Respiratory Syncytial Virus: The Influence of Serotype and Genotype Variability on Clinical Course of Infection
Abstract
:1. Introduction
2. Characteristics of the Virus
3. Genetic Diversity and Clinical Impact
4. State of the Art for Active and Passive Prophylaxis against RSV
4.1. Monoclonal Antibodies
4.2. Vaccines
5. Future Directions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Nair, H.; Nokes, D.J.; Gessner, B.D.; Dherani, M.; Madhi, S.A.; Singleton, R.J.; O’Brien, K.L.; Roca, A.; Wright, P.F.; Bruce, N.; et al. Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: A systematic review and meta-analysis. Lancet 2010, 375, 1545–1555. [Google Scholar] [CrossRef]
- Anderson, E.J.; Carbonell-Estrany, X.; Blanken, M.; Lanari, M.; Sheridan-Pereira, M.; Rodgers-Gray, B.; Fullarton, J.; Rouffiac, E.; Vo, P.; Notario, G.; et al. Burden of severe respiratory syncytial virus disease among 33–35 weeks’ gestational age infants born during multiple respiratory syncytial virus seasons. Pediatr. Infect. Dis. J. 2017, 36, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Iwane, M.K.; Farnon, E.C.; Gerber, S.I. Importance of global surveillance for respiratory syncytial virus. J. Infect. Dis. 2013, 208, S165–S166. [Google Scholar] [CrossRef] [PubMed]
- Sigurs, N.; Aljassim, F.; Kjellman, B.; Robinson, P.D.; Sigurbergsson, F.; Bjarnason, R.; Gustafsson, P.M. Asthma and allergy patterns over 18 years after severe RSV bronchiolitis in the first year of life. Thorax 2010, 65, 1045–1052. [Google Scholar] [CrossRef] [PubMed]
- Hall, C.B.; Weinberg, G.A.; Blumkin, A.K.; Edwards, K.M.; Staat, M.A.; Schultz, A.F.; Poehling, K.A.; Szilagyi, P.G.; Griffin, M.R.; Williams, J.V.; et al. Respiratory syncytial virus-associated hospitalizations among children less than 24 months of age. J. Pediatr. 2013, 132, e341–e348. [Google Scholar] [CrossRef] [PubMed]
- Feltes, T.F.; Cabalka, A.K.; Meissner, H.C.; Piazza, F.M.; Carlin, D.A.; Top, F.H., Jr.; Connor, E.M.; Sondheimer, H.M. Palivizumab prophylaxis reduces hospitalization due to respiratory syncytial virus in young children with hemodynamically significant congenital heart disease. J. Pediatr. 2003, 143, 532–540. [Google Scholar] [CrossRef]
- Lanari, M.; Vandini, S.; Capretti, M.G.; Lazzarotto, T.; Faldella, G. Respiratory syncytial virus infections in infants affected by primary immunodeficiency. J. Immunol. Res. 2014, 2014, 850831. [Google Scholar] [CrossRef] [PubMed]
- American Academy of Pediatrics Committee on Infectious Diseases; American Academy of Pediatrics Bronchiolitis Guidelines Committee. Updated guidance for palivizumab prophylaxis among infants and young children at increased risk of hospitalization for respiratory syncytial virus infection. Pediatrics 2014, 134, e620–e638. [Google Scholar]
- Baraldi, E.; Lanari, M.; Manzoni, P.; Rossi, G.A.; Vandini, S.; Rimini, A.; Romagnoli, C.; Colonna, P.; Biondi, A.; Biban, P.; et al. Inter-society consensus document on treatment and prevention of bronchiolitis in newborns and infants. Ital. J. Pediatr. 2014, 40, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ventre, K.; Randolph, A. WITHDRAWN: Ribavirin for respiratory syncytial virus infection of the lower respiratory tract in infants and young children. Cochrane Database Syst. Rev. 2010, 12, CD000181. [Google Scholar] [CrossRef]
- Krilov, L.R. Safety issues related to the administration of ribavirin. Pediatr. Infect. Dis. J. 2002, 21, 479–481. [Google Scholar] [CrossRef] [PubMed]
- Welliver, R.C., Sr. Temperature, humidity, and ultraviolet B radiation predict community respiratory syncytial virus activity. Pediatr. Infect. Dis. J. 2007, 26, S29–S35. [Google Scholar] [CrossRef] [PubMed]
- Laham, F.R.; Mansbach, J.M.; Piedra, P.A.; Hasegawa, K.; Sullivan, A.F.; Espinola, J.A.; Camargo, C.A., Jr. Clinical profiles of respiratory syncytial virus subtypes A and B among children hospitalized with bronchiolitis. Pediatr. Infect. Dis. J. 2017. [CrossRef] [PubMed]
- Esposito, S.; Piralla, A.; Zampiero, A.; Bianchini, S.; Di Pietro, G.; Scala, A.; Pinzani, R.; Fossali, E.; Baldanti, F.; Principi, N. Characteristics and their clinical relevance of respiratory syncytial virus types and genotypes circulating in northern Italy in five consecutive winter seasons. PLoS ONE 2015, 10, e0129369. [Google Scholar] [CrossRef] [PubMed]
