Pharmacological Modulation of Radiation Damage. Does It Exist a Chance for Other Substances than Hematopoietic Growth Factors and Cytokines?
Abstract
:1. Introduction
2. Immunomodulators
2.1. β-Glucan
2.2. 5-Androstenediol (5-AED)
2.3. Other Immunomodulators
3. Prostaglandins and Inhibitors of Prostaglandin Production
4. Herbal Extracts
5. Amifostine
6. Antioxidants
6.1. Vitamin E Family Members
6.2. Selenium-Containing Compounds
6.3. Other Antioxidative Compounds
7. Other Compounds Tested as Radioprotectors or Radiomitigators
7.1. Genistein
7.2. Adenosine Receptor Agonists
7.3. More Selected Compounds
8. Remarks to Cutaneous Syndrome of Acute Radiation Syndrome (ARS)
9. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Dörr, H.; Meineke, V. Acute radiation syndrome caused by accidental radiation exposure—Therapeutic principles. BMC Med. 2011, 9, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Pellmar, T.C.; Rockwell, S. Priority list of research areas for radiological nuclear threat countermeasures. Radiat. Res. 2005, 163, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.K.; Romaine, P.L.P.; Newman, V.L.; Seed, T.M. Medical countermeasures for unwanted CBRN exposures: Part II radiological and nuclear threats with review of recent countermeasure patents. Expert Opin. Ther. Pat. 2016, 26, 1399–1408. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.K.; Romaine, P.L.P.; Seed, T.M. Medical countermeasures for radiation exposure and related injuries: Charcaterization of medicines, FDA-approval status and inclusion into the strategic national stockpile. Health Phys. 2015, 108, 607–630. [Google Scholar] [CrossRef] [PubMed]
- Strohl, W.R. Fusion proteins for half-life extension of biologics as a strategy to make biobetters. BioDrugs 2015, 29, 215–239. [Google Scholar] [CrossRef] [PubMed]
- Hérodin, F.; Roy, L.; Grenier, N.; Delaunay, C.; Bauge, S.; Vaurijoux, A.; Gregoire, E.; Martin, C.; Alonso, A.; Mayol, L.F.; et al. Antiapoptotic cytokines in combination with pegfilgrastim soon after irradiation mitigate myelosuppression in nonhuman primates exposed to high radiation dose. Exp. Hematol. 2007, 35, 1172–1181. [Google Scholar] [CrossRef] [PubMed]
- Hirouchi, T.; Ito, K.; Nakano, M.; Monzen, S.; Yoshino, H.; Chiba, M.; Hazawa, M.; Nakano, A.; Ishikawa, J.; Yamaguchi, M.; et al. Mitigative effects of a combination of multiple pharmaceutical drugs on the survival of mice exposed to lethal ionizing radiation. Curr. Pharm. Biotechnol. 2016, 17, 190–199. [Google Scholar] [CrossRef]
- Singh, V.K.; Newman, V.L.; Seed, T.M. Colony-stimulating factors for the treatment of the hematopoietic compartment of the acute radiation syndrome (H-ARS): A review. Cytokine 2015, 71, 22–37. [Google Scholar] [CrossRef] [PubMed]
- Dunlap, J.; Minami, E.; Bhagwat, A.A.; Keister, D.L.; Stacey, G. Nodule development induced by mutants of Bradyrhizobium japonicum defective in cyclic β-glucan synthesis. Mol. Plant Microbe Interact. 1996, 9, 546–555. [Google Scholar] [CrossRef] [PubMed]
- Magnani, M.; Castro-Gomez, R.H.; Aoki, M.N.; Gregorio, E.P.; Libos, F.; Watanabe, M.A.E. Effects of carboxymethyl-glucan from Saccharomyces cerevisiae on the peripheral blood of patients with advanced prostate cancer. Exp. Ther. Med. 2010, 5, 859–862. [Google Scholar] [CrossRef]
- Ohno, N.; Miura, N.N.; Nakajima, M.; Yadomae, T. Antitumor 1,3-β-glucan from cultured fruit body of Sparassis crispa. Biol Pharm. Bull. 2000, 23, 866–872. [Google Scholar] [CrossRef] [PubMed]
- Chang, R. Bioactive polysaccharides from traditional Chinese medicine herbs as anticancer adjuvants. J. Altern. Complement. Med. 2002, 8, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Patchen, M.L.; MacVittie, T.J. Dose-dependent responses of murine pluripotent stem cells and myeloid and erythroid progenitor cells following administration of the immunomodulating agent glucan. Immunopharmacology 1983, 5, 303–313. [Google Scholar] [CrossRef]
- Pospíšil, M.; Jarý, J.; Netíková, J.; Marek, M. Glucan-induced enhancement of hemopoietic recovery in γ-irradiated mice. Experientia 1982, 38, 1232–1234. [Google Scholar] [CrossRef] [PubMed]
- Pospíšil, M.; Šandula, J.; Pipalová, I.; Hofer, M.; Viklická, Š. Hemopoiesis stimulating and radioprotective effects of carboxymethylglucan. Physiol. Res. 1991, 40, 377–380. [Google Scholar] [PubMed]
- Hofer, M.; Pospíšil, M.; Viklická, Š.; Pipalová, I.; Holá, J.; Šandula, J. Effects of postirradiation carboxymethylglucan administration in mice. Int. J. Immunopharmacol. 1995, 17, 167–174. [Google Scholar] [CrossRef]
- Hofer, M.; Pospíšil, M.; Pipalová, I.; Holá, J.; Šandula, J. Haemopoiesis-enhancing effects of repeatedly administered carboxymethylglucan in mice exposed to fractionated irradiation. Folia Biol. 1995, 41, 249–256. [Google Scholar]
- Hofer, M.; Pospíšil, M. Glucan as stimulator of hematopoiesis in normal and γ-irradiated mice. A survey of the authors’ own results. Int. J. Immunopharmacol. 1997, 19, 607–609. [Google Scholar] [CrossRef]
- Patchen, M.L.; MacVittie, T.J. Macrophages and Natural Killer Cells; Borman, J.J., Sorkin, E., Eds.; Plenum Publishing Corporation: New York, NY, USA, 1982; pp. 267–272. [Google Scholar]
- Patchen, M.L.; MacVittie, T.J. Stimulated hemopoiesis and enhanced survival following glucan treatment in sublethally and lethally irradiated mice. Int. J. Immunopharmacol. 1985, 7, 923–932. [Google Scholar] [CrossRef]
- Patchen, M.L.; MacVittie, T.J.; Wathen, L.M. Effects of pre- and post-irradiation glucan treatment on pluripotent stem cells, granulocyte, macrophage and erythroid progenitor cells, and hemopoietic stromal cells. Experientia 1984, 40, 1240–1244. [Google Scholar] [CrossRef] [PubMed]
- Patchen, M.L.; MacVittie, T.J.; Brook, I. Glucan-induced hemopoietic and immune stimulation: Therapeutic effects in sublethally and lethally irradiated mice. Meth. Find. Exp. Clin. Pharmacol. 1986, 8, 151–155. [Google Scholar]
- Patchen, M.L.; D’Alesandro, M.M.; Brook, I.; Blakely, W.F.; MacVittie, T.J. Glucan: Mechanisms involved in its “radioprotective” effect. J. Leukoc. Biol. 1987, 42, 95–105. [Google Scholar] [PubMed]
- Patchen, M.L.; DiLuzio, N.R.; Jacques, P.; MacVittie, T.J. Soluble polyglycans enhance recovery from cobalt-60-induced hemopoietic injury. J. Biol. Response Mod. 1984, 3, 627–633. [Google Scholar] [PubMed]
