtOH 96% → Ac 70% | Measurement of α-glucosidase activity | Crescent concentrations of extracts | Ac extracts showed ↑ inhibitory activity (IC50 = 0.72 μg/mL) | [111] |
H2O at 80 °C from algae collected at different seasons | Measurement of α-glucosidase activity | 0.05–0.5 μg/mL of extract | Summer extracts have ↑ inhibitory activity (IC70 = 2.23 μg/mL) | [113] |
Ext1: H2O Ext2: EtOH | Measurement of α-glucosidase and α-amylase activities | 0.1–1000 μg/mL of extracts | ↓ enzymatic activity (α-glucosidase: IC50 = n.d.; α-amylase: IC50 = 44.7 and 53.6 μg/mL, respectively) | [47] |
EtOH 50% | 2-deoxyglucose-cultured 3T3-L1 cells | 50–400 μg/mL of extract for 20 min + 1 μCi/mL 2-deoxyglucose | ↑ basal glucose uptake by 3-fold at 400 μg/mL | [117] |
ACN:0.2% CH2O2 (1:1) → purification in SPE column → fractionation in Sephadex LH-20 | Measurement of α-glucosidase and α-amylase activities in absence or presence of acarbose | Phlorotannin fraction: 2.5–100 μg GAE/mL for α-glucosidase and 50–400 μg GAE/mL for α-amylase; acarbose + phlorotannin fraction: 1 μg/mL + 0.1 μg/GAE –0.25 μg/mL + 0.025 μg/GAE | ↓ enzymatic activity (α-glucosidase: IC50 = 10 μg GAE/mL; α-amylase: IC50 = 0.15 μg GAE/mL). ↓ acarbose concentration needed for an effective enzymatic inhibition (from 1–0.5 μg/mL) | [118] |
P. canaliculata | ||||
MeOH 70% | In vitro: measurement of sucrase and maltase activities In vivo: sucrose-fed Wistar rats | In vitro: 0–16.7 mg/mL extract In vivo: oral administration of 1 mg/kg of extract + 0.5 mg/kg of sucrose | In vitro: ↓ enzymatic activity (IC50 = 2.24 and 2.84 mg/mL, respectively) In vivo: ↓ postprandial blood glucose levels | [112] |
A. nodosum combined with F. vesiculosus | ||||
Commercial hot water extract InSea2TM (10% polyphenol content in CAE) | In vitro: measurement of α-glucosidase and α-amylase activities In vivo: Wistar rats fed with corn starch + safflower oil | In vitro: 1.25–25 μg/mL of InSea2TM In vivo: oral administration of 7.5 mg/kg of InSea2TM + 2 mL/kg of starch and oil (1:1) | In vitro: ↓ enzymatic activity (IC50 = 2.8 and 5 μg/mL, respectively) In vivo: ↓ 90% postprandial blood glucose and ↓ 40% insulin peak | [119] |
Commercial hot water extract InSea2TM (10% polyphenol content in CAE) | Human trial | Oral administration of two capsules (500 mg) 30 min prior to carbohydrate ingestion | ↓ insulin incremental area of the curve by 12.1% and ↑ insulin sensitivity by 7.9% | [120] |
Extraction method | Model | Test Conditions | Effect | References |
---|---|---|---|---|
F. vesiculosus | ||||
H2O | LPS-induced porcine colonic tissue ex vivo | 1 mg/mL extract + 10 µg/mL LPS | ↓ expression of the genes IL17A, IL8, CCL2, CXCL2, CXCL10, CXCL11, ICAM1, VCAM1, TLR4, TLR7, NFKB1, RELB, MAP3K8, CJUN, PTGS2, C5 and LYZ >2× compared to the control | [128] |
EtOH 35% | PMA-stimulated RAW 264.7 | 100 ng/mL PMA + different concentrations of extracts | ↓ production of NO● (IC50 = 37 µg/mL) | [97] |
F. serratus | ||||
H2O | LPS-induced porcine colonic tissue ex vivo | 1 mg/mL extract + 10 µg/mL LPS | ↓ expression of the genes IL8, IL6 and TNFA below 0.70, 0.69 and 1.15× compared to LPS control, respectively | [42] |
F. distichus | ||||