- Yoshihara, K.; Le, M.N.; Okamoto, M.; Carolle, A.; Wadagni, A. Association of RSV-A ON1 genotype with Increased Pediatric Acute Lower Respiratory Tract Infection in Vietnam. Sci. Rep. 2016, 6, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Martinello, R.A.; Chen, M.D.; Weibel, C.; Kahn, J.S. Correlation between respiratory syncytial virus genotype and severity of illness. J. Infect. Dis. 2002, 186, 839–842. [Google Scholar] [CrossRef] [PubMed]
- Otieno, J.R.; Kamau, E.M.; Agoti, C.N.; Lewa, C.; Otieno, G.; Bett, A.; Ngama, M.; Cane, P.A.; Nokes, D.J. Spread and evolution of respiratory syncytial virus a genotype ON1, coastal kenya, 2010–2015. Emerg. Infect. Dis. 2017, 23, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Fodha, I.; Vabret, A.; Ghedira, L.; Seboui, H.; Chouchane, S.; Dewar, J.; Gueddiche, N.; Trabelsi, A.; Boujaafar, N.; Freymuth, F. Respiratory syncytial virus infections in hospitalized infants: Association between viral load, virus subgroup, and disease severity. J. Med. Virol. 2007, 79, 1951–1958. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, E.D.; De Silva, L.M.; Oates, R.K. Clinical severity of respiratory syncytial virus group A and B infection in Sydney, Australia. Pediatr. Infect. Dis. J. 1993, 12, 815–819. [Google Scholar] [CrossRef] [PubMed]
- Melero, J.A.; Mas, V.; McLellan, J.S. Structural, antigenic and immunogenic features of respiratory syncytial virus glycoproteins relevant for vaccine development. Vaccine 2017, 35, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Martínez, I.; Valdés, O.; Delfraro, A.; Arbiza, J.; Russi, J.; Melero, J.A. Evolutionary pattern of the G glycoprotein of human respiratory syncytial viruses from antigenic group B: The use of alternative termination codons and lineage diversification. J. Gen. Virol. 1999, 80, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Hendry, R.M.; Talis, A.L.; Godfrey, E.; Anderson, L.J.; Fernie, B.F.; McIntosh, K. Concurrent circulation of antigenically distinct strains of respiratory syncytial virus during community outbreaks. J. Infect. Dis. 1986, 153, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Venter, M.; Madhi, S.A.; Tiemessen, C.T.; Schoub, B.D. Genetic diversity and molecular epidemiology of respiratory syncytial virus over four consecutive seasons in South Africa: Identification of new subgroup A and B genotypes. J. Gen. Virol. 2001, 82, 2117–2124. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.R.; Graham, B.S. Contribution of respiratory syncytial virus G antigenicity to vaccine-enhanced illness and the implications for severe disease during primary respiratory syncytial virus infection. Pediatr. Infect. Dis. J. 2004, 23, S46–S57. [Google Scholar] [CrossRef] [PubMed]
- White, L.J.; Waris, M.; Cane, P.A.; Nokes, D.J.; Medley, G.F. The transmission dynamics of groups A and B human respiratory syncytial virus (hRSV) in England & Wales and Finland: Seasonality and cross-protection. Epidemiol. Infect. 2005, 133, 279–289. [Google Scholar] [PubMed]
- Agoti, C.N.; Mwihuri, A.G.; Sande, C.J.; Onyango, C.O.; Medley, G.F.; Cane, P.A.; Nokes, D.J. Genetic relatedness of infecting and reinfecting respiratory syncytial virus strains identified in a birth cohort from rural Kenya. J. Infect. Dis. 2012, 206, 1532–1541. [Google Scholar] [CrossRef] [PubMed]
- Cane, P.A.; Matthews, D.A.; Pringle, C.R. Analysis of respiratory syncytial virus strain variation in successive epidemics in one city. J. Clin. Microbiol. 1994, 32, 1–4. [Google Scholar] [PubMed]
- Peret, T.C.; Hall, C.B.; Hammond, G.W.; Piedra, P.A.; Storch, G.A.; Sullender, W.M.; Tsou, C.; Anderson, L.J. Circulation pat- terns of group A and B human respiratory syncytial virus genotypes in 5 communities in North America. J. Infect. Dis. 2000, 181, 1891–1896. [Google Scholar] [CrossRef] [PubMed]
- Dapat, I.C.; Shobugawa, Y.; Sano, Y.; Saito, R.; Sasaki, A.; Suzuki, Y.; Kumaki, A.; Zaraket, H.; Dapat, C.; Oguma, T.; et al. New genotypes within re- spiratory syncytial virus group B genotype BA in Niigata, Japan. J. Clin. Microbiol. 2010, 48, 3423–3427. [Google Scholar] [CrossRef] [PubMed]
- Baek, Y.H.; Choi, E.H.; Song, M.S.; Pascua, P.N.Q.; Kwon, H.I.; Park, S.J.; Lee, J.H.; Woo, S.I.; Ahn, B.H.; Han, H.S.; et al. Prevalence and genetic characterization of respiratory syncytial virus (RSV) in hospitalized children in Korea. Arch. Virol. 2012, 157, 1039–1050. [Google Scholar] [CrossRef] [PubMed]
- Khor, C.S.; Sam, I.C.; Hooi, P.S.; Chan, Y.F. Displacement of predominant respiratory syncytial virus genotypes in Malaysia between 1989 and 2011. Infect. Genet. Evol. 2013, 14, 357–360. [Google Scholar] [CrossRef] [PubMed]