- Patchen, M.L.; Brook, I.; Elliott, T.B.; Jackson, W.E. Adverse effects of pefloxacin in irradiated C3H/HeN mice: Correction with glucan therapy. Antimicrob. Agents Chemother. 1993, 37, 1882–1889. [Google Scholar] [CrossRef] [PubMed]
- Pospíšil, M.; Netíková, J.; Pipalová, I.; Jarý, J. Combined radioprotection by preirradiation peroral cystamine and postirradiation glucan administration. Folia Biol. 1991, 37, 117–124. [Google Scholar]
- Patchen, M.L.; D’Alesandro, M.M.; Chirigos, M.A.; Weiss, J.F. Radioprotection by biological response modifiers alone and in combination with WR-2721. Pharmacol. Ther. 1988, 39, 247–254. [Google Scholar] [CrossRef]
- Patchen, M.L.; MacVittie, T.J.; Weiss, J.F. Combined modality radioprotection: The use of glucan and selenium with WR-2721. Int. J. Radiat. Oncol. Biol. Phys. 1990, 18, 1069–1075. [Google Scholar] [CrossRef]
- Patchen, M.L.; MacVittie, T.J.; Solberg, B.D.; Souza, L.M. Survival enhancement and hemopoietic regeneration following radiation exposure: Therapeutic approach using glucan and granulocyte colony-stimulating factor. Exp. Hematol. 1990, 18, 1042–1048. [Google Scholar] [PubMed]
- Pospíšil, M.; Hofer, M.; Pipalová, I.; Viklická, Š.; Netíková, J.; Šandula, J. Enhancement of hematopoietic recovery in γ-irradiated mice by the joint use of diclofenac, an inhibitor of prostaglandin synthesis, and glucan, a macrophage activator. Exp. Hematol. 1992, 20, 891–896. [Google Scholar] [PubMed]
- Hofer, M.; Pospíšil, M.; Viklická, Š.; Vacek, A.; Pipalová, I.; Bartoníčková, A. Hematopoietic recovery in repeatedly irradiated mice can be enhanced by a repeatedly administered combination of diclofenac and glucan. J. Leukoc. Biol. 1993, 53, 185–189. [Google Scholar] [PubMed]
- Hofer, M.; Pospíšil, M. Modulation of animal and human hematopoiesis by β-glucans: A review. Molecules 2011, 16, 7969–7979. [Google Scholar] [CrossRef] [PubMed]
- Cramer, D.E.; Allendorf, D.J.; Baran, J.T.; Hansen, R.; Marroquin, J.; Li, B.; Ratajcza, J.; Ratajczak, M.Z. β-glucan enhances complement-mediated hematopoietic recovery after bone marrow injury. Blood 2006, 107, 835–840. [Google Scholar] [CrossRef] [PubMed]
- Salama, S.F. β-glucan ameliorates γ-rays induced oxidative in jury in male Swiss albino rats. Pak. J. Zool. 2011, 43, 933–939. [Google Scholar]
- Pillai, T.G.; Devi, P.U. Mushroom β glucan: Potential candidate for post irradiation protection. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2013, 751, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Rondanelli, M.; Opizzi, A.; Monteferrario, F. The biological activity of β-glucans. Minerva Med. 2009, 3, 237–245. [Google Scholar]
- Whitnall, M.H.; Elliott, T.B.; Harding, R.A.; Inal, C.E.; Landauer, M.R.; Wilhelmsen, C.L.; McKinney, L.; Miner, V.L.; Jackson, W.E.; Loria, R.M.; et al. Androstenediol stimulates myelopoiesis and enhances resistance to infection in γ-irradiated mice. Int. J. Immunopharmacol. 2000, 22, 1–14. [Google Scholar] [CrossRef]
- Whitnall, M.H.; Inal, C.E.; Jackson, W.E.; Miner, V.L.; Villa, V.; Seed, T.M. In vivo radioprotection by 5-androstenediol: Stimulation of the innate immune system. Radiat. Res. 2001, 156, 283–293. [Google Scholar] [CrossRef]
- Whitnall, M.H.; Wilhelmsen, C.L.; McKinney, L.; Miner, V.; Seed, T.M.; Jackson, W.E. Radioprotective efficacy and acute toxicity of 5-androstenediol after subcutaneous or oral administration in mice. Immunopharmacol. Immunotoxicol. 2002, 24, 595–626. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.K.; Shafran, R.L.; Inal, C.E.; Jackson, W.E.; Whitnal, M.H. Effects of whole-body γ irradiation and 5-androstenediol administration on serum G-CSF. Immunopharmacol. Immunotoxicol. 2005, 27, 521–534. [Google Scholar] [CrossRef] [PubMed]
- Whitnall, M.H.; Villa, V.; Seed, T.M.; Banjack, J.; Miner, V.; Lewbart, M.L.; Dowding, C.A.; Jackson, W.E. Molecular specificity of 5-androstenediol as a systemic radioprotectant in mice. Immunopharmacol. Immunotoxicol. 2005, 27, 15–32. [Google Scholar] [CrossRef] [PubMed]
- Stickney, D.R.; Dowding, C.; Garsd, A.; Ahlem, C.; Whitnall, M.; McKeon, M.; Reading, C.; Frincke, J. 5-androstenediol stimulates multilineage hematopoiesis in rhesus monkeys with radiation-induced myelosuppression. Int. Immunopharmacol. 2006, 6, 1706–1713. [Google Scholar] [CrossRef] [PubMed]
- Stickney, D.R.; Dowding, C.; Authier, S.; Garsd, A.; Onizuka-Handa, N.; Reading, C.; Frincke, J.M. 5-androstenediol improves survival in clinically unsupported rhesus monkeys with radiation-induced myelosuppression. Int. Immunopharmacol. 2007, 7, 500–505. [Google Scholar] [CrossRef] [PubMed]
- Xiao, M.; Inal, C.E.; Parekh, V.I.; Chang, C.M.; Whitnall, M.H. 5-androstenediol promotes survival of γ-irradiated human hematopoietic progenitors through induction of nuclear factor-κB activation and granulocyte colony-stimulating factor expression. Mol. Pharmacol. 2007, 72, 370–379. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.K.; Grace, M.B.; Jacobsen, K.O.; Chang, C.M.; Parekh, V.L.; Inal, C.E.; Shafran, R.L.; Whitnall, A.D.; Kao, T.C.; Jackson, W.E.; et al. Administration of 5-androstenediol to mice: Pharmacokinetics and cytokine gene expression. Exp. Mol. Pathol. 2008, 84, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Grace, M.B.; Singh, V.K.; Rhee, J.G.; Jackson, W.E.; Kao, T.C.; Whitnall, M.H. 5-AED enhances survival of irradiated mice in a G-CSF-dependent manner, stimulates innate immune cell function, reduces radiation-induced DNA damage and induces genes that modulate cell cycle progression and apoptosis. J. Radiat. Res. 2012, 53, 840–853. [Google Scholar] [CrossRef] [PubMed]
- Arts-Kaya, F.S.F.; Visser, T.P.; Arshad, S.; Frincke, J.; Stickney, D.R.; Reading, C.L.; Wagemaker, G. 5-androstene-3β,17β-diol promotes recovery of immature hematopoietic cells following myelosuppressive radiation and synergizes with thrombopoietin. Int. J. Radiat. Oncol. Biol. Phys. 2012, 84, E401–E407. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Jang, W.S.; Lee, S.; Son, Y.; Park, S.; Lee, S.S. A study of the effects of sequential injection of 5-androstenediol on radiation-induced myelosuppression in mice. Arch. Pharm. Res. 2015, 38, 1213–1222. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.K.; Newman, V.L.; Romaine, P.L.P.; Wise, S.Y.; Seed, T.M. Radiation countermeasure agents: An update (2011–2014). Exp. Opin. Ther. Pat. 2014, 24, 1229–1255. [Google Scholar] [CrossRef] [PubMed]
