Effect of Angelica sinensis Root Extract on Cancer Prevention in Different Stages of an AOM/DSS Mouse Model
Abstract
:1. Introduction
2. Results
2.1. Angelica Sinensis Root ExtractAdministration in Different Stages of Model Exhibits Opposite Effect on Tumorigenesis
2.2. The Effect of ASR Extract Administration on Cell Proliferation and Apoptosis
2.3. ASR Extract Administration Reduces DNA Damage
2.4. ASR Extract Administration in the Promotion Stage of AOM/DSS Model Downregulated P53 Level
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Plant Material and Preparation of ASR Extract
4.3. Azoxymethane/Dextran Sodium Sulphate Colitis-Associated Carcinoma Mouse Model
4.4. Experimental Procedures
4.5. Hematoxylin-Eosin (HE) Staining and Histological Analysis
4.6. Immunohistochemistry Assay
4.7. TUNEL Assay
4.8. Western Blot Analysis
4.9. Statistical Analysis
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Terzić, J.; Grivennikov, S.; Karin, E.; Karin, M. Inflammation and colon cancer. Gastroenterology 2010, 138, 2101. [Google Scholar] [CrossRef] [PubMed]
- Robertis, M.D.; Massi, E.; Poeta, M.L.; Carotti, S.; Morini, S.; Cecchetelli, L.; Signori, E.; Fazio, V.M. The AOM/DSS murine model for the study of colon carcinogenesis: From pathways to diagnosis and therapy studies. J. Carcinog. 2011, 10, 9. [Google Scholar] [PubMed]
- Svec, J.; Ergang, P.; Mandys, V.; Kment, M.; Pacha, J. Expression profiles of proliferative and antiapoptotic genes in sporadic and colitis-related mouse colon cancer models. Int. J. Exp. Pathol. 2010, 91, 44–53. [Google Scholar] [PubMed]
- Jacoby, R.F.; Llor, X.; Teng, B.B.; Davidson, N.O.; Brasitus, T.A. Mutations in the K-ras oncogene induced by 1,2-dimethylhydrazine in preneoplastic and neoplastic rat colonic mucosa. J. Clin. Investig. 1991, 87, 624–630. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, T.; Herschman, H.R. Tumor formation in a mouse model of colitis-associated colon cancer does not require COX-1 or COX-2 expression. Carcinogenesis 2010, 31, 729. [Google Scholar] [CrossRef] [PubMed]
- Bissahoyo, A.; Pearsall, R.S.; Hanlon, K.; Amann, V.; Hicks, D.; Godfrey, V.L.; Threadgill, D.W. Azoxymethaneis a genetic background-dependent colorectal tumor initiator and promoter in mice: Effects of dose, route, and diet. Toxicol. Sci. 2005, 88, 340. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Kohno, H.; Suzuki, R.; Yamada, Y.; Sugie, S.; Mori, H. A novel inflammation-related mouse colon carcinogenesis model induced by azoxymethane and dextran sodium sulfate. Cancer Sci. 2003, 94, 965–973. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.L.; Zeng, R.; Gu, C.M.; Qu, Y.; Huang, L.F. Angelica sinensis in China-A review of botanical profile, ethnopharmacology, phytochemistry, and chemical analysis. J. Ethnopharmacol. 2016, 190, 116–141. [Google Scholar] [CrossRef] [PubMed]
- Ling, F.; Xiao, X.; Liu, C.; Xin, H. Recent advance in studies on Angelica sinensis. Chin. Herbal Med. 2012, 1, 12–25. [Google Scholar]
- Yi, L.; Liang, Y.; Wu, H.; Yuan, D. The analysis of Radix Angelicae sinensis (Danggui). J. Chromatogr. A 2009, 11, 1991–2001. [Google Scholar] [CrossRef] [PubMed]
- Yun, J.W.; Che, J.H.; Kwon, E.; Kim, Y.S.; Kim, S.H.; You, J.R.; Kim, W.H.; Kim, H.H.; Kang, B.C. Safety evaluation of Angelica gigas: Genotoxicity and 13-weeks oral subchronic toxicity in rats. Regul. Toxicol. Pharmacol. 2015, 72, 473–480. [Google Scholar] [CrossRef] [PubMed]
- Saw, C.L.; Wu, Q.; Su, Z.Y.; Wang, H.; Yang, Y.; Xu, X.; Huang, Y.; Khor, T.O.; Kong, A.N. Effects of natural phytochemicals in Angelica sinensis (Danggui) on Nrf2-mediated gene expression of phase II drug metabolizing enzymes and anti-inflammation. Biopharm. Drug Dispos. 2013, 34, 303. [Google Scholar] [CrossRef] [PubMed]
- Sayin, V.I.; Ibrahim, M.X.; Larsson, E.; Nilsson, J.A.; Lindahl, P.; Bergo, M.O. Antioxidants accelerate lung cancer progression in mice. Sci. Transl. Med. 2014, 6, 221ra15. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- Han, E.S.; Muller, F.L.; Perez, V.; Qi, W.; Liang, H.; Xi, L.; Fu, C.; Doyle, E.; Hickey, M.; Cornell, J. The in vivo Gene Expression Signature of Oxidative Stress. Physiol. Genom. 2008, 34, 112–126. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.J.; Ng, L.T.; Lin, C.C. Antioxidant activities of some common ingredients of traditional Chinese medicine, Angelica sinensis, Lyciumbarbarum and Poriacocos. Phytother. Res. 2004, 18, 1008–1012. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.P.; Du, J.L.; Ding, W.D.; Jia, R.; Liu, Y.J.; Xu, P.; Teraoka, H.; Yin, G.J. Hepatoprotective and antioxidant effects of dietary Angelica sinensis extract against carbon tetrachloride-induced hepatic injury in Jian Carp (Cyprinuscarpio var. Jian). Aquaculture Res. 2016, 47, 1852–1863. [Google Scholar] [CrossRef]