- Auksornkitti, V.; Kamprasert, N.; Thongkomplew, S.; Suwannakarn, K.; Theamboonlers, A.; Samransamruaj-kij, R.; Poovorawan, Y. Molecular characterization of human respiratory syncytial virus, 2010–2011: Identification of genotype ON1 and a new subgroup B genotype in Thailand. Arch. Virol. 2014, 159, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Pretorius, M.A.; van Niekerk, S.; Tempia, S.; Moyes, J.; Cohen, C.; Madhi, S.A. Replacement and positive evolution of subtype A and B respiratory syncytial virus G-protein genotypes from 1997–2012 in South Africa. J. Infect. Dis. 2013, 208, 227–237. [Google Scholar] [CrossRef] [PubMed]
- De-Paris, F.; Beck, C.; de Souza Nunes, L.; Pinheiro, A.M.; Paiva, R.M.; da Silva Menezes, D.; Pires, M.R.; dos Santos, R.P.; de Souza Kuchenbecker, R.; Barth, A.L. Evaluation of respiratory syncytial virus group A and B genotypes among nosocomial and community-acquired pediatric infections in Southern Brazil. Virol. J. 2014, 11, 36. [Google Scholar] [CrossRef] [PubMed]
- Agoti, C.N.; Otieno, J.R.; Gitahi, C.W.; Cane, P.A.; Nokes, D.J. Rapid spread and diversification of respiratory syncytial virus genotype ON1, Kenya. Emerg. Infect. Dis. 2014, 20, 950–959. [Google Scholar] [CrossRef] [PubMed]
- Tabatabai, J.; Prifert, C.; Pfeil, J.; Grulich-Henn, J.; Schnitzler, P. Novel respiratory syncytial virus (RSV) genotype ON1 predominates in Germany during winter season 2012–13. PLoS ONE 2014, 9, e109191. [Google Scholar] [CrossRef] [PubMed]
- Agoti, C.N.; Otieno, J.R.; Munywoki, P.K.; Mwihuri, A.G.; Cane, P.A.; Nokes, D.J.; Kellam, P.; Cotten, M. Local evolutionary patterns of human respiratory syncytial virus derived from whole-genome sequencing. J. Virol. 2015, 89, 3444–3454. [Google Scholar] [CrossRef] [PubMed]
- Walsh, E.E.; McConnochie, K.M.; Long, C.E.; Hall, C.B. Severity of respiratory syncytial virus infection is related to virus strain. J. Infect. Dis. 1997, 175, 814–820. [Google Scholar] [CrossRef] [PubMed]
- McConnochie, K.M.; Hall, C.B.; Walsh, E.E.; Roghmann, K.J. Variation in severity of respiratory syncytial virus infections with subtype. J. Pediatr. 1990, 117, 52–62. [Google Scholar] [CrossRef]
- Hall, C.B.; Walsh, E.E.; Schnabel, K.C.; Long, C.E.; McConnochie, K.M.; Hildreth, S.W.; Anderson, L.J. Occurrence of groups A and B of respiratory syncytial virus over 15 years: Associated epidemiologic and clinical characteristics in hospitalized and ambulatory children. J. Infect. Dis. 1990, 162, 1283–1290. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, N.G.; Gourgiotis, D.; Javadyan, A.; Bossios, A.; Kallergi, K.; Psarras, S.; Tsolia, M.N.; Kafetzis, D. Does respiratory syncytial virus subtype influences the severity of acute bronchiolitis in hospitalized infants? Respir. Med. 2004, 98, 879–882. [Google Scholar] [CrossRef] [PubMed]
- Jafri, H.S.; Wu, X.; Makari, D.; Henrickson, K.J. Distribution of respiratory syncytial virus subtypes A and B among infants presenting to the emergency department with lower respiratory tract infection or apnea. Pediatr. Infect. Dis. J. 2013, 32, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Hornsleth, A.; Klug, B.; Nir, M.; Johansen, J.; Hansen, K.S.; Christensen, L.S.; Larsen, L.B. Severity of respiratory syncytial virus disease related to type and genotype of virus and to cytokine values in nasopharyngeal secretions. Pediatr. Infect. Dis. J. 1998, 17, 1114–1121. [Google Scholar] [CrossRef] [PubMed]
- Tran, D.N.; Pham, T.M.; Ha, M.T.; Tran, T.T.; Dang, T.K.; Yoshida, L.M.; Okutsu, S.; Hayakawa, S.; Mizuguchi, M.; Ushijima, H. Molecular epidemiology and disease severity of human respiratory syncytial virus in Vietnam. PLoS ONE 2013, 8, e45436. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Chen, D.; Tan, W.; Xu, D.; Qiu, S.; Zeng, Z.; Li, X.; Zhou, R. Epidemiology and clinical presentations of respiratory syncytial virus subgroups A and B detected with multiplex real-time PCR. PLoS ONE 2016, 11, e0165108. [Google Scholar] [CrossRef] [PubMed]
- Bashir, U.; Alam, M.M.; Sadia, H.; Zaidi, S.S.; Kazi, B.M. Molecular characterization of circulating respiratory syncytial virus (RSV) genotypes in Gilgit Baltistan Province of Pakistan during 2011–2012 winter season. PLoS ONE 2013, 8, e74018. [Google Scholar]
- Eshaghi, A.; Duvvuri, V.R.; Lai, R.; Nadarajah, J.T.; Li, A.; Patel, S.N.; Low, D.E.; Gubbay, J.B. Genetic variability of human respiratory syncytial virus A strains circulating in Ontario: A novel genotype with a 72 nucleotide G gene duplication. PLoS ONE 2012, 7, e32807. [Google Scholar] [CrossRef] [PubMed]