- Stickney, D.R.; Groothuis, J.R.; Ahlem, C.; Kennedy, M.; Miller, B.S.; Onizuka-Handa, N.; Schlangen, K.M.; Destiche, D.; Reading, C.; Garsd, A.; et al. Preliminary clinical findings on Nemunne as a potential treatment for acute radiation syndrome. J. Radiol. Prot. 2010, 30, 687–698. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, E.J.; Hatch, M.H. Decreased X-ray mortality in endotoxin-treated mice. Radiat. Res. 1957, 9, 84. [Google Scholar]
- Hanks, G.E.; Ainsworth, E.J. Endotoxin protection and colony-forming units. Radiat. Res. 1967, 32, 367–382. [Google Scholar] [CrossRef] [PubMed]
- Opal, S.M. Endotoxins and other sepsis triggers. Contrib. Nephrol. 2010, 67, 14–24. [Google Scholar]
- Bertok, L.; Sztanyik, L.B.; Bertok, L. The effect of kanamycin treatment of rats on the development of gastrointestinal syndrome of radiation disease. Acta Microbiol. Hung. 1992, 39, 155–158. [Google Scholar] [PubMed]
- Fedoročko, P.; Brezáni, P. Radioprotection of mice by the bacterial extract Broncho-Vaxom—Comparison of survival 5 inbred mouse strains. Int. J. Immunother. 1992, 8, 185–190. [Google Scholar]
- Fedoročko, P.; Brezáni, P.; Macková, N.O. Radioprotection of mice by the bacterial extract Broncho-Vaxom®—Hematopoietic stem-cells and survival enhancement. Int. J. Radiat. Biol. 1992, 61, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Macková, N.O.; Fedoročko, P. Preirradiation hematological effects of the bacterial extract Broncho-Vaxom® and postirradiation acceleration recovery from radiation-induced hematopoietic depression. Drug Exp. Clin. Res. 1993, 19, 143–150. [Google Scholar]
- Fedoročko, P.; Macková, N.O.; Kopka, M. Administration of the bacterial extract Broncho-Vaxom® enhances radiation recovery and myelopoietic regeneration. Immunopharmacology 1994, 28, 163–170. [Google Scholar] [CrossRef]
- Fedorocko, P.; Brezani, P.; Mackova, N.O. Radioprotective effects of WR-2721, Broncho-Vaxom® and their combinations—Survival, myelopoietic restoration and induction of colony-stimulating activity in mice. Int. J. Immunopharmacol. 1994, 16, 177–184. [Google Scholar] [CrossRef]
- Macková, N.O.; Fedoročko, P. Combined radioprotective effect of Broncho-Vaxom® and WR-2721 on hematopoiesis and circulating blood cells. Neoplasma 1995, 42, 25–30. [Google Scholar] [PubMed]
- Saada, H.N.; Azab, K.S.; Zahran, A.M. Post-irradiation effect of Broncho-Vaxom, OM-85 BV, and its relationship to anti-oxidant activities. Pharmazie 2001, 56, 654–656. [Google Scholar] [PubMed]
- Madonna, G.S.; Ledney, G.D.; Elliott, T.B.; Brook, I.; Ulrich, J.T.; Myers, K.R.; Patchen, M.L.; Walker, R.I. Trehalose dimycolate enhances resistence to infection in neutropenic animals. Infect. Immun. 1989, 57, 2495–2501. [Google Scholar] [PubMed]
- Madonna, G.S.; Ledney, G.D.; Moore, M.M.; Elliott, T.B.; Brook, I. Treatment of mice with sepsis following irradiation and trauma with antibiotics and synthetic trehalose dicornomycolate (S-TDCM). J. Trauma 1991, 31, 316–325. [Google Scholar] [CrossRef] [PubMed]
- Crescenti, E.; Croci, M.; Medina, V.; Sambucco, L.; Bergoc, R.; Rivera, E. Radioprotective potential of a novel therapeutic formulation of oligoelements Se, Zn, Mn plus Lachesis muta venom. J. Radiat. Res. 2009, 50, 537–544. [Google Scholar] [CrossRef] [PubMed]
- Crescenti, E.J.V.; Medina, V.A.; Croci, M.; Sambuco, L.A.; Prestifilippo, J.P.; Elverdin, J.C.; Bergoc, R.M.; Rivera, E.S. Radioprotection of sensitive rat tissues by oligoelements Se, Zn, Mn plus Lachesis muta venom. J. Radiat. Res. 2011, 52, 557–567. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Chen, Q.; Wu, S.; Xia, X.C.; Wu, A.Q.; Cui, F.M.; Gu, Y.P.; Zhang, X.G.; Cao, J.P. Radioprotector WR-2721 and mitigating peptidoglycan synergistically promote mouse survival through the amelioration of intestinal and bone marrow damage. J. Radiat. Res. 2015, 56, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Shen, X.R.; Liu, Y.M.; Zhang, J.L.; He, Y.; Liu, Q.; Jiang, D.W.; Zong, J.; Li, J.M.; Hou, D.Y.; et al. Isolation, characterization, and radiation protection of Sipunculus nudus L. polysaccharide. Int. J. Biol. Macromol. 2016, 83, 288–296. [Google Scholar] [CrossRef] [PubMed]
- Cui, F.M.; Li, M.; Chen, Y.J.; Liu, Y.M.; He, Y.; Jiang, D.W.; Tong, J.; Li, J.X.; Shen, X.R. Protective effects of polysaccharides from Sipunculus nudus on beagle dogs exposed to γ-radiation. PLoS ONE 2014, 9, e104299. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.Q.; Shen, X.R.; Liu, Y.M.; He, Y.; Jiang, D.W.; Chen, W. Radioprotective effects of Sipunculus nudus L. polysaccharide combined with WR-2721, rhIL-11 and rhG-CSF on radiation-injured mice. J. Radiat. Res. 2015, 56, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Hanson, W.R.; Thomas, C. 16,16-dimethyl prostaglandin-E2 increases survival of murine intestinal stem-cells when given before photon radiation. Radiat. Res. 1983, 96, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Hanson, W.R. Radiation protection of murine intestine by WR-2721, 16,16-dimethyl prostaglandin-E2, and the combination of both agents. Radiat. Res. 1987, 111, 361–373. [Google Scholar] [CrossRef] [PubMed]
- Hanson, W.R.; Houseman, K.A.; Nelson, A.K.; Collins, P.W. Radiation protection of the murine intestine by misoprostol, a prostaglandin-E1 analog, given alone or with WR-2721, is stereospecific. Prostagl. Leukot. Essent. Fatty Acids 1988, 32, 101–105. [Google Scholar]
- Satoh, H.; Amagase, K.; Ebara, S.; Akiba, Y.; Takeuchi, K. Cyclooxygenase (COX)-1 and COX-2 both play an important role in the protection of the duodenal mucosa in cats. J. Pharmacol. Exp. Ther. 2013, 344, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, T.; Scott, D.-L.; Bjarnason, I. A unifying hypothesis for the mechanism of NSAID related gastrointestinal toxicity. Ann. Rheum. Dis. 1996, 55, 211–231. [Google Scholar] [CrossRef] [PubMed]