- Dietz, B.M.; Liu, D.T.; Hagos, G.K.; Yao, P.; Schinkovitz, A.; Pro, S.M.; Deng, S.X.; Farnsworth, N.R.; Pauli, G.F.; van Breemen, R.B.; Bolton, J.L. Angelica sinensis and its Alkylphthalidesinduce the detoxification enzyme NAD(P)H: Quinone oxidoreductase 1 by Alkylating Keap1. Chem. Res. Toxicol. 2008, 21, 1939–1948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kampa, M.; Alexaki, V.I.; Notas, G.; Nifli, A.P.; Nistikaki, A.; Hatzoglou, A.; Bakogeorgou, E.; Kouimtzoglou, E.; Blekas, G.; Boskou, D.; et al. Antiproliferative and apoptotic effects of selective phenolic acids on T47D human breast cancer cells: Potential mechanisms of action. Breast Cancer Res. 2004, 6, R63–R74. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.Y.; Ho, T.Y.; Lee, E.J.; Su, S.Y.; Tang, N.Y.; Hsieh, C.L. Ferulicacid reduces cerebral infarct through its antioxidative and anti-inflammatory effects following transient focal cerebral ischemia in rats. Am. J. Chin. Med. 2008, 36, 1105–1119. [Google Scholar] [CrossRef] [PubMed]
- Chou, T.H.; Ding, H.Y.; Hung, W.J.; Liang, C.H. Antioxidative characteristics and inhibition of alpha-melanocyte-stimulating hormone-stimulated melanogenesis of vanillin and vanillic acid from Origanumvulgare. Exp. Dermatol. 2010, 19, 742–750. [Google Scholar] [CrossRef] [PubMed]
- Jie, W. Validation of the Preparation Process of Organic Acids of Angelica sinensis and Qualitative Characterization of Chemical Constituents by UPLC-MS/MS. Bachelor’s, Beijing University of Chinese Medicine, Beijing, China, 2017. [Google Scholar]
- Schieber, M.; Chandel, N.S. ROS function in redox signaling and oxidative stress. Curr. Biol. 2014, 24, R453–R462. [Google Scholar] [CrossRef] [PubMed]
- De Nicola, G.M.; Karreth, F.A.; Humpton, T.J.; Gopinathan, A.; Wei, C.; Frese, K.; Mangal, D.; Yu, K.H.; Yeo, C.J.; Calhoun, E.S.; et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 2011, 475, U106–U128. [Google Scholar] [CrossRef] [PubMed]
- Martindale, J.L.; Holbrook, N.J. Cellular response to oxidative stress: Signaling for suicide and survival. J. Cell. Physiol. 2002, 192, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Chen, Y.M.; Clair, D.K.S. ROS and p53: A versatile partnership. Free Radic. Biol. Med. 2008, 44, 1529–1535. [Google Scholar] [CrossRef] [PubMed]
No. | Compounds | Molecular Formula |
---|---|---|
1 | Isoeugenol | C10H12O2 |
2 | Sebacic acid | C10H18O4 |
3 | Sassinic acid | C4H6O4 |
4 | Ferulic acid | C10H10O4 |
5 | Anisic acid | C8H8O3 |
6 | Chlorogenic acid | C16H18O9 |
7 | Anchoic acid | C9H16O4 |
8 | Guaiacol | C7H8O2 |
9 | Carvacrol | C10H14O |
10 | m-Ethylphenol | C8H10O |
11 | Isoeugenol | C10H12O2 |
12 | Camphoric acid | C10H16O4 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, B.; Kang, Q.; Peng, Y.; Xie, Y.; Chen, C.; Li, B.; Wu, Q. Effect of Angelica sinensis Root Extract on Cancer Prevention in Different Stages of an AOM/DSS Mouse Model. Int. J. Mol. Sci. 2017, 18, 1750. https://doi.org/10.3390/ijms18081750
Zhao B, Kang Q, Peng Y, Xie Y, Chen C, Li B, Wu Q. Effect of Angelica sinensis Root Extract on Cancer Prevention in Different Stages of an AOM/DSS Mouse Model. International Journal of Molecular Sciences. 2017; 18(8):1750. https://doi.org/10.3390/ijms18081750
Chicago/Turabian StyleZhao, Bochen, Qian Kang, Yu Peng, Yuanping Xie, Cheng Chen, Bingshao Li, and Qing Wu. 2017. "Effect of Angelica sinensis Root Extract on Cancer Prevention in Different Stages of an AOM/DSS Mouse Model" International Journal of Molecular Sciences 18, no. 8: 1750. https://doi.org/10.3390/ijms18081750
APA StyleZhao, B., Kang, Q., Peng, Y., Xie, Y., Chen, C., Li, B., & Wu, Q. (2017). Effect of Angelica sinensis Root Extract on Cancer Prevention in Different Stages of an AOM/DSS Mouse Model. International Journal of Molecular Sciences, 18(8), 1750. https://doi.org/10.3390/ijms18081750