- Luchsinger, V.; Ampuero, S.; Palomino, M.A.; Chnaiderman, J.; Levican, J.; Gaggero, A.; Larrañaga, C.E. Comparison of virological profiles of respiratory syncytial virus and rhinovirus in acute lower tract respiratory infections in very young Chilean infants, according to their clinical outcome. J. Clin. Virol. 2014, 61, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Panayiotou, C.; Richter, J.; Koliou, M.; Kalogirou, N.; Georgiou, E.; Christodoulou, C. Epidemiology of respiratory syncytial virus in children in Cyprus during three consecutive winter seasons (2010–2013): Age distribution, seasonality and association between prevalent genotypes and disease severity. Epidemiol. Infect. 2014, 142, 2406–2411. [Google Scholar] [CrossRef] [PubMed]
- Prifert, C.; Streng, A.; Krempl, C.D.; Liese, J.; Weissbrich, B. Novel respiratory syncytial virus a geno-type, Germany, 2011–2012. Emerg. Infect. Dis. 2013, 19, 1029–1030. [Google Scholar] [CrossRef] [PubMed]
- Larkin, E.K.; Gebretsadik, T.; Moore, M.L.; Anderson, L.J.; Dupont, W.D.; Chappell, J.D.; Minton, P.A.; Peebles, R.S., Jr.; Moore, P.E.; Valet, R.S.; et al. Objectives, design and enrollment results from the infant susceptibility to pulmonary infections and asthma following RSV exposure study (inspire). BMC Pulm. Med. 2015, 15, 45. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Pfarr, D.S.; Losonsky, G.A.; Kiener, P.A. Immunoprophylaxis of RSV infection: Advancing from RSV-IGIV to palivizumab and motavizumab. Curr. Top Microbiol. Immunol. 2008, 317, 103–123. [Google Scholar] [PubMed]
- García-Barreno, B.; Palomo, C.; Peñas, C.; Delgado, T.; Perez-Breña, P.; Melero, J.A. Marked differences in the antigenic structure of human respiratory syncytial virus F and G glycoproteins. J. Virol. 1989, 63, 925–932. [Google Scholar] [PubMed]
- Meissner, H.C.; Groothuis, J.R.; Rodriguez, W.J.; Welliver, R.C.; Hogg, G.; Gray, P.H.; Loh, R.; Simoes, E.A.; Sly, P.; Miller, A.K.; Nichols, A.I.; Jorkasky, D.K.; Everitt, D.E.; Thompson, K.A. Safety and pharmacokinetics of an intramuscular monoclonal antibody (SB 209763) against respiratory syncytial virus (RSV) in infants and young children at risk for severe RSV disease. Antimicrob. Agents Chemother. 1999, 43, 1183–1188. [Google Scholar] [PubMed]
- Beeler, J.A.; van Wyke Coelingh, K. Neutralization epitopes of the F glycoprotein of respiratory syncytial virus: Effect of mutation upon fusion function. J. Virol. 1989, 63, 2941–2950. [Google Scholar] [PubMed]
- Arbiza, J.; Taylor, G.; López, J.A.; Furze, J.; Wyld, S.; Whyte, P.; Stott, E.J.; Wertz, G.; Sullender, W.; Trudel, M.; et al. Characterization of two antigenic sites recognized by neutralizing monoclonal antibodies directed against the fusion glycoprotein of human respiratory syncytial virus. J. Gen. Virol. 1992, 73, 2225–2234. [Google Scholar] [CrossRef] [PubMed]
- Null, D., Jr.; Pollara, B.; Dennehy, P.H.; Steichen, J.; Sánchez, P.J.; Givner, L.B.; Carlin, D.; Landry, B.; Top, F.H., Jr.; Connor, E. Safety and immunogenicity of palivizumab (Synagis) administered for two seasons. Pediatr. Infect. Dis. J. 2005, 24, 1021–1033. [Google Scholar] [CrossRef]
- Cabalka, A.K. Physiologic risk factors for respiratory viral infections and immunoprophylaxis for respiratory syncytial virus in young children with congenital heart disease. Pediatr. Infect. Dis. J. 2004, 23, S41–S45. [Google Scholar] [CrossRef] [PubMed]
- De Estudios Fetoneonatales, C.; Fernández, J.S.; Albas, M.D.; Satragno, D.; Cattaino, A.; Martin, A.M.; Rubio, C.; Nieto, R.; de Cardioloqía, C.; de Neumonología, N.; et al. Recommendations for palivizumab use. Update 2015. Arch. Argent. Pediatr. 2016, 114, 84–88. [Google Scholar]
- New Recommendations for the Use of Synagis®, a Passive Immunisation to Protect Infants at Risk of Serious Respiratory Syncytial Virus (RSV) Infection. Available online: www.dh.gov.uk/ab/JCVI/DH_094744 (accessed on 13 July 2017).
- Bollani, L.; Baraldi, E.; Chirico, G.; Dotta, A.; Lanari, M.; Del Vecchio, A.; Manzoni, P.; Boldrini, A.; Paolillo, P.; Di Fabio, S.; et al. Revised recommendations concerning palivizumab prophylaxis for respiratory syncytial virus (RSV). Ital. J. Pediatr. 2015, 41, 97. [Google Scholar] [CrossRef] [PubMed]
- CPS Updates Recommendations for Use of Palivizumab against RSV. Available online: http://www.cps.ca/en/media/release-communique/cps-updates-recommendations-for-use-of-palivizumab-against-rsv (accessed on 13 July 2017).