- Hanson, W.R.; Ainsworth, E.J. 16,16-dimethyl prostaglandin E2 induces radioprotection in murine intestinal and hematopoietic stem-cells. Radiat. Res. 1985, 103, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Pelus, L.M.; Broxmeyer, H.E. Modulation of the expression of HLA-DR (Ia) antigens and the proliferation of human erythroid (BFU-E) and multipotential (CFU-GEMM) progenitor cells by prostaglandin E2. Exp. Hematol. 1984, 12, 741–748. [Google Scholar] [PubMed]
- Lu, L.; Pelus, L.M.; Piacibello, W.; Moore, M.A.S.; Hu, W.; Broxmeyer, H.E. Prostaglandin E acts at two levels to enhance colony formation in vitro by erythroid (BFU-E) progenitor cells. Exp. Hematol. 1987, 15, 765–771. [Google Scholar] [PubMed]
- Kurland, J.; Moore, M.A.S. Modulation of hemopoiesis by prostaglandins. Exp. Hematol. 1977, 7, 119–126. [Google Scholar]
- Gentile, P.; Byer, D.; Pelus, L.M. In vivo modulation of murine myelopoiesis following intravenous administration of prostaglandin E2. Blood 1983, 62, 1100–1107. [Google Scholar] [PubMed]
- Frölich, J.C. A classification of NSAIDs according to the relative inhibition of cyclooxygenase isoenzymes. Trends Pharmacol. Sci. 1997, 18, 30–34. [Google Scholar] [CrossRef]
- Furuta, Y.; Hunter, N.; Barkley, T.; Hall, E.; Milas, L. Increase in radioresponse of murine tumors by treatment with indomethacin. Radiat. Res. 1988, 48, 3008–3013. [Google Scholar]
- Kozubík, A.; Pospíšil, M.; Netíková, J. The stimulatory effect of single-dose pre-irradiation administration of indomethacin and dicofenac on hematopoietic recovery in the spleen of γ-irradiated mice. Studia Biophys. 1989, 131, 93–101. [Google Scholar]
- Nishiguchi, I.; Furuta, Y.; Hunter, N.; Murray, D.; Milas, L. Radioprotection of haematopoietic tissue by indomethacin. Radiat. Res. 1990, 122, 188–192. [Google Scholar] [CrossRef] [PubMed]
- Kozubík, A.; Hofmanová, J.; Holá, J.; Netíková, J. The effect of nordihydroguairetic acid, an inhibitor of prostaglandin and leukotriene biosynthesis, on hematopoiesis of γ-irradiated mice. Exp. Hematol. 1993, 21, 138–142. [Google Scholar] [PubMed]
- Pospíšil, M.; Netíková, J.; Kozubík, A. Enhancement of haemopoietic recovery by indomethacin after sublethal whole-body γ irradiation. Acta Radiol. Oncol. 1986, 25, 195–198. [Google Scholar] [CrossRef] [PubMed]
- Pospíšil, M.; Netíková, J.; Kozubík, A.; Pipalová, I. Effect of indomethacin, diclofenac sodium and sodium salicylate on peripheral blood cell counts in sublethally γ-irradiated mice. Strahlenther. Onkol. 1989, 165, 627–631. [Google Scholar] [PubMed]
- Serushago, B.A.; Tanaka, K.; Koga, Y.; Taniguchi, K.; Nomoto, K. Positive effects of indomethacin on restoration of splenic nucleated cell population in mice given sublethal irradiation. Immunopharmacology 1987, 14, 21–26. [Google Scholar] [PubMed]
- Sklobovskaya, I.E.; Zhavoronkov, L.P.; Dubovik, R.V. Haemostimulating efficiency of prostaglandin biosynthesis inhibitors in conditions of fractionated irradiation. Radiobiologiya 1986, 26, 185–188. [Google Scholar]
- Hofer, M.; Pospíšil, M.; Pipalová, I. Radioprotective effects of flurbiprofen. Folia Biol. 1996, 42, 267–269. [Google Scholar]
- Hofer, M.; Pospíšil, M.; Pipalová, I.; Holá, J. Modulation of haemopoietic radiation response of mice by diclofenac in fractionated treatment. Physiol. Res. 1996, 45, 213–220. [Google Scholar] [PubMed]
- Hofer, M.; Pospíšil, M.; Tkadleček, L.; Viklická, Š.; Pipalová, I. Low survival of mice following lethal γ-irradiation after administration of inhibitors of prostaglandin synthesis. Physiol. Res. 1992, 41, 157–161. [Google Scholar] [PubMed]
- Floersheim, G.L. Allopurinol, indomethacin and riboflavin enhance radiation lethality in mice. Radiat. Res. 1994, 139, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Hofer, M.; Pospíšil, M.; Hoferová, Z.; Weiterová, L.; Komůrková, D. Stimulatory action of cyclooxygenase inhibitors on hematopoiesis. A review. Molecules 2012, 17, 5615–5625. [Google Scholar] [CrossRef] [PubMed]
- Hofer, M.; Pospíšil, M.; Znojil, V.; Holá, J.; Vacek, A.; Weiterová, L.; Štreitová, D.; Kozubík, A. Meloxicam, a cyclooxygenase-2 inhibitor, supports hematopoietic recovery in γ-irradiated mice. Radiat. Res. 2006, 166, 556–560. [Google Scholar] [CrossRef] [PubMed]
- Hofer, M.; Pospíšil, M.; Znojil, V.; Holá, J.; Vacek, A.; Štreitová, D. Meloxicam, an inhibitor of cyclooxygenase-2, increases the level of G-CSF and might be usable as an auxiliary means in G-CSF therapy. Physiol. Res. 2008, 57, 307–310. [Google Scholar] [PubMed]
- Hofer, M.; Pospíšil, M.; Dušek, L.; Hoferová, Z.; Weiterová, L. A single dose of an inhibitor of cyclooxygenase 2, meloxicam, administered shortly after irradiation increases survival of lethally irradiated mice. Radiat. Res. 2011, 176, 269–272. [Google Scholar] [CrossRef] [PubMed]
- Hoggatt, J.; Singh, P.; Sampath, J.; Pelus, L.M. Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation. Blood 2009, 113, 5444–5455. [Google Scholar] [CrossRef] [PubMed]
- Hoggatt, J.; Singh, P.; Stilger, K.N.; Plett, P.A.; Sampson, C.H.; Chua, H.L.; Orschell, C.M.; Pelus, L.M. Recovery from hematopoietic injury by modulating prostaglandin E2 signaling post-irradiation. Blood Cells Mol. Dis. 2013, 50, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Arora, R.; Gupta, D.; Chawla, R.; Sagar, R.; Sharma, A.; Kumar, R.; Prasad, J.; Singh, S.; Samanta, N.; Sharma, R.K. Radioprotection by plant products: Present status and future prospects. Phytother. Res. 2005, 19, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.C.; Wang, S.C.; Tsai, M.L.; Chen, M.C.; Wang, Y.C.; Hong, J.H.; McBride, W.H.; Chiang, C.S. Protection against radiation-induced bone marrow and intestinal injuries by Cordyceps sinensis, a Chinese herbal medicine. Radiat. Res. 2006, 166, 900–907. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.L.; Sankwar, S.; Verma, S.; Devi, M.; Samanta, N.; Agarwala, P.K.; Kumar, R.; Singh, P.K. Whole-body protection to lethally irradiated mice by oral administration of semipurified fraction of Podophyllum hexandrum and post irradiation treatment with Picrorhizza kurroa. Tokai J. Exp. Clin. Med. 2008, 33, 6–12. [Google Scholar] [PubMed]