MeOH 80% → fractionation with n-hex, EtOAc and 1-But → subfractionation of EtOAc in flash chromatography | LPS-induced RAW 264.7 cells | 12.5–50 µg/mL a subfraction rich in fucophlorethols for 1 h + 1 µg/mL LPS | ↓ expression of IL-1β, IL-6, IL-17, TNF-α, MCP-1, iNOS, COX-2, ICAM-1, TLR-4 and TLR-9 in a dose-dependent manner | [131] |
A. nodosum | ||||
Extract with 18% phlorotannins | LPS-induced U937 cells | 0.05–0.2% of extract for 2 h + 0.5 µg/mL LPS | ↓ levels of TNF-α and IL-6 close to control | [38] |
H2O → alginate precipitation → ultrafiltration | LPS-induced U937 cells | 0.1 µg extract for 2 h + 0.5 µg/mL LPS | ↓ levels of TNF-α by 94% and IL-6 by 84% | [126] |
EtOH 80% | LPS-induced porcine colonic tissue ex vivo | 1 mg/mL extract + 10 µg/mL LPS | ↓ expression of the genes IL8, IL6 and TNFA below 0.99, 0.75 and 1.01× compared to LPS control, respectively | [42] |
EtOH 80% | TNF-α-induced Caco-2 cells | 0.1–1 mg/mL extract + 10 ng/mL TNF-α | ↓ expression of the genes IL8, TNFA, IL1B, IL18, CSF1, CXCL10, CCL5, NFKB2, IKBKB, PTGS2 and MIF by >2× | [127] |
EtOH 80% → dialysis fractionation into three Mw fractions (<3.5 kDa, 3.5–100 kDa, >100 kDa) | LPS-induced porcine colonic tissue ex vivo | 1 mg/mL extract or Mw fractions + 10 µg/mL LPS | ↓ expression of the genes LYZ, IL8, PTGS2, TLR6, CXCL10, IL6, CXCL11, ICAM, NFKB1 and CXCL2 by >2× either by the crude extract or the three Mw fractions | [127] |
Extraction Method | Model | Test Conditions | Effect | References |
---|---|---|---|---|
F. vesiculosus | ||||
Acetone 99.5% → purification by HPLC | PancTu1, Panc89, Panc1 and Colo357 cells | 12.5–100 µg/mL of purified extract | ↓ cell proliferation, ↑ cell cycle inhibitors (IC50 = 17.35 µg/mL, 17.5 µg/mL, 19.23 µg/mL and 28.9 µg/mL, for each cell line, respectively) | [133] |
H2O → precipitation → normal phase HPLC → reversed phase HPLC→ F15 + F16 | Panc89 and PancTu1 cells | 0.2–200 µg/mL of fractions | ↓ cell proliferation (F15: IC50 = 15.2 and 18.3 μg/mL, respectively; F16: IC50 = 16.4 and 16.2 μg/mL) | [134] |
F. spiralis | ||||
Ext1: DCM Ext2: MeOH 100% Ext3: n-hex fraction of Ext2 | HeLa cells | Crescent concentrations of dichloromethane extract | ↑ apoptosis, with Ext1 showing highest activity (IC50 = 10.7 μg/mL) | [135] |
Ac 70% → purification with cellulose | Hyaluronidase activity measurement | 0.5–2.25 mg/mL of extract | ↓ enzymatic activity (IC50 = 0.73 mg/mL dry weight) | [136] |
A. nodosum | ||||
ACN:0.2% CH2O2 (1:1) → purification in SPE columns | Caco-2 cells | 15–42.5 µg/mL of extract | ↓ cell proliferation (IC50 = 33 μg/mL) | [114] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Catarino, M.D.; Silva, A.M.S.; Cardoso, S.M. Fucaceae: A Source of Bioactive Phlorotannins. Int. J. Mol. Sci. 2017, 18, 1327. https://doi.org/10.3390/ijms18061327
Catarino MD, Silva AMS, Cardoso SM. Fucaceae: A Source of Bioactive Phlorotannins. International Journal of Molecular Sciences. 2017; 18(6):1327. https://doi.org/10.3390/ijms18061327
Chicago/Turabian StyleCatarino, Marcelo D., Artur M. S. Silva, and Susana M. Cardoso. 2017. "Fucaceae: A Source of Bioactive Phlorotannins" International Journal of Molecular Sciences 18, no. 6: 1327. https://doi.org/10.3390/ijms18061327