- Nakazawa, M.; Saji, T.; Ichida, F.; Oyama, K.; Harada, K.; Kusuda, S. Guidelines for the use of palivizumab in infants and young children with congenital heart disease. Pediatr. Int. 2006, 48, 190–193. [Google Scholar] [CrossRef] [PubMed]
- Grupo de trabajo de la Guía de Práctica Clínica sobre la Bronquiolitis Aguda. Guía de práctica clínica sobre la bronquiolitis aguda: Plan de Calidad para el Sistema Nacional de Salud (SNS) del Ministerio de Sanidad y Política Social. 2010. Available online: www.guiasalud.es/egpc/bronquiolitis/resumida/apartado04/tratamiento07.html (accessed on 29 June 2017). (In Spanish).
- McLellan, J.S.; Chen, M.; Joyce, M.G.; Sastry, M.; Stewart-Jones, G.B.; Yang, Y.; Zhang, B.; Chen, L.; Srivatsan, S.; Zheng, A.; et al. Structure-based design of a fusion glycoprotein vaccine for respiratory syncytial virus. Science 2013, 342, 592–598. [Google Scholar] [CrossRef] [PubMed]
- McLellan, J.S.; Chen, M.; Leung, S.; Graepel, K.W.; Du, X.; Yang, Y.; Zhou, T.; Baxa, U.; Yasuda, E.; Beaumont, T.; et al. Structure of RSV fusion glycoprotein trimer bound to a prefusion-specific neutralizing antibody. Science 2013, 340, 1113–1117. [Google Scholar] [CrossRef] [PubMed]
- Kwakkenbos, M.J.; Diehl, S.A.; Yasuda, E.; Bakker, A.Q.; van Geelen, C.M.; Lukens, M.V.; van Bleek, G.M.; Widjojoatmodjo, M.N.; Bogers, W.M.; Mei, H.; et al. Generation of stable monoclonal antibody-producing B cell receptor-positive human memory B cells by genetic programming. Nat. Med. 2010, 16, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Magro, M.; Mas, V.; Chappell, K.; Vázquez, M.; Cano, O.; Luque, D.; Terrón, M.C.; Melero, J.A.; Palomo, C. Neutralizing antibodies against the preactive form of respiratory syncytial virus fusion protein offer unique possibilities for clinical intervention. Proc. Natl. Acad. Sci. USA 2012, 109, 3089–3094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffin, M.P.; Khan, A.A.; Esser, M.T.; Jensen, K.; Takas, T.; Kankam, M.K.; Villafana, T.; Dubovsky, F. Safety, tolerability, and pharmacokinetics of MEDI8897, the respiratory syncytial virus prefusion F-targeting monoclonal antibody with an extended half-life, in healthy adults. Antimicrob. Agents Chemother. 2017, 61, e01714–e01716. [Google Scholar] [CrossRef] [PubMed]
- Higgins, D.; Trujillo, C.; Keech, C. Advances in RSV vaccine research and development—A global agenda. Vaccine 2016, 34, 2870–2875. [Google Scholar] [CrossRef] [PubMed]
- Kapikian, A.Z.; Mitchell, R.H.; Chanock, R.M.; Shvedoff, R.A.; Stewart, C.E. An epidemiologic study of altered clinical reactivity to respiratory syncytial (RS) virus infection in children previously vaccinated with an inactivated RS virus vaccine. Am. J. Epidemiol. 1969, 89, 405–421. [Google Scholar] [CrossRef] [PubMed]
- Neuzil, K.M. Progress toward a Respiratory Syncytial Virus Vaccine. Clin. Vaccine Immunol. 2016, 23, 186–188. [Google Scholar] [CrossRef] [PubMed]
- Graham, B.S. Vaccines against respiratory syncytial virus: The time has finally come. Vaccine 2016, 34, 3535–3541. [Google Scholar] [CrossRef] [PubMed]
- Green, C.A.; Scarselli, E.; Voysey, M.; Capone, S.; Vitelli, A.; Nicosia, A.; Cortese, R.; Thompson, A.J.; Sande, C.S.; de Lara, C.; Klenerman, P.; Pollard, A.J. Safety and immunogenicity of novel respiratory syncytial virus (RSV) vaccines based on the RSV viral proteins, F, N and M2–1 encoded by simian adenovirus (PanAd3-RSV) and MVA (MVA-RSV); protocol for an open-label, dose-escalation, single-centre, phase 1 clinical trial in healthy adults. BMJ Open 2015, 5, e008748. [Google Scholar] [PubMed]
- Rey-Jurado, E.; Kalergis, A.M. Immunological Features of Respiratory Syncytial Virus-Caused Pneumonia-Implications for Vaccine Design. Int. J. Mol. Sci. 2017, 18, 556. [Google Scholar] [CrossRef] [PubMed]
- Ngwuta, J.O.; Chen, M.; Modjarrad, K.; Joyce, M.G.; Kanekiyo, M.; Kumar, A.; Yassine, H.M.; Moin, S.M.; Killikelly, A.M.; Chuang, G.Y.; et al. Prefusion F-specific antibodies determine the magnitude of RSV neutralizing activity in human sera. Sci. Transl. Med. 2015, 7, 309ra162. [Google Scholar] [CrossRef] [PubMed]