- Lata, M.; Prasad, J.; Singh, S.; Kumar, R.; Singh, L.; Chaudhary, P.; Arora, R.; Chawla, R.; Tyagi, S.; Soni, N.L.; et al. Whoe body protection against lethal ionizing radiation in mice by REC-2001: A semi-purified fraction of Podophyllum hexandrum. Phytomedicine 2009, 16, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Pratheeshkumar, P.; Kuttan, G. Protective role of Vernonia cinerea L. against γ radiation-induced immunosuppression and oxidative stress in mice. Hum. Exp. Toxicol. 2011, 30, 1022–1038. [Google Scholar] [CrossRef] [PubMed]
- Shakeri-Boroujeni, A.; Mozdaravi, H.; Mahmmoudzadeh, M.; Faeghi, F. Potent radioprotective effect of herbal immunomodulator drug (IMOD) on mouse bone marrow erythrocytes as assayed by the micronucleus test. Int. J. Radiat. Res. 2016, 14, 221–228. [Google Scholar] [CrossRef]
- Wasserman, T.H.; Brizel, D.M. The role of amifostine as a radioprotector. Oncolohy N. Y. 2001, 15, 1349–1354. [Google Scholar]
- Upadhyay, S.N.; Dwarakanath, B.S.; Ravindranath, T.; Mathew, T.L. Chemical radioprotectors. Def. Sci. J. 2005, 55, 402–425. [Google Scholar] [CrossRef]
- Upadhay, S.N.; Ghose, A. Radioprotection by chemical means with the help of combined regimen radio-protectors—A short review. J. Ind. Chem. Soc. 2017, 94, 321–325. [Google Scholar]
- Mell, L.K.; Movsas, B. Pharmacologic normal tissue protection in clinical radiation oncology: Focus on amifostine. Expert Opin. Drug Met. 2008, 4, 1341–1350. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.D.; Zhu, S.W.; Li, X.B.; Wu, H.; Li, Y.; Hua, F. Effects of amifostine in head and neck cancer patients treated with radiotherapy: A systematic review and meta-analysis based on randomized controlled trials. PLoS ONE 2014, 9, e95968. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.K.; Fatanami, O.O.; Wise, S.Y.; Newman, V.L.; Romaine, L.P.; Seed, T.M. The potentiation of the radioprotective efficacy of two medical countermeasures, γ-tocotrienol and amifostine, by a combination prophylactic modality. Radiat. Prot. Dosim. 2016, 172, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Weiss, J.F.; Landauer, M.R. Radioprotection by antioxidants. Ann. N. Y. Acad. Sci. 1998, 899, 44–60. [Google Scholar] [CrossRef]
- Palozza, P.; Simone, R.; Picci, N.; Buzzoni, L.; Ciliberti, N.; Natangelo, A.; Manfredini, S.; Vertuani, S. Design, synthesis, and antioxidant potency of novel α-tocopherol analogues in isolated membranes and intact cells. Free Radic. Biol. Med. 2008, 44, 1452–1454. [Google Scholar] [CrossRef] [PubMed]
- Sen, C.K.; Khanna, S.; Roy, S.; Packer, L. Molecular basis of vitamin E action tocotrienol potently inhibits glutamate-induced pp60c-Src kinase activation and death of HT4 neuronal cells. J. Biol. Chem. 2000, 275, 13049–13055. [Google Scholar] [CrossRef] [PubMed]
- Kamal-Eldin, A.; Appelqist, L.A. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 1996, 31, 671–701. [Google Scholar] [CrossRef] [PubMed]
- Bichay, T.J.; Roy, R.M. Modification of survival and hematopoiesis in mice by tocopherol injection following irradiation. Strahlenther. Onkol. 1986, 162, 391–399. [Google Scholar] [PubMed]
- Srinivasan, V.; Weiss, J.F. Radioprotection by vitamin E: Injectable vitamin E administered alone or with WR-3689 enhances survival in irradiated mice. Int. J. Radiat. Oncol. Biol. Phys. 1992, 23, 841–845. [Google Scholar] [CrossRef]
- Kumar, K.S.; Srinivasan, V.; Toles, R. Nutritional approaches to radioprotection. Vitamin E. Mil. Med. 2002, 167, 57–59. [Google Scholar] [PubMed]
- Roy, R.M.; Petrella, M.; Shateri, H. Effects of administering tocopherol after irradiation on survival and proliferation of murine lymphocytes. Pharmacol. Ther. 1988, 39, 393–395. [Google Scholar] [CrossRef]
- Satyamitra, M.; Uma Devi, P.; Murase, H.; Kagiya, V.T. In vivo postirradiation protection by a vitamin E analog, α-TMG. Radiat. Res. 2003, 160, 655–661. [Google Scholar] [CrossRef] [PubMed]
- Cherdyntseva, N.; Shishkina, A.; Butorin, I.; Murase, H.; Gervas, P.; Kagiya, T.V. Effect of tocopherol-monoglucoside (TMG), a water-soluble glycosylated derivate of vitamin E, on hematopoietic recovery in irradiated mice. J. Radiat. Res. 2005, 46, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Ueno, M.; Inano, H.; Onoda, M.; Murase, H.; Ikota, N.; Kagiya, T.V.; Anzai, K. Modification of mortality and tumorigenesis by tocopherol-mono-glucoside (TMG) administered after irradiation in mice and rats. Radiat. Res. 2009, 172, 519–524. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.K.; Brown, D.S.; Kao, T.C. Tocopherol succinate: A promising radiation countermeasure. Int. Immunopharmacol. 2009, 9, 1423–1430. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.K.; Wise, S.Y.; Ducey, E.J.; Fatanmi, O.O.; Elliott, T.B.; Singh, V.K. α-tocopherol succinate protects mice against radiation-induced intestinal injury. Radiat. Res. 2012, 177, 133–145. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.K.; Wise, S.Y.; Ducey, E.J.; Brown, D.S.; Singh, V.K. Radioprotective efficacy of α-tocopherol succinate is mediated through granulocyte-colony stimulating factor. Cytokine 2011, 56, 411–421. [Google Scholar] [CrossRef] [PubMed]
- Palozza, P.; Verdecchia, S.; Avanzi, L.; Vartuani, S.; Serini, S.; Manfredini, S. Comparative antioxidant activity of tocotrienols and the novel chromanyl-polyisoprenyl molecule PeAox-6 in isoleted membranes and intact cells. Mol. Cell Biochem. 2006, 287, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Li, X.H.; Fu, D.D.; Latif, N.H.; Mullaney, C.P.; Ney, P.H.; Mog, S.R.; Whitnall, M.H.; Srinivasan, V.; Xiao, M. δ-tocotrienol protects mouse and human hematopoietic progenitors from γ-irradiation through extracellular signal-regulated kinase/mammalian target of rapamycin signaling. Haematologica 2010, 95, 1996–2004. [Google Scholar] [CrossRef] [PubMed]
- Satyamitra, M.; Kulkarni, S.; Ghosh, S.P.; Mullaney, C.P.; Condliffe, D.; Srinivasan, V. Hematopoietic recovery and amelioration of radiation-induced lethality by the vitamin E isoform, δ-tocotrienol. Radiat. Res. 2011, 175, 736–745. [Google Scholar] [CrossRef] [PubMed]