- Swanson, K.A.; Settembre, E.C.; Shaw, C.A.; Dey, A.K.; Rappuoli, R.; Mandl, C.W.; Dormitzer, P.R.; Carfi, A. Structural basis for immunization with postfusion respiratory syncytial virus fusion F glycoprotein (RSV F) to elicit high neutralizing antibody titers. Proc. Natl. Acad. Sci. USA 2011, 108, 9619–9624. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.; Raghunandan, R.; Wu, Y.; Liu, Y.; Massare, M.; Nathan, M.; Zhou, B.; Lu, H.; Boddapati, S.; Li, J.; et al. Respiratory syncytial virus fusion glycoprotein expressed in insect cells form protein nanoparticles that induce protective immunity in cotton rats. PLoS ONE 2012, 7, e50852. [Google Scholar] [CrossRef] [PubMed]
- Hause, A.M.; Henke, D.M.; Avadhanula, V.; Shaw, C.A.; Tapia, L.I.; Piedra, P.A. Sequence variability of the respiratory syncytial virus (RSV) fusion gene among contemporary and historical genotypes of RSV/A and RSV/B. PLoS ONE 2017, 12, e0175792. [Google Scholar]
- Glenn, G.M.; Fries, L.F.; Smith, G.; Kpamegan, E.; Lu, H.; Guebre-Xabier, M.; Hickman, S.P.; Flyer, D. Modeling maternal fetal RSV F vaccine induced antibody transfer in guinea pigs. Vaccine 2015, 33, 6488–6492. [Google Scholar] [CrossRef] [PubMed]
- Ochola, R.; Sande, C.; Fegan, G.; Scott, P.D.; Medley, G.F.; Cane, P.A.; Nokes, D.J. The level and duration of RSV-specific maternal IgG in infants in Kilifi Kenya. PLoS ONE 2009, 4, e8088. [Google Scholar] [CrossRef] [PubMed]
- Stensballe, L.G.; Ravn, H.; Kristensen, K.; Meakins, T.; Aaby, P.; Simoes, E.A. Seasonal variation of maternally derived respiratory syncytial virus antibodies and association with infant hospitalizations for respiratory syncytial virus. J. Pediatr. 2009, 154, 296–298. [Google Scholar] [CrossRef] [PubMed]
- Jans, J.; Wicht, O.; Widjaja, I.; Ahout, I.M.; de Groot, R.; Guichelaar, T.; Luytjes, W.; de Jonge, M.I.; de Haan, C.A.; Ferwerda, G. Characteristics of RSV-specific maternalAntibodies in plasma of hospitalized, acute RSV patients under three months of age. PLoS ONE 2017, 12, e0170877. [Google Scholar] [CrossRef] [PubMed]
- Le Saux, N.; Gaboury, I.; MacDonald, N. Maternal respiratory syncytial virus antibody titers: Season and children matter. Pediatr. Infect. Dis. J. 2003, 22, 563–564. [Google Scholar] [CrossRef] [PubMed]
- McLellan, J.S.; Chen, M.; Chang, J.S.; Yang, Y.; Kim, A.; Graham, B.S.; Kwong, P.D. Structure of a major antigenic site on the respiratory syncytial virus fusion glycoprotein in complex with neutralizing antibody 101F. J. Virol. 2010, 84, 12236–12244. [Google Scholar] [CrossRef] [PubMed]
- Liljeroos, L.; Krzyzaniak, M.A.; Helenius, A.; Butcher, S.J. Architecture of respiratory syncytial virus revealed by electron cryotomography. Proc. Natl. Acad. Sci. USA 2013, 110, 11133–11138. [Google Scholar] [CrossRef] [PubMed]
- Krarup, A.; Truan, D.; Furmanova-Hollenstein, P.; Bogaert, L.; Bouchier, P.; Bisschop, I.J.; Widjojoatmodjo, M.N.; Zahn, R.; Schuitemaker, H.; McLellan, J.S.; et al. A highly stable prefusion RSV F vaccine derived from structural analysis of the fusion mechanism. Nat. Commun. 2015, 6, 8143. [Google Scholar] [CrossRef] [PubMed]
- Schneider-Ohrum, K.; Cayatte, C.; Bennett, A.S.; Rajani, G.M.; McTamney, P.; Nacel, K.; Hostetler, L.; Cheng, L.; Ren, K.; O’Day, T.; et al. Immunization with low doses of recombinant postfusion or prefusion respiratory syncytial virus f primes for vaccine-enhanced disease in the cotton rat model independently of the presence of a Th1-Biasing (GLA-SE) or Th2-Biasing (Alum) Adjuvant. J. Virol. 2017, 91, e02180-16. [Google Scholar] [CrossRef] [PubMed]
- Liang, B.; Ngwuta, J.O.; Surman, S.; Kabatova, B.; Liu, X.; Lingemann, M.; Liu, X.; Yang, L.; Herbert, R.; Swerczek, J.; et al. Improved prefusion stability, optimized codon-usage, and augmented virion packaging enhance the immunogenicity of respiratory syncytial virus (RSV) fusion protein in a vectored vaccine candidate. J. Virol. 2017, JVI.00189-17. [Google Scholar] [CrossRef] [PubMed]
- Widjojoatmodjo, M.N.; Bogaert, L.; Meek, B.; Zahn, R.; Vellinga, J.; Custers, J.; Serroyen, J.; Radošević, K.; Schuitemaker, H. Recombinant low-seroprevalent adenoviral vectors Ad26 and Ad35 expressing the respiratory syncytial virus (RSV) fusion protein induce protective immunity against RSV infection in cotton rats. Vaccine 2015, 33, 5406–5414. [Google Scholar] [CrossRef] [PubMed]
- Zahn, R.; Saville, M. Development of a Vaccine for Prevention of Respiratory Syncytial Virus (RSV) Disease in RSV-Naïve Infants. Available online: https://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/BloodVaccinesandOtherBiologics/VaccinesandRelatedBiologicalProductsAdvisoryCommittee/UCM559670.pdf (accessed on 25 July 2017).