- Baliarsingh, S.; Beg, Z.H.; Ahmad, J. The therapeutic impacts of tocotrienols in type 2 diabetic patients with hyprlipidemia. Atherosclerosis 2005, 182, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, S.S.; Ghosh, S.P.; Satyamitra, M.; Mog, S.; Hieber, K.; Romanyukha, L.; Gambles, K.; Toles, R.; Kao, T.C.; Hauer-Jensen, M.; et al. γ-tocotrienol protects hematopoietic stem and progenitor cells in mice after total-body irradiation. Radiat. Res. 2010, 173, 738–747. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.P.; Kulkarni, S.; Hieber, K.; Toles, R.; Romayukha, L.; Kao, T.C.; Hauer-Jensen, M.; Kumar, K.S. γ-tocotrienol, a tocol antioxidant as a potent radioprotector. Int. J. Radiat. Biol. 2009, 85, 598–606. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, S.; Singh, P.K.; Ghosh, S.P.; Posarac, A.; Singh, V.K. Granulocyte colony-stimulating factor antibody abrogates radioprotective efficacy of γ-tocotrienol, a promising radiation countermeasure. Cytokine 2013, 62, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.K.; Kulkarni, S.; Fatanmi, O.O.; Wise, S.Y.; Newman, V.L.; Romaine, P.L.P.; Hendrickson, H.; Gulani, J.; Ghosh, S.P.; Kumar, K.S.; et al. Radioprotective efficacy of γ-tocotrienol in nonhuman primates. Radiat. Res. 2016, 185, 285–298. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.K.; Beattie, L.A.; Seed, T.M. Vitamin E: Tocopherols and tocotrienols as potential radiation countermeasures. J. Radiat. Res. 2013, 54, 973–988. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.K.; Hauer-Jensen, M. γ-tocotrienol as a promising countermeasure for acute radiation syndrome: Current status. Int. J. Mol. Sci. 2016, 17, 663. [Google Scholar] [CrossRef] [PubMed]
- Whanger, P.D. Selenocompounds in plants and animals and their biological significance. J. Am. Coll. Nutr. 2002, 21, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Weiss, J.F.; Srinivasan, V.; Kumar, K.S.; Landauer, M.R. Radioprotection by metals: Selenium. Adv. Space Res. 1992, 12, 223–231. [Google Scholar] [CrossRef]
- Kiremidjian-Schumacher, L.; Stotzky, G. Selenium and immune responses. Environ. Res. 1987, 42, 227–303. [Google Scholar] [CrossRef]
- Weiss, J.F.; Srinivasan, V.; Kumar, K.S.; Landauer, M.R.; Patchen, M.L. Radioprotection by selenium compounds. In Trace Elements and Free Radicals in Oxidative Diseases; Favier, A.E., Neve, J., Fauve, P., Eds.; AOCS Press: Champain, IL, USA, 1994; pp. 211–222. [Google Scholar]
- Weiss, J.F.; Landauer, M.R. Protection against ionizing radiation by antioxidant nutrients and phytochemicals. Toxicology 2003, 189, 1–20. [Google Scholar] [CrossRef]
- Karabulut-Bulan, O.; Bolkent, S.; Kizir, A.; Yanardag, R. Protective effects of vitamin E and selenium administration on small intestinal damage prior to abdominal radiation. Pak. J. Zool. 2016, 48, 1225–1232. [Google Scholar]
- Okunieff, P. Interactions between ascorbic acid and the radiation of bone marrow, skin, and tumor. Am. J. Clin. Nutr. 1991, 54, 1281S–1283S. [Google Scholar] [PubMed]
- Seifter, E.; Rettura, G.; Padawar, J.; Stratford, F.; Weinzweig, J.; Demetriou, A.A.; Levenson, S.M. Morbidity and mortality reduction by supplemental vitamin A or β-carotene in CBA mice given total-body-irradiation. J. Natl. Cancer Inst. 1984, 73, 1167–1177. [Google Scholar] [PubMed]
- Jeong, B.K.; Song, J.H.; Jeong, H.; Choi, H.S.; Jung, J.H.; Hahm, J.R.; Woo, S.H.; Jung, M.H.; Choi, B.H.; Kim, J.H.; et al. Effect of α-lipoic acid on radiation-induced small intestine injury in mice. Oncotarget 2016, 7, 15105–15117. [Google Scholar] [PubMed]
- Wambi, C.; Sanzari, J.; Wan, X.S.; Nuth, M.; Davis, J.; Ko, Y.H.; Sayers, C.M.; Baran, M.; Ware, J.H.; Kennedy, A.R. Dietary antioxidants protect hematopoietic cells and improve survival after total-body irradiation. Radiat. Res. 2008, 169, 384–396. [Google Scholar] [CrossRef] [PubMed]
- Wambi, C.O.; Sanzari, J.K.; Sayers, C.M.; Nuth, M.; Zhou, Z.Z.; Davis, J.; Finnberg, N.; Lewis-Wambi, J.S.; Ware, J.H.; El-Deiry, W.S.; et al. Protective effects of dietary antioxidants on proton total-body irradiation-mediated hematopoietic cell and animal survival. Radiat. Res. 2009, 172, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Weiss, J.F.; Landauer, M.R. History and development of radiation-protective agents. Int. J. Radiat. Biol. 2009, 85, 539–573. [Google Scholar] [CrossRef] [PubMed]
- Han, R.M.; Tian, Y.X.; Liu, Y.; Chen, C.H.; Ai, X.C.; Zhang, J.P.; Skibsted, L.H. Comparison of flavonoinds and isoflavonoids as antioxidants. J. Agric. Food Chem. 2009, 57, 3780–3785. [Google Scholar]
- Zhou, Y.; Mi, M.T. Genistein stimulates hematopoiesis and increases survioval in irradiated mice. J. Radiat. Res. 2005, 46, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Landauer, M.R.; Srinivasan, V.; Seed, T.M. Genistein protects mice from ionizing radiation injury. J. Appl. Toxicol. 2003, 23, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Davis, T.A.; Clarke, T.K.; Mog, S.R.; Landauer, M.R. Subcutaneous administration of genistein prior to lethal irradiation suports multilineage, hematopoietic progenitor cell recovery and survival. Int. J. Radiat. Biol. 2007, 83, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Landauer, M.R. Radioprotection by the soy isoflavone genistein. In Herbal Radiomodulators: Applications in Medicine, Homeland Defence and Space; Arora, R., Ed.; Cabi Publishing: Wallingford, UK, 2008; pp. 163–173. [Google Scholar]
- Day, R.M.; Davis, T.A.; Barshishat-Kupper, M.; McCart, E.A.; Tipton, A.J.; Landauer, M.R. Enhanced hematopoietic protection from radiation by the combination of genistein and captopril. Int. Immunopharmacol. 2013, 15, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Ha, C.T.; Li, X.H.; Fu, D.D.; Xiao, N.; Landauer, M.R. Genistein nanoparticles protect mouse hematopoietic system and prevent proinflammatory factors after γ irradiation. Radiat. Res. 2013, 180, 316–325. [Google Scholar] [CrossRef] [PubMed]
- Thorn, J.A.; Jarvis, S.M. Adenosine transporters. Gen. Pharmacol. 1996, 27, 613–620. [Google Scholar] [CrossRef]
- Gordon, E.L.; Pearson, J.D.; Dickinson, E.S.; Moreau, D.; Slakey, L.L. The hydrolysis of extracellular adenine nucleotides by arterial smooth muscle cells—Regulation of adenosine production at the cell surface. J. Biol. Chem. 1989, 264, 18986–18992. [Google Scholar] [PubMed]
- Pospíšil, M.; Hofer, M.; Netíková, J.; Viklická, Š.; Pipalová, I.; Bartoníčková, A. Effect of dipyridamole and adenosine monophosphate on cell proliferation in the hemopoietic tissue of normal and γ-irradiated mice. Experientia 1992, 48, 253–257. [Google Scholar]