- Hwang, H.S.; Kim, K.H.; Lee, Y.; Lee, Y.T.; Ko, E.J.; Park, S.; Lee, J.S.; Lee, B.C.; Kwon, Y.M.; Moore, M.L.; et al. Virus-like particle vaccines containing F or F and G proteins confer protection against respiratory syncytial virus without pulmonary inflammation in cotton rats. Hum. Vaccin. Immunother. 2017, 13, 1031–1039. [Google Scholar] [CrossRef] [PubMed]
- Karron, R.A.; Buchholz, U.J.; Collins, P.L. Live-attenuated respiratory syncytial virus vaccines. Curr. Top Microbiol. Immunol. 2013, 372, 259–284. [Google Scholar] [PubMed]
Study | Period of Study | Country | Study Population | Number of Cases | Results (p Value) |
---|---|---|---|---|---|
McConnochie et al. [39] | 2 winter seasons (1985–1987) | Rochester, New York, United States | Infants hospitalized for acute respiratory illness | Total RSV cases: 170 RSV-A cases: 95 RSV-B cases: 62 Un-typed cases: 13 | RSV-A was associated with significantly greater severity of illness, compared with RSV-B (p < 0.01) Mechanical ventilation requirement (p = 0.01), carbon dioxide tension > 45 mmHg (p = 0.04) were higher in RSV-A infection compared with RSV-B. |
Hall et al. [40] | 15 years (1975–1990) | Rochester, New York, United States | Hospitalized and ambulatory children aged 0–2 years with RSV infection | Total RSV cases: 1209 RSV-A cases: 858 RSV-B cases: 351 | RSV-A was associated with higher risk of admission to the intensive care unit (p < 0.01). |
Papadopoulos et al. [41] | 1 winter season (from October 1999 to September 2000) | Athens, Greece | Hospitalized infants with RSV-positive bronchiolitis | Total RSV cases: 81 RSV-A cases: 23 cases RSV-B cases: 25 cases Un-typed: 33 cases | Disease severity index (assessed based on heart rate, respiratory rate, wheezing, cyanosis, difficulty of feeding and oxygen saturation) was higher in RSV-A bronchiolitis than in RSV-B induced one (p = 0.031). No statistically significant difference arose concerning the length of hospital stay and the need of intensive care. |
Jafri et al. [42] | 2 winter seasons (2006–2008) | United Sates (27 sites across 20 states) | Infants presenting to the Emergency Department with symptoms of lower respiratory tract infection or apnoea | Total RSV cases: 1299 RSV-A cases: 853 RSV-B cases: 453 | Patients with RSV-A positive bronchiolitis had a higher rates of hospitalization compared with those positive for RSV-B virus (p < 0.001). |
Laham et al. [13] | 3 winter seasons (2007–2010) | United States (16 sites across 12 states) | Children aged 0–2 years hospitalized with bronchiolitis | Total RSV cases: 1589 RSV-A cases: 925 RSV-B cases: 649 RSV-A and RSV-B co-infected cases: 15 | RSV-A positive bronchiolitis had a higher risk of intensive care treatment (defined as admission to the intensive care unit and/or the use of mechanical ventilation) compared with those having RSV-B (p = 0.048). On the contrary, no differences arose among children with co-infecting viruses |
Hornsleth et al. [43] | 3 winter seasons (1993–1995) | Copenhagen, Denmark | Children aged 0–2 years hospitalized with RSV-positive lower respiratory tract infection | Total RSV cases: 105 RSV-A cases: 31 RSV-B cases: 54 Un-typed cases: 20 | Infants aged 0–5 months infected with RSV-B virus had a higher length of hospital stay than those infected with RSV-B virus (p = 0.039). Children aged 0–2 years with RSV-B infections had more severe disease than those with RSV-A infections, as assessed by respiratory rate (p = 0.013) and the presence of an infiltrate on a chest radiograph (p = 0.039). |
Tran et al. [44] | 1 year (from April 2010 to May 2011) | Ho Chi Minh City, Vietnam | Children aged 0–15 years admitted to hospital for an acute respiratory infection with an onset of illness less than 7 days | Total RSV cases: 257 RSV-A cases: 235 RSV-B cases: 13 RSV-A and RSV-B co-infected cases: 9 | Children infected with RSV-A virus had a higher clinical severity score than those infected with group B (p = 0.049) |
Fodha et al. [18] | 1 year (2005) | Central coast of Tunisia | Previously healthy infants hospitalized with RSV bronchiolitis | Total RSV cases: 81 RSV-A cases: 9 RSV-B cases: 60 Un-typed cases: 12 | Disease severity correlated with chronologic age < 28 days and nasopharyngeal RSV viral load (p = 0.024), but did not correlate with RSV subgroup. |
McIntosh et al. [19] | 3 years | Sydney, Australia | Children aged 0–2 years hospitalized with RSV-positive bronchiolitis | Total RSV cases: 444 RSV-A cases: 337 RSV-B cases: 107 | No difference in severity between RSV-A and RSV-B infection. |