- Pospíšil, M.; Hofer, M.; Netíková, J.; Pipalová, I.; Vacek, A.; Bartoníčková, A.; Volenec, K. Elevation of extracellular adenosine induces radioprotective effects in mice. Radiat. Res. 1993, 134, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Hofer, M.; Pospíšil, M.; Netíková, J.; Znojil, V.; Vácha, J. Enhancement of of haemopoietic spleen colony formation by drugs elevating extracellular adenosine: Effects of repeated in vivo treatment. Physiol. Res. 1997, 46, 285–290. [Google Scholar] [PubMed]
- Pospíšil, M.; Hofer, M.; Znojil, V.; Vácha, J.; Netíková, J.; Holá, J. Radioprotection of mouse hemopoiesis by dipyridamole and adenosine monophosphate in fractionated treatment. Radiat. Res. 1995, 142, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Hofer, M.; Pospíšil, M.; Netíková, J.; Znojil, V.; Vácha, J.; Holá, J. Radioprotective efficacy of dipyridamole and AMP combination in fractionated radiation regimen, and its dependence on the time of administration of the drugs prior to irradiation. Physiol. Res. 1995, 44, 93–98. [Google Scholar] [PubMed]
- Hofer, M.; Pospisil, M.; Weiterova, L.; Hoferova, Z. The role of adenosine receptor agonists in regulation of hematopoiesis. Molecules 2011, 16, 675–685. [Google Scholar] [CrossRef] [PubMed]
- Hofer, M.; Pospíšil, M.; Znojil, V.; Holá, J.; Vacek, A.; Štreitová, D. Adenosine A3 receptor agonist acts as a homeostatic regulator of bone marrow hematopoiesis. Biomed. Pharmacother. 2007, 61, 356–359. [Google Scholar] [CrossRef] [PubMed]
- Hofer, M.; Pospíšil, M.; Šefc, L.; Dušek, L.; Vacek, A.; Holá, J.; Hoferová, Z.; Šteritová, D. Activation of adenosine A3 receptors supports hematopoiesis-stimulating effects of granulocyte colony-stimulating factor in sublethally irradiated mice. Int. J. Radiat. Biol. 2010, 86, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Hofer, M.; Pospíšil, M.; Dušek, L.; Hoferová, Z.; Weiterová, L. Inhibition of cyclooxygenase-2 promotes the stimulatory action of adenosine A3 receptor agonist on hematopoiesis in sublethally γ-irradiated mice. Biomed. Pharmacother. 2011, 65, 427–431. [Google Scholar] [CrossRef] [PubMed]
- Hofer, M.; Pospíšil, M.; Dušek, L.; Hoferová, Z.; Komůrková, D. Agonist of the adenosine A3 receptor, IB-MECA, and inhibitor of cyclooxygenase-2, meloxicam, given alone or in a combination early after total body irradiation enhance survival of γ-irradiated mice. Radiat. Environ. Biophys. 2014, 53, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.P.; Perkins, M.W.; Hieber, K.; Kulkarni, S.; Kao, T.C.; Reddy, E.P.; Reddy, M.V.R.; Maniar, M.; Seed, T.M.; Kumar, K.S. Radiation protection by a new chemical entity, Ex-Rad™: Efficacy and mechanisms. Radiat. Res. 2009, 171, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Suman, S.; Datta, K.; Doiron, K.; Ren, C.; Kumar, R.; Taft, D.R.; Fornace, A.J.; Maniar, M. Radioprotective effects of ON 01210.Na upon oral administration. J. Radiat. Res. 2012, 53, 368–376. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.P.; Kulkarni, S.; Perkins, M.W.; Hieber, K.; Pessu, R.L.; Gambles, K.; Maniar, M.; Kao, T.C.; Seed, T.M.; Kumar, K.S. Amelioration of radiation-induced hematopoietic and gastrointestinal damage by Ex-RAD® in mice. J. Radiat. Res. 2012, 53, 526–536. [Google Scholar] [CrossRef] [PubMed]
- Suman, S.; Maniar, M.; Fornace, A.J.; Datta, K. Administration of ON 01210.Na after exposure to ionizing radiation protects bone marrow cells by attenuating DNA damage response. Radiat. Oncol. 2012, 7, 6. [Google Scholar] [CrossRef] [PubMed]
- Kang, A.D.; Coscenza, S.C.; Bonagura, M.; Manair, M.; Reddy, M.V.R.; Reddy, E.P. ON01210.Na (Ex-RAD®) mitigates radiation damage through activation of the AKT pathway. PLoS ONE 2013, 8, e58355. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.C.; Murley, J.S.; Grdina, D.J. Metformin exhibits radiation countermeasures efficacy when used alone or in combination with sulfhydryl containing drugs. Radiat. Res. 2014, 181, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Burdelya, L.G.; Krivokrysenko, V.I.; Tallant, T.C.; Strom, E.; Gleiberman, A.S.; Gupta, D.; Kurnasov, O.V.; Fort, F.L.; Osterman, A.L.; DiDonato, J.A.; et al. An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models. Science 2008, 320, 226–230. [Google Scholar] [CrossRef] [PubMed]
- Krivokrysenko, V.I.; Toshkov, I.A.; Gleiberman, A.S.; Krasnov, P.; Shyshynova, I.; Bespalov, I.; Maitra, R.K.; Narizhneva, N.V.; Singh, V.K.; Whitnall, M.H.; et al. The toll-like receptor 5 agonist entolimod mitigates lethal acute radiation syndrome in no-human primates. PLoS ONE 2015, 10, e0135388. [Google Scholar] [CrossRef] [PubMed]
- Toshkov, I.A.; Gleiberman, A.S.; Mett, V.L.; Hutson, A.D.; Singh, A.K.; Gudkov, A.V.; Burdelya, L.G. Mitigation of radiation-induced epithelial damage by the TLR5 agonist entolimod in a mouse model of fractionated head and neck irradiation. Radiat. Res. 2017, 187, 570–580. [Google Scholar] [CrossRef] [PubMed]
- Krivokrysenko, V.I.; Shakhov, A.N.; Singh, V.K.; Bone, F.; Kononov, Y.; Shyshynova, I.; Cheney, A.; Maitra, R.K.; Purmal, A.; Whitnall, M.H.; et al. Identification of granulocyte colony-stimulating factor and interleukin-6 as candidate biomarkers of CBLB502 efficacy as a medical radiation countermeasure. J. Pharmacol. Exp. Ther. 2012, 343, 497–508. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.R.; Sun, W.M.; Wang, J.J.; Zhank, M.; Yang, S.M.; Tian, Y.P.; Vidyasagar, S.; Pena, L.A.; Zhang, K.Z.; Cao, Y.B.; et al. Mitigation effect of an FGF-2 peptide on acute gastrointestinal syndrome after high-dose ionizing radiation. Int. J. Radiat. Oncol. Biol. Phys. 2010, 77, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.L.; Kimura, Y.; Gududuru, V.; Wu, W.J.; Balogh, A.; Szabo, E.; Thompson, K.E.; Yates, C.R.; Balasz, L.; Johnson, L.R.; et al. Mitigation of the hematopoietic and gastrointestinal acute radiation syndrome by octadecenyl thiophosphate, a small molecule mimic of lysophosphatidic acid. Radiat. Res. 2015, 183, 465–475. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, C.M.; Miao, Y.R.; Diep, A.N.; Wu, C.; Rankin, E.B.; Atwood, T.F.; Xing, L.; Giaccia, A.J. PHD inhibition mitigates and protects against radiation-induced gastrointestinal toxicity via HIF2. Sci. Transl. Med. 2014, 6, 236ra64. [Google Scholar] [CrossRef] [PubMed]