Liu et al. [45] | 3 years (2013–2015) | Guangzhou, China | Children aged 0–14 years hospitalized with RSV respiratory illness | Total RSV-cases: 729 RSV-A cases: 373 RSV-B cases: 356 | Bronchiolitis (p < 0.001), dyspnea (p = 0.048), coryza (p < 0.001), vomiting (p = 0.001), poor appetite (p < 0.001), and diarrhea (p = 0.005) were more frequent in the RSV-A-positive patients than in the RSV-B-positive patients. Systemic influenza-like symptoms: chills (p = 0.01), headache (p = 0.006), myalgia (p = 0.002), debility (p = 0.006), and rash (p < 0.001) were more frequent in the RSV-B-positive patients than in the RSV-A-positive patients. |
Study | Period of Study | Country | Study Population | Number of Cases | Results (p Value) |
---|---|---|---|---|---|
Martinello et al. [16] | 2 winter seasons (1998–2000) | New Haven, Connecticut | Children aged 0–2 years without predisposing comorbidities presenting to the Emergency Room with ARI | Total RSV cases: 107 RSV-A cases: 64 Genotypes: - GA2: 29 cases; - GA3: 7 cases; - GA4: 24 cases. RSV-B cases: 43 | No differences between RSV-A and B groups regarding the severity of illness (p = 0.590). GA3 genotype was associated with significantly greater severity of illness, compared with genotype GA2 (p = 0.018) and subgroup B (p = 0.032). |
Yoshihara et al. [15] | 3 years (from January 2010 to December 2012) | Nha Trang City, Central Vietnam | Children with RSV-related ARI | Total RSV cases: 362 RSV-A cases: 269 Genotypes: - ON1: 123 cases; - NA1: 138 cases; - Untyped: 8 cases. - RSV-B: 93 cases. Genotypes: - BA9: 57 cases; - BA10: 12 cases; - BA-C: 12 cases; - Untyped: 12 cases. | Shorter mean period from disease onset to hospital admission was seen in ON1 ARI cases (p < 0.001); Mean length of hospital stay (in days) between ON1 and NA1 ARI cases did not differ significantly (p = 0.329). Risk of wheezing was 2.21 (95% CI: 1.72–2.86) times, LRTI was 2.26 (95% CI: 1.37–3.72) times, and chest X-ray abnormality was 2.14 (95% CI: 1.13–4.04) times greater among ON1 ARI cases compared to NA1 ARI cases. |
Esposito et al. [14] | 5 winter seasons (2009–2014) | Milan, Italy | Children aged 0–2 years attending the Emergency Room because of influenza-like illness | Total RSV cases: 165 RSV-A cases: 131 Genotypes: - NA1: 62 cases; - ON1-A: 29 cases; - ON1-A1: 16 cases; - ON1-B: 24 cases. RSV-B cases: 34. Genotypes: - BA-9: 26 cases; - BA-10: 8 cases | No differences arose between RSV-A and B groups. Children infected by genotype A-NA1 more frequently had lower respiratory tract infections (p < 0.0001) and required hospitalisation (p = 0.007) than those infected by genotype A-ON1. |
Tabatabai et al. [36] | 1 winter season (2012–2013) | Heidelberg, Germany | Children aged 0–2 years hospitalized with upper or lower acute respiratory infection (ARI) | Total RSV cases: 134 RSV-A cases: 110 Genotypes: - ON1: 73 cases; - NA1: 23 cases; - GA5: 1 case; - Untyped: 13 cases. RSV-B cases: 24. Genotypes: - BA-IX: 10 cases; - BA-X 5 cases; - Untyped: 9 cases. | No difference arose between RSV groups and genotypes regarding symptoms prior to hospitalization in days (p = 0.98), hospital stay in days (p = 0.68) or need for intensive care (p = 0.49). |
Panayiotou et al. [49] | 3 winter seasons (2010–2013) | Cyprus | Children aged < 12 years hospitalized for ARI | Total RSV cases: 124 RSV-A cases: 83 Genotypes: - GA2: 28 cases; - ON1: 55 cases. RSV-B cases: 32 Genotype: - BA: 32 cases; Untyped: 9 cases | Genotype ON-1 was associated with less severe disease than GA2 and BA genotypes (p = 0.49). |
Luchsinger et al. [48] | 2 winter seasons (2010–2011) | Santiago, Chile | Previously healthy term infants, younger than 6 months of age, with a normal weight at birth, having their first acquired-community lower ARI | Total RSV cases: 74 RSV-A cases: 19 Genotype: - NA1: 19 cases RSV-B cases: 14. Genotypes: - B7: 13 cases; - B9: 1 cases Untyped: 41 cases | NA1 strains were more frequent in hospitalized infants (p < 0.001) and were associated with more severe course of illness (p = 0.01). |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vandini, S.; Biagi, C.; Lanari, M. Respiratory Syncytial Virus: The Influence of Serotype and Genotype Variability on Clinical Course of Infection. Int. J. Mol. Sci. 2017, 18, 1717. https://doi.org/10.3390/ijms18081717
Vandini S, Biagi C, Lanari M. Respiratory Syncytial Virus: The Influence of Serotype and Genotype Variability on Clinical Course of Infection. International Journal of Molecular Sciences. 2017; 18(8):1717. https://doi.org/10.3390/ijms18081717
Chicago/Turabian StyleVandini, Silvia, Carlotta Biagi, and Marcello Lanari. 2017. "Respiratory Syncytial Virus: The Influence of Serotype and Genotype Variability on Clinical Course of Infection" International Journal of Molecular Sciences 18, no. 8: 1717. https://doi.org/10.3390/ijms18081717
APA StyleVandini, S., Biagi, C., & Lanari, M. (2017). Respiratory Syncytial Virus: The Influence of Serotype and Genotype Variability on Clinical Course of Infection. International Journal of Molecular Sciences, 18(8), 1717. https://doi.org/10.3390/ijms18081717