- Olcina, M.M. Reducing radiation-induced gastrointestinal toxicity—The role of the PHD/HIF axis. J. Clin. Investig. 2016, 126, 3708–3715. [Google Scholar] [CrossRef] [PubMed]
- Dainiak, N.; Gent, R.N.; Carr, Z.; Schneider, R.; Bader, J.; Buglova, E.; Chao, N.; Coleman, C.N.; Ganser, A.; Gorin, C.; et al. Literature review and global consensus on management of acute radiation syndrome affecting non-hematopoietic organ systems. Disaster Med. Public Health Prep. 2011, 5, 183–201. [Google Scholar] [CrossRef] [PubMed]
- Hirama, T.; Tanosaki, S.; Kandatsu, S.; Kuroiwa, N.; Kamada, T.; Tsuji, H.; Yamada, S.; Katoh, H.; Yamamoto, N.; Tsuji, H.; et al. Initial medical management of patients severely irradiated in the Tokai-mura criticality accident. Br. J. Radiol. 2003, 76, 246–352. [Google Scholar] [CrossRef] [PubMed]
- Delanian, S.; Porcher, R.; Balla-Mekias, S.; Lefaix, J.L. Randomize, placebo-controlled trial of combined petoxifylline and tocopherol for regression of superficial radiation-induced fibrosis. J. Clin. Oncol. 2003, 13, 2545–2550. [Google Scholar] [CrossRef] [PubMed]
- Bey, E.; Prat, M.; Duhamel, P.; Benderitter, M.; Brachet, M.; Trompier, F.; Battaglini, P.; Emou, I.; Boutin, L.; Gourven, M.; et al. Emerging therapy for improving wound repair of severe radiation burns using local bone marrow-derived stem cell administrations. Wound Repair Regen. 2010, 18, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Agay, D.; Scherthan, H.; Forcheron, F.; Grenier, N.; Herodin, F.; Meineke, V.; Drouet, M. Multipotent mesenchymal stem cell grafting to treat cutaneous radiation syndrome: Development of a new minipig model. Exp. Hematol. 2010, 38, 945–956. [Google Scholar] [CrossRef] [PubMed]
- Riccobono, D.; Agay, D.; Francois, S.; Scherthan, H.; Drouet, M.; Forcheron, F. Contribution of intramuscular autologous adipose tissue-derived stem cell injection to treat cutaneous radiation syndrome: Preliminary results. Health Phys. 2016, 111, 117–126. [Google Scholar] [CrossRef] [PubMed]
Agent or Group of Agents | Predominant Radiomodifying Effect(s) | Reference Number(s) |
---|---|---|
4-carboxystyryl-4-chlorobenzylsulfone (Ex-RAD) | Prevention of apoptosis | [49,166,167,168,169,170] |
5-androstenediol (5-AED) | Immunomodulator, stimulator of hematopoiesis | [37,38,39,40,41,42,43,44,45,46,47,48,49,50] |
Adenosine monophosphate (AMP) | Stimulator of proliferation of hematopoietic progenitor cells | [155,156,157,158,159,160] |
α-Lipoic acid | Antioxidant | [143,145] |
Amifostine (WR-2721) | Free radical scavenger | [59,60,66,69,105,106,107,108,109,110] |
β-Glucan | Immunomodulator, stimulator of hematopoiesis | [9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36] |
Broncho-Vaxom | Immunomodulator, stimulator of hematopoiesis | [55,56,57,58,59,60,61] |
Captopril | Vasodilator | [152] |
Dipyridamole | Enhances adenosine receptor action, stimulator of proliferation of hematopoietic progenitor cells | [154,156,157,158,159,160] |
Endotoxin | Immunomodulator, stimulator of hematopoiesis | [51,52,53,54] |
FGF-2 peptide | Improvement of regeneration of radiation-induced gastrointestinal damage, reduction of endotoxemia | [176] |
Genistein | Antioxidant | [49,147,148,149,150,151,152,153] |
Inhibitors of prolyl hydroxylase domain-containing enzymes | Antioxidants | [178,179] |
Lachesis muta venom | Immunomodulator | [64,65] |
Manganese-containing compounds | Antioxidants | [64,65] |
Meloxicam, selective cyclooxygenase-2 inhibitor | Inhibitor of prostaglandin production, stimulator of myelopoiesis | [94,95,96,97,98] |
Metformin | Antioxidant, modulator of cell renewal | [171] |
N6-(3-iodobenzyl)adenosine-5′-N-methyuronamide (IB-MECA) | Stimulator of hematopoietic cell proliferation through adenosine receptor action | [161,162,163,164,165] |
N-acetyl-cysteine | Antioxidant | [144,145] |
Non-selective cyclooxygenase inhibitors (non-selective non-steroidal anti-inflammatory drugs) | Inhibitors of prostaglandin production, stimulators of myelopoiesis | [81,82,83,84,85,86,87,88,89,90,91,92,93] |
Octadecenyl thiophosphate | Stimulation of hematopoiesis, reduction of endotoxemia | [177] |
Pentoxifylline | Improvement of blood flow properties | [182] |
Peptidoglycan | Immunomodulator, ameliorates bone marrow and intestinal radiation-induced damage | [66] |
Prostaglandins E and their derivatives | Hematopoietic modulators, radioprotectants of intestinal tissues | [70,71,72,73,74,75,76,77,78,79] |
Selenium-containing compounds | Antioxidants | [64,65,135,136,137,138,139,140] |
Sipunculus nudus polysaccharide | Immunomodulator, antioxidant | [67,68,69] |
Steroids | Antiinflammatory action | [180,181] |
Toll-like receptor 5 (CBLB502, entolimod) | Stimulation of proliferation of hematopoietic cells, prevention of apoptosis | [49,172,173,174,175] |
Trehalose dimycolate and its derivatives | Immunomodulators | [62,63] |
Vitamin C (ascorbic acid) | Antioxidant | [141] |
Vitamin A and its precursor | Antioxidant | [142] |
Vitamin E and its derivatives | Antioxidants | [49,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134] |
Zinc-containing compounds | Antioxidants | [64,65] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hofer, M.; Hoferová, Z.; Falk, M. Pharmacological Modulation of Radiation Damage. Does It Exist a Chance for Other Substances than Hematopoietic Growth Factors and Cytokines? Int. J. Mol. Sci. 2017, 18, 1385. https://doi.org/10.3390/ijms18071385
Hofer M, Hoferová Z, Falk M. Pharmacological Modulation of Radiation Damage. Does It Exist a Chance for Other Substances than Hematopoietic Growth Factors and Cytokines? International Journal of Molecular Sciences. 2017; 18(7):1385. https://doi.org/10.3390/ijms18071385
Chicago/Turabian StyleHofer, Michal, Zuzana Hoferová, and Martin Falk. 2017. "Pharmacological Modulation of Radiation Damage. Does It Exist a Chance for Other Substances than Hematopoietic Growth Factors and Cytokines?" International Journal of Molecular Sciences 18, no. 7: 1385. https://doi.org/10.3390/ijms18071385
APA StyleHofer, M., Hoferová, Z., & Falk, M. (2017). Pharmacological Modulation of Radiation Damage. Does It Exist a Chance for Other Substances than Hematopoietic Growth Factors and Cytokines? International Journal of Molecular Sciences, 18(7), 1385. https://doi.org/10.3390/ijms